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September 2, 2022

General rules of the final exam

• time: 90 minutes

• number of examples to solve: 7

• evaluation: each solved example has a maximum value of 10 points

• materials: official table of Laplace transforms, simple calculator

Example no. 1: Complex numbers

1.1. Compute Re z and Im z if:
z = Ln(cos(i)).

Solution: Let us recall that:

cos(z) = eiz + e−iz

2 , Ln(z) = ln |z|+ iArg(z).

Compute

cos(i) = ei·i + e−i·i

2 = e−1 + e1

2 = cosh(1).

Next

Here, arg(cosh(1)) = 0, since
Im (cosh(1)) = 0 and
Re (cosh(1)) > 0.

Ln(cos(i)) = Ln(cosh(1)) = ln | cosh(1)|+ iArg(cosh(1)) =
= ln(cosh(1)) + i(arg(cosh(1)) + 2kπ) =
= ln(cosh(1)) + 2kπi, k ∈ Z.

Then
Re (z) = ln(cosh(1)) a Im (z) = 2kπ, k ∈ Z.

1.2. Find Re z0 and Im z0 if:
z0 = (−

√
2 +
√

2 i)4.

Solution: For solution De Moivre’s theorem will be used:

zn = |z|n(cos(nφ) + i sin(nφ)).

So z = −
√

2 +
√

2 i, |z| =
√

(−
√

2)2 + (
√

2)2 =
√

2 + 2 = 2, n = 4 a arg(z) = φ =
3/4π.

Here, Re (z) = −
√

2 and Im (z) =
√

2,
so it holds
arg(z) = π/2 + arctan(

√
2/
√

2) =
= π/2 + π/4 = 3/4π.Let us substitute into foregoing theorem:

(−
√

2 +
√

2 i)4 = 24(cos(4 · 3/4π) + i sin(4 · 3/4π)) = 24(cos(3π) + i sin(3π)) = −16.

Consequently,
Re (z0) = −16 a Im (z0) = 0.

1I would like to thank to my wife RNDr. A. Lampartová and prof. RNDr. R. Kalus, Ph.D. for helpful
comments that improved this text. I would like to express my thanks to students that pointed out many
numerical typos and to Bc. R. Plouharová for proofreading. This text was not supported by any grant.
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Example no. 2: Derivative of a complex function

2.1. Find out v(x, y) such that f(x + iy) = u(x, y) + iv(x, y) is holomorphic on C and
f(1) = −2 + i if:

u(x, y) = x4 + y4 − 6x2y2 − 3.

Solution: Firstly,

∂2u

∂x2 = 12x2 − 12y2,
∂2u

∂y2 = 12y2 − 12x2,

then
∆u = ∂2u

∂x2 + ∂2u

∂y2 = (12x2 − 12y2) + (12y2 − 12x2) = 0,

hence, general solution of a given problem exists. For the solution, Cauchy–Riemann
formulas will be used. Let us use the first of them:

Here it is
∂u

∂x
= 4x3 − 12xy2.

∂u

∂x
= ∂v

∂y
, 4x3 − 12xy2 = ∂v

∂y
,

so
v(x, y) =

∫
(4x3 − 12xy2)dy = 4x3y − 4xy3 + φ(x). (1)

Now, substitute (1) into the second Cauchy–Riemann formula, and we get the equation
for unknown function φ(x)

Here it is
∂u

∂y
= 4y3 − 12yx2.

∂u

∂y
= −∂v

∂x
, 4y3 − 12yx2 = −∂v

∂x
= −(12x2y − 4y3 + φ′(x)),

φ′(x) = 0, φ(x) = c, c ∈ R.

The general solution takes the following form:

v(x, y) = 4x3y − 4xy3 + c.

Now, find particular solution fulfilling condition f(1) = f(1 + 0 · i) = −2 + i:
To u and v substitute x = 1 and
y = 0.−2 + i = 1− 3 + i · c, c = 1.

The solution of a given problem fulfilling the initial condition takes the form

v(x, y) = 4x3y − 4xy3 + 1.

2.1. Find points in which the function is analytical:

f(z) = z · z.

Solution: Firstly, decompose f into its real and imaginary part:

f(x+ i · y) = (x+ i · y) · (x− i · y) = x2 + y2.

So,
u(x, y) = x2 + y2, v(x, y) = 0.

Now, let us apply the following Cauchy–Riemann equations

∂u

∂x
= ∂v

∂y
=⇒ 2x = 0 =⇒ x = 0,

∂u

∂y
= −∂v

∂y
=⇒ 2y = 0 =⇒ y = 0.

Cauchy–Riemann equations are fulfilled if and only if z = 0, hence given function has
derivative in a point z = 0 and f ′(0) = 0.

Really, f′(0) =
∂u

∂x
(0, 0) + i

∂v

∂x
(0, 0) = 0 + 0 · i = 0.

This function is not analytic at point z = 0,
since it has no derivative on its neighbourhood, therefore it is not analytic anywhere
in C.
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Example no. 3: Conformal functions

3.1. Illustrate sets Ω and f(Ω) = {f(z) : z ∈ Ω} if Ω = U(1 + i, 1) and

f(z) = i

z − i
+ 1.

Solution: Given function is conformal, linear fractional. Hence, it maps generalized
circles into generalized circles (see the textbook for students). To solve this problem,
it is enough to compute images of appropriately chosen points of this circle:

f(1) = 1/2 + i/2,
f(1 + 2i) = 3/2 + i/2,
f(2 + i) = 1 + i/2.

Hence, image of region border Ω is a straight line parallel to the axis x. Since it is a line parallel to the axis
x, it is enough to consider
Im (f(1)) = Im (f(1 + 2i)) =
Im (f(2 + i)) = 1/2.

Now do
interior test, that is search where interior of a region is mapped Ω:

f(1 + i) = 1 + i,

so f(Ω) = {z ∈ C : Im (z) > 1/2}, see Figure 1.

x

y

1

1

Ω

x

y

1

2

f(Ω)

f

Figure 1: Regions Ω and f(Ω).

3.2. Find out linear fractional function f such that:

f(0) = i, f(i) = 0, f(1) = 1.

Solution: We are looking for coefficients a, b, c, and d such that the following condi-
tions are fulfilled:

f(z) = az + b

cz + d
, ad 6= bc.

Let us substitute given values:

f(0) = b/d = i,

f(i) = (ai+ b)/(ci+ d) = 0,
f(1) = (a+ b)/(c+ d) = 1.

We get a system of three equations of four unknowns where we will pick an appropriate
value instead of one of those and hence the system will be solved. Put b = 1, from
the first equation we get d = −i. Substituting into the second equation we get a = i.
Finally, substituting into the third equation we get c = 2i + 1. Consequently, the
function we were looking for takes the form:

f(z) = iz + 1
(1 + 2i)z − i .

Let us note that the solution of a given problem exists and is unique (see the textbook
for students).
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Example no. 4: Taylor and Laurent series

4.1. Write Taylor series of a function f with a centre 1 + i where

f(z) = 1
1− z .

Illustrate the region of convergency.
Solution: Firstly, notice that this function is holomorphic in a region U(1 + i, 1)
(see Figure 2). To evolve Taylor series, the theorem about convergence of a geometric
series will be applied. Let us perform the following adjustment getting a series with
the given centre:

Recall the geometric series∑∞
n=0

qn = 1/(1 − q) has a sum if

|q| < 1, and here we put
q = (z − (1 + i))/(−i).

f(z) = 1
1− z = 1

1− (1 + i)− (z − (1 + i)) = 1
−i− (z − (1 + i)) = −1

i

1
1− z−(1+i)

−i

=

= −1
i

∞∑
n=0

(
z − (1 + i)
−i

)n
=
∞∑
n=0

(z − (1 + i))n

−in+1 .

Since a geometric series is convergent for |q| < 1, the given series is convergent in the
region |z − (1 + i)| < 1 (see Figure 2).

x

y

1

1

Figure 2: The region U(1 + i, 1).

4.2. Write down Laurent series of the function

f(z) = 1
z2 − 2z − 3

on the ring {z ∈ C : 1 < |z| < 3}. Illustrate the region of convergence.
Solution: Note that z2−2z−3 = (z−3)(z+ 1). The point 3 ans −1 does not belong
into the given ring and hence given function f in a given region is possible to derive,
it is holomorphic, hence it makes sense to look for Laurent series. Firstly, we modify
the given function using decomposition into the partial fractions:

Hint: how to do decomposition into
the partial fractions:

1
(z−3)(z+1) = A

z−3 + B
z+1 ,

calculate A and B.

f(z) = 1
z2 − 2z − 3 = 1

(z − 3)(z + 1) = 1
4

1
z − 3 −

1
4

1
z + 1 .

Now, evolve both parts of the given function: if |z| > 1, then

Again, recall the geometric series∑∞
n=0

qn = 1/(1− q) has a sum for

|q| < 1. Here we pick q = −1/z,
hence the region of convergence is
|z| > 1.

−1
4

1
z + 1 = − 1

4z
1

1− (−1/z) = − 1
4z

∞∑
n=0

(
−1
z

)n
= 1

4

∞∑
n=0

(−1)n+1

zn+1 = 1
4

∞∑
n=1

(−1)n

zn
,

if |z| < 3, then

1
4

1
z − 3 = − 1

12
1

1− (z/3) = − 1
12

∞∑
n=0

(z
3

)n
= −1

4

∞∑
n=0

zn

3n+1 .

Consequently, Laurent series of a given function takes in the given ring (see Figure3)
the form:

f(z) = −1
4

∞∑
n=0

zn

3n+1 + 1
4

∞∑
n=1

(−1)n

zn
.
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Figure 3: The ring P (0, 1, 3).

Example no. 5: Integral of a complex function

5.1. Calculate ∫
γ

z|z|dz,

where γ(t) = eit and t ∈ [0, π].
Solution: Firstly, note that the curve we are integrating through is not closed (see
Figure 4). For the determination we use the following formula:∫

γ

f(z)dz =
∫ b

a

f(γ(t))γ′(t)dt.

In our case it holds:

γ(t) = eit, γ′(t) = ieit, a = 0, b = π

and Here it is

|eit| = | cos(t) + i sin(t)| =√
cos2(t) + sin2(t) = 1.

f(γ(t)) = eit · |eit| = eit · 1.
After substituting we get:

It is possible to calculate the integral∫ π
0
e2it dtcorrectly by linear

substitution w = 2it.

∫
γ

z|z|dz =
∫ π

0
eit · 1 · ieit dt = i

∫ π

0
e2it dt = i

[
1
2ie

2it
]π

0
= 1

2
[
e2πi − e0] = 0.

x

y

1−1

〈γ〉

Figure 4: The graph 〈γ〉 from Example 5.1.

5.2. Calculate ∫
γ

1
z2(z − 1)2 dz,

where γ(t) = 1/2 e−it + 1 and t ∈ [0, 6π].
Solution: The curve 〈γ〉 is closed and smooth, inside of the region bounded by 〈γ〉
there is only one singularity z0 = 1 (the second singularity z1 = 0 is outside of
the region bounded by 〈γ〉, hence we do not care about it) see Figure 5. For the
computation, we use Cauchy integral formula:

g(n)(z0) = n!
2πi

∫
γ

g(z)
(z − z0)n+1 dz.

In this example
z0 = 1, g(z) = 1/z2, n+ 1 = 2.

Note that the curve is negatively oriented and the parameter is running about it three
times. Now we can substitute∫
γ

1
z2(z − 1)2 dz =

∫
γ

1/z2

(z − 1)2 dz = −3 · 2πi1!

[(
1
z2

)′]
z=1

= −6πi[−2z−3]z=1 = 12πi.
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Figure 5: The graph of 〈γ〉 and singularities from Examples 5.2.

5.3. Calculate ∫
γ

sin(z)
(z − i)(z + 1)2 dz,

where γ(t) = 100e2it + 3 a t ∈ [0, π].
Solution: For the solution of this example, we will apply the Residue theorem:∫

γ

f(z)dz = 2πi
n∑
i=1

Res f(zi).

The given function has in the region bounded by curve γ two singularities z1 = i and
z2 = −1. The point z1 is clearly single pole and the point z2 is the pole of order 2.
Now, calculate residues at these points:

Resz=z1 f(z) = lim
z→i

1
0! [f(z)(z − i)] = lim

z→i

sin(z)
(z + 1)2 = sin(i)

(i+ 1)2 ,

Resz=z2 f(z) = lim
z→−1

1
1! [f(z)(z+1)2]′ = lim

z→−1

[
sin(z)
z − i

]′
= cos(−1)(−1− i)− sin(−1)

(i+ 1)2 .
Here it is[

sin(z)
z−i

]′
= cos(z)(z−i)−sin(z)

(z−i)2 .

Now, let us substitute into the formula:

It is possible to simplify the result
that can be done by the reader.

∫
γ

sin(z)
(z − i)(z + 1)2 dz = 2πi

2∑
i=1

Res f(zi) = 2πi
(1 + i)2 [sin(i)− cos(1)(1 + i) + sin(1)].

Example no. 6: Fourier series

6.1. Find out Fourier series of the periodic extension of the function and draw the graph
of a sum of this Fourier series:

f(t) =
{

1, for t ∈ [0, 1),
0, for t ∈ [1, 2).

Solution: The period of a periodic extension is T = 2. Next ω = 2π/T = π. Now
calculate Fourier coefficients:

a0 = 2
T

∫ T

0
f(t)dt = 2

2

[∫ 1

0
1dt+

∫ 2

1
0dt
]

=
∫ 1

0
1dt = 1,

an = 2
T

∫ T

0
f(t) cos(nωt)dt =

∫ 1

0
cos(nπt)dt =

[
1
nπ

sin(nπt)
]1

0
= 0,

Hint:
∫ 2

1
0 · cos(nπt)dt = 0 and for

the computation
∫ 1

0
cos(nπt)dt use

the linear substitution w = nπt.

bn = 2
T

∫ T

0
f(t) sin(nωt)dt =

∫ 1

0
sin(nπt)dt = −

[
1
nπ

cos(nπt)
]1

0
= − 1

nπ
[(−1)n − 1].

The Fourier series of a given function has the following form:

f(t) ≈ 1
2 +

∞∑
n=1

1
nπ

[1− (−1)n] sin(nπt). (2)

The sum of series we get by Dirichlet’s theorem, hence the value in each its point equals
to the arithmetic mean of one-sided limits with the sum being given in Figure 6.
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Figure 6: The graph is the Fourier series sum (2).

6.2. Find out period, angular speed, and the first four members of the one-sided amplitude
spectrum and the first three members of the one-sided phase spectrum of the Fourier
series:

−
√

2− cos(4πt) + sin(4πt)−
√

5 cos(8πt)− 4
√

3 cos(12πt) + 4 sin(12πt)± . . .

Write down formulas for its determination.
Solution: Firstly, from the arguments of functions sine and cosine derive ω = 4π and
the period T = 2π/ω = 2π/4π = 1/2. For the computation, we use formulas

A0 =
∣∣∣a0

2

∣∣∣ , An =
√
a2
n + b2

n, φn = − arg cn.

Substituting values given in Table. By substituting, we get values given in Table 1.

Here cn = 1/2(an − ibn). Clearly
− arg cn = arg c−n where
c−n = 1/2(an + ibn). If bn = 0 and
an < 0 the solution is φn acceptable
as −π as well as π.

n an bn An φn

0 −2
√

2 ndf
√

2 ndf

1 -1 1
√

2 3π/4

2 −
√

5 0
√

5 π

3 −4
√

3 4 8 5π/6

Table 1: Table of values of amplitude and phase spectrum of the given series.

Example no. 7: Laplace transforms

7.1. Using Laplace transform, find the solution of the following equation with initial con-
ditions:

y′′ − 2y′ − 3y = e−4t, y(0+) = y′(0+) = 0.
Solution:
Denote L(y(t)) = Y (p). Then

L(y′(t)) = pY (p)− y(0) = pY (p)

and
L(y′′(t)) = p2Y (p)− py(0)− y′(0) = p2Y (p).

Then for the right-hand side of the equation we have
Use table of the Laplace transforms.

L(e−4t) = 1/(p+ 4).

Now, after substitution we get operator equation:

p2Y (p)− 2pY (p)− 3Y (p) = 1
p+ 4 ,

Y (p) = 1
(p+ 4)(p+ 1)(p− 3) .

The function Y (p) has three simple poles -4, -1, and 3. Applying Theorem 16, we are
looking for the solution in the form y(t) =

∑n
i=1 Res[Y (p)ept]p=zi . Let us calculate

residua:
Res[Y (p)ept]p=−4 = lim

p→−4

1
(p+ 1)(p− 3)e

pt = 1
21e
−4t,
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Res[Y (p)ept]p=−1 = lim
p→−1

1
(p+ 4)(p− 3)e

pt = − 1
12e
−t,

Res[Y (p)ept]p=3 = lim
p→3

1
(p+ 4)(p+ 1)e

pt = 1
28e

3t.

The solution is given by the sum of the foregoing residua:
The reader is asked to do a proof of
the solution, which is optional at the
final exam.y(t) = 1

21e
−4t − 1

12e
−t + 1

28e
3t.

7.2. Using Laplace transform, find the solution of the following equation with the initial
conditions:

y′′ − 3y′ + 2y = te3t, y(1+) = y′(1+) = 1.

Solution:
Since the initial conditions are not given in the point t0 = 0, we have to do a substi-
tution t = τ + 1 and y(t) = y(τ + 1) = z(τ). The new equation takes the form

z′′ − 3z′ + 2z = (τ + 1)e3(τ+1), z(0+) = z′(0+) = 1.

Now, put L(z(τ)) = Z(p), then

L(z′(τ)) = pZ(p)− 1,

L(z′′(τ)) = p2Z(p)− p− 1.

Use the table of the Laplace
transforms.

Next,

L((τ + 1)e3(τ+1)) = e3 L(τe3τ + e3τ ) = e3
[

1
(p− 3)2 + 1

p− 3

]
.

Express Z(p) after the decomposition into the partial fractions

Z(p) = 1
4e

3
[

1
p− 1 + 2

(p− 3)2 −
1

p− 3

]
+ 1
p− 1 .

By the inverse Laplace transform for τ ≥ 0 we get the solution

z(τ) = 1
4e

3 [eτ + 2τe3τ − e3τ ]+ eτ .

By the inverse Laplace transform τ = t − 1 and z(τ) = y(t) after the simplifications
we get for t ≥ 1 the solution

The reader is asked to do a proof of
the solution, which is optional at the
final exam.y(t) = 2t− 3

4 e3t + e3 + 4
4e et.

7.3. Using Laplace transform find the solution of the following equation with the initial
conditions:

y′ − y = f(t), y(0+) = 0, f(t) =
{

1, for 0 < t < 1,
0, for t > 1.

Solution: Denote L(y(t)) = Y (p). Then L(y′(t)) = pY (p) − y(0) = pY (p). For the
right-hand side of the equation we get

It is possible to get it by definition or
by using the table of the Laplace
transforms, the reader is asked to
perform both as an exercise.

L(f(t)) = 1
p

(1− e−p).

Now, substitute and construct operator equation:

pY (p)− Y (p) = 1
p

(1− e−p),

Y (p) = 1
p(p− 1)(1− e−p).

Now, after the decomposition into the partial fractions

L−1
(

1
p(p− 1)

)
= L−1

(
1

p− 1 −
1
p

)
= et − 1.
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The solution takes the from:

y(t) = L−1
(

1
p(p− 1)(1− e−p)

)
=

= L−1
(

1
p(p− 1)

)
− L−1

(
1

p(p− 1)e
−p)
)

=

= (et − 1)η(t)− (et−1 − 1)η(t− 1),

or equivalently The reader is asked to do a proof of
the solution, which is optional at the
final exam.

y(t) =
{
et − 1, for 0 < t < 1,
et − et−1, for t > 1.

Example no. 8: the theory

8.1. • Define absolute value, argument and principal value of an argument of a complex
number.
• Formulate the residue theorem.

8.2. • Define functions ln z and Ln z on a complex plane.
• Define Dirichlet’s conditions.

8.2. • Define power series and adjoint complex number.
• Write down formula for a radius of convergency of a power series at a centre in a
point z0.

Solution:
See textbooks for students.
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