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Preface

Integral transforms as well as Fourier series are very interesting and powerful
topics in the undergraduate mathematics course. Their importance to applications
means that they can be studied both from a very pure perspective and a very applied
perspective. This text book for students takes into account the varying needs and
backgrounds of students in mathematics, science, and engineering. It covers two
topics that feature in the course:

• Fourier series,
• Laplace transform.
Since the topics of Fourier series and integral transform are not elementary

subjects, there are some reasonable assumptions about what the reader knows. The
reader should be confident with the relevant topics taught as standard in the area
of real analysis of real functions of one and multiple variables, complex analysis,
sequences, and series.

This text is mostly a translation from the Czech original [8], and it is a natural
continuation of the textbook An Introduction to Complex Analysis [2].

The authors are grateful to their colleagues for their comments that improved
this text and to John Cawley who helped with the correction of many typos and
English grammar.

prof. RNDr. Marek Lampart, Ph.D.
November 23, 2023
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Chapter 1

Fourier series

In a numerous technical problems one can find functions whose course is repeating.
These functions describe periodic events in many physical processes (vibrations
of constructions, steady movement of the piston of internal combustion engines,
steady rotation movements) or mechanical oscillations (acoustic waves) and alter-
nating electric current.

Such functions are called periodic, that is if f (t) is a function of a real variable
t and there is a positive real number T such that for each t from the domain it holds
that

f (t) = f (t + T ). (1.1)
The number T , for which equation (1.1) holds, is called period, hence the function
f is periodic with period T . If T is a period of f then nT is also a period for each
n ∈ ℕ. The smallest such T , for which equation (1.1) holds, is called the prime
period. We point out that the prime period should not to exist. As an example,
a constant function can be given that has as a period every positive real number,
but does not have a prime period. Next, for simplicity we will use the notation of
period, and from the context it will always be clear if the period is prime or not. For
any � ∈ ℝ the interval (�, � + T ] is called the interval of periodicity; in particular
the basic interval of periodicity is a special case where � = 0 or � = −T ∕2, that is
the basic interval of periodicity takes the form (0, T ] or (−T ∕2, T ∕2].

The next lemma shows that it is possible to restrict our attention to functions
with the period 2�.
Lemma 1 For every periodic function f (t) with a period of T there is a transfor-
mation of an argument1 t = tr(x) such that the transformed function f (tr(x)) has
a period of 2�.

Proof: Let
t = tr(x) = T

2�
x.

1by a transformation of an argument we mean transformation of coordinates, such as in the case
of transformation of Cartesian coordinates to polar, spherical of cylindrical ones.

5



6 CHAPTER 1. FOURIER SERIES

Then
f (t) = f (tr(x)) = f

( T
2�
x
)

= g(x).

The function g(x) is defined for every x and is periodic with a period of 2�:
g(x + 2�) = f

( T
2�

(x + 2�)
)

= f
( T
2�
x + T

)

= f (t + T ) = f (t) = g(x).

□

An elementary example to consider is simple harmonic oscillation, which is
given by a general sine function

f (t) = A sin(!t + '). (1.2)
Here, the variable t is interpreted as time, A is the amplitude indicating deviation
from the equilibrium position, the argument!t+' is called the phase of oscillation,
for t = 0 we get the initial phase and the constant !, and indicating the number of
oscillations from 2� seconds is called the circular frequency (angular velocity).
The time for one oscillation period is denoted by T , and in our case it is T = 2�∕!.

In practice, however, we encounter more complex periodic functions (which we
will show in the next sections) that can be written as the sum of an infinite series of
simple harmonic oscillations, where the first term of this series has the same period
as the given periodic function. The periods of the following oscillations are then
a half, a third, etc., of the period of the first oscillation. This creates a periodic
function expressing a compound harmonic oscillation, which is described by an
infinite series with the terms

un = An sin(n!t + 'n). (1.3)
These can be equivalently written in the form

un = an cos(n!t) + bn sin(n!t), (1.4)
where for simplicity we put

u0 =
a0
2
. (1.5)

The series
∞
∑

n=1
un =

a0
2

+
∞
∑

n=1
(an cos(n!t) + bn sin(n!t)) (1.6)

is called a trigonometric series. If the series converges, as will be shown later, then
it converges to a function with a period2 of T = 2�∕!, that is with the period of
the element with index 1. The coefficients an and bn are called Fourier coefficients
of the function f (t).

2Observe that the period does not have to be prime. If a1 = b1 = 0 then 2�∕! is a period, but is
not the smallest one. In addition, if there at least one of the coefficients a2 or b2 is non-zero, then theprime period is �∕!.
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1.1 Fourier series

In Section 1.5 will be shown that the trigonometric series
a0
2

+
∞
∑

n=1
(an cos(nt) + bn sin(nt)) (1.7)

is uniformly convergent in ℝ, and its sum is a continuous periodic function f (t)
with a period of the first term series2, that is T = 2� (here, Lemma 1 was applied,
hence T = 2� and ! = 1). Consequently,

f (t) =
a0
2

+
∞
∑

n=1
(an cos(nt) + bn sin(nt)). (1.8)

Now, the task is to find coefficients’ an and bn uniformly convergent trigonomet-
ric series (1.8) using the function f (t) which is its sum. To solve this problem the
orthogonality of the systems function from Example 10 (page 31) on the interval
[−�, �], which is an interval of a length 2�.

The coefficient a0 will be derived by integration of equation (1.8) from −� to
�. So,

∫

�

−�
f (t) d t = ∫

�

−�

(

a0
2

+
∞
∑

n=1
(an cos(nt) + bn sin(nt))

)

d t = �a0,

a0 =
1
� ∫

�

−�
f (t) d t, (1.9)

here we used the fact that for each n, ∫ �
−� cos(nt) d t = 0 and ∫ �

−� sin(nt) d t = 0.
The coefficients an will be derived from (1.8) multiplied by function cos(nt) and its
integration on the same interval. Then using computations from Example 10 (on
page 31) we get

∫

�

−�
f (t) cos(nt) d t = an ∫

�

−�
cos2(nt) d t = an�,

an =
1
� ∫

�

−�
f (t) cos(nt) d t. (1.10)

The coefficients bn will be found analogously, as an under assumption (1.8) is mul-
tiplied by function sin(nt):

∫

�

−�
f (t) sin(nt) d t = bn ∫

�

−�
sin2(nt) d t = bn�,

bn =
1
� ∫

�

−�
f (t) sin(nt) d t. (1.11)
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Formulae for the determination of coefficients are called (Euler)-Fourier. The given
trigonometric series is called the Fourier series of functions f (t) and coefficients
an and bn the Fourier coefficients of the functionf (t).

Naturally, this begs the question whether Fourier series (1.8) is convergent and
if its sum equals f (t) in the interval [−�, �]. The answer is given by the following
theorem, which will be proved in Section 1.5:

Theorem 1 (Dirichlet’s) If the function f (t) fulfills the so called Dirichlet condi-
tions, then a Fourier series of the function f (t) is convergent at every t to the value

1
2
(f (t + 0) + f (t − 0))

and it holds that

1
2
(f (t + 0) + f (t − 0)) =

a0
2

+
∞
∑

n=1
an cos(nt) + bn sin(nt).

Moreover, in points t where f (t) is continuous, it is

1
2
(f (t + 0) + f (t − 0)) = f (t).

In the foregoing theorem we use standard notation3

f (t + 0) = lim
t1→t+

f (t1) a f (t − 0) = lim
t1→t−

f (t1).

Dirichlet conditions are the following:
1. the function f (t) is periodic,
2. the function f (t) has on the interval of periodicity only finite numbers of

discontinuities of the first type,
3. the function f (t) has on the interval of periodicity piecewise continuous

derivation.

Example 1 The following functions do not fulfill the Dirichlet conditions on the
interval [−�, �]:

f1(t) =
2

1 − t
, f2(t) = sin

( 2
2 − t

)

.

Really, f1(t) has at the point t0 = 1 discontinuity of the second kind and f2(t) has
on the neighborhood of the point t0 = 2 infinitely many extremes.

3sometimes a shortened version is used; f (t+) resp. f (t−)
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The relations (1.9) – (1.11) can be generalized for functions with the period T =
2l, hence also for functions with the interval of periodicity [−l, l]. Using Lemma
1, the transformation t = �

l
t can be done, and we get for n ∈ ℕ the formulae:

a0 =
1
l ∫

l

−l
f (t) d t, (1.12)

an =
1
l ∫

l

−l
f (t) cos(n�

l
t) d t, (1.13)

bn =
1
l ∫

l

−l
f (t) sin(n�

l
t) d t (1.14)

and the Fourier series takes the form
f (t) =

a0
2

+
∞
∑

n=1
(an cos(

�
l
nt) + bn sin(

�
l
nt)). (1.15)

1.2 Fourier series in a complex field

In Section 1.1 the Fourier coefficients an and bn were derived from a Fourier series
of a periodic function with a period of 2�. These formulae take the form:

f (t) = 1
2
a0 +

∞
∑

n=1
(an cos(nt) + bn sin(nt)), (1.16)

a0 = 1
� ∫

�

−�
f (t) d t, (1.17)

an = 1
� ∫

�

−�
f (t) cos(nt) d t, (1.18)

bn = 1
� ∫

�

−�
f (t) sin(nt) d t. (1.19)

Now, let us write functions sin(nt) and cos(nt) in series (1.16) using the following
exponential form:

cos(nt) = 1
2
(eint + e−int), (1.20)

sin(nt) = 1
2i
(eint − e−int) = − i

2
(eint − e−int). (1.21)

Substituting (1.20) and (1.21) into the series (1.16) we get

f (t) = 1
2
a0 +

∞
∑

n=1

(

an(
eint + e−int

2
) − ibn(

eint − e−int
2

)
)

= (1.22)

= 1
2
a0 +

∞
∑

n=1

(1
2
(an − ibn)eint +

1
2
(an + ibn)e−int)

)

. (1.23)
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Now, put

c0 = 1
2
a0, (1.24)

cn = 1
2
(an − ibn), (1.25)

c−n = 1
2
(an + ibn), (1.26)

where cn and c−n are complex adjoint coefficients. Hence, Fourier complex coeffi-
cients cn and c−n are:

cn = 1
2
(an − ibn) =

1
2� ∫

�

−�
f (t)(cos(nt) − i sin(nt)) d t = (1.27)

= 1
2� ∫

�

−�
f (t)e−int d t, n = 1, 2, 3,… , (1.28)

c−n = 1
2
(an + ibn) =

1
2� ∫

�

−�
f (t)(cos(nt) + i sin(nt)) d t = (1.29)

= 1
2� ∫

�

−�
f (t)eint d t, n = 1, 2, 3,… (1.30)

For the coefficient c0 we get

c0 =
1
2
a0 =

1
2� ∫

�

−�
f (t) d t.

So, we can observe that all coefficients ci can be expressed by one formula

cn =
1
2� ∫

�

−�
f (t)e−int d t, n = 0,±1,±2,±3,… (1.31)

Putting cn into (1.23) we get the following form of the Fourier series

f (t) = c0 +
∞
∑

n=1
(cneint + c−ne−int) =

∞
∑

n=−∞
cne

int, (1.32)

where cn is given by (1.31). The series (1.32) is called a complex Fourier series of
the function f (t). The coefficients cn are called complex Fourier coefficients.

Note the benefit of the complex form of the Fourier series (1.31), that is to get
its coefficients it suffices to compute only one integral (the integral of a complex
function of a complex variable). Next, if f (t) has a period of T , then (1.31) and
(1.32) take the form

f (t) = c0 +
∞
∑

n=1
(cnein!t + c−ne−in!t), (1.33)
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cn =
1
T ∫

T

0
f (t)e−in!t d t, n = 0,±1,±2,±3,… (1.34)

where ! = 2�∕T .
Finally, if we would like to write Fourier series in a real form that is given in a

complex form, then for the coefficients’ expression it suffices to apply:

an = cn + c−n, (1.35)
bn = i(cn − c−n). (1.36)

Equations (1.35) and (1.36) were derived from (1.25) and (1.26).

Example 2 Find the complex and real form of the Fourier series of the function
f (t) = 1∕2 et with the basic interval of periodicity (0, �] a f (0) = f (�).

Let us follow the above mentioned remark, that is find out the complex form
first, and then do the transformations to the real one. Hence by (1.34) it is (here
! = 2)

cn = 1
� ∫

�

0

1
2
ete−2int d t = 1

2� ∫

�

0
e(1−2in)t d t = 1

2�
1

1 − 2in
[

e(1−2in)t
]�
0 =

= 1
2�

1
1 − 2in

(e� − 1), n = 0,±1,±2,±3,…

The complex form of the Fourier series takes the form

f (t) = 1
2�

(e� − 1) + e� − 1
2�

∞
∑

n=1

( 1
1 − 2in

e2int + 1
1 + 2in

e−2int
)

=

= e� − 1
2�

∞
∑

n=−∞

1
1 − 2in

e2int.

Let us transform this series into the real form. Firstly, by (1.35) and (1.36) find
coefficients an and bn:

an = cn + c−n =
1
2�

(e� − 1)
( 1
1 − 2in

+ 1
1 + 2in

)

=

= e� − 1
�

1
1 + 4n2

, n = 0, 1, 2, 3,… ,

bn = i(cn − c−n) =
i
2�

(e� − 1)
( 1
1 − 2in

− 1
1 + 2in

)

=

= −2e
� − 1
�

n
1 + 4n2

, n = 1, 2, 3,…
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Finally, the real form of the Fourier series is:

f (t) = 1
2�

(e� − 1) + e� − 1
�

(

cos(2t)
1 + 4 ⋅ 12

+
cos(4t)
1 + 4 ⋅ 22

+…
)

−

− 2e
� − 1
�

(

sin(2t)
1 + 4 ⋅ 12

+
sin(4t)

1 + 4 ⋅ 22
+…

)

=

= 1
2�

(e� − 1) + e� − 1
�

∞
∑

n=0

1
1 + 4n2

cos(2nt) −

− 2e
� − 1
�

∞
∑

n=1

n
1 + 4n2

sin(2nt).

An integral part of harmonic analysis is spectrum analysis. Herewewill address
the question of the phase and the amplitude spectrum.

Firstly, by one-sided spectrum we mean an ordered pair of sequences

({An}∞n=0, {'n}
∞
n=1),

where {An}∞n=0 stands for one-sided amplitude spectrum and is defined by:

A0 =
|

|

|

|

a0
2
|

|

|

|

= |c0|, (1.37)

An =
√

a2n + b2n = 2|cn|, n = 1, 2,… (1.38)

and {'n}∞n=1 is a one-sided phase spectrum defined by

'n = −arg cn ∈ (−�, �], n = 1, 2,… . (1.39)

By two-sided spectrum we mean a pair of sequences

({|cn|}∞n=−∞, {'±n}∞n=1),

where {|cn|}∞n=−∞ stands for a two-sided amplitude spectrum and {'±n}∞n=1 a two-
sided phase spectrum defined by

'n = −arg cn ∈ (−�, �], n = ±1,±2,±3… . (1.40)

Note that the phase '0 is not defined. If it is analyzed as a complex function
with a non-zero imaginary part, it holds that the coefficients cn and c−n are not a
complex adjoint. So, the amplitude spectrum is not even, and the phase spectrum
is not odd.
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Figure 1.1: Graph of the function (1.41).

1.3 Development of periodic function

Let us first deal with a situation where we have to develop a Fourier series of peri-
odic functions. If we have a periodic function, then we can easily develop it accord-
ing to (1.12), (1.13) and (1.14). Let us now give two examples; based on Lemma
1, we can consider the basic interval of periodicity 2� without lost of generality.

Example 3 Let us develop the periodic function in the Fourier series f (t) with a
basic interval of periodicity (−�, �] (see Figure 1.1) defined by

f (t) =

⎧

⎪

⎨

⎪

⎩

t for t ∈ (−�, �],

� for t = −�,
(1.41)

and do the spectral analysis.
Firstly, we need to verify the Dirichlet conditions that:

1. the function is obviously periodic,
2. the function is continuous in the interval of periodicity, and discontinuous in the
border points (2k + 1)�, (k ∈ ℤ), which is just discontinuity of the first kind,
3. the function has in the interval of periodicity the derivative (f ′(t) = 1).

Hence, we can apply equations (1.9), (1.10) and (1.11) to determine Fourier
coefficients:

a0 = 1
� ∫

�

−�
t d t = 1

�

[

t2

2

]�

−�
= 0,

an = 1
� ∫

�

−�
t cos(nt) d t = 1

�

[ t
n
sin(nt) + 1

n2
cos(nt)

]�

−�
= 0,

bn = 1
� ∫

�

−�
t sin(nt) d t = 1

�

[

− t
n
cos(nt) + 1

n2
sin(nt)

]�

−�
= (−1)n+1 2

n
.

Note that the developed function is odd, and all coefficients an are zero, hence
Fourier series that will contain only sinusoidal elements, will be odd. This is not a
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Figure 1.2: Graph of the sum of the development of the function (1.41).

coincidence, as we will show in the next section Therefore:

f (t) = 2
∞
∑

n=1
(−1)n+1

sin(nt)
n

.

Through Dirichlet theorem 5 we see that the sum f (t) = t for t ∈ (−�, �). In
points ±� of discontinuities of the first kind it holds that:

f (�−) = � a f (�+) = −�,

f (−�−) = � a f (−�+) = −�.

Hence
f (−�+) + f (−�−)

2
= 0,

f (�+) + f (�−)
2

= 0,

these values have the sum of the series in points ±�, that is f (�) = 0 and f (−�) =
0; the graph of the sum is in Figure 1.2.

Partial sums of the first members

s1(t) = 2 sin(t), (1.42)
s2(t) = 2

(

sin(t) −
sin(2t)

2

)

, (1.43)

s3(t) = 2
(

sin(t) −
sin(2t)

2
+

sin(3t)
3

)

, (1.44)

s4(t) = 2
(

sin(t) −
sin(2t)

2
+

sin(3t)
3

−
sin(4t)

4

)

, (1.45)

are in the pictures 1.3, 1.4, 1.5 and 1.6, respectively.
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Figure 1.3: Graph of the sum s1(t) of the development of (1.41).

Figure 1.4: Graph of the sum s2(t) of the development of (1.41).

Figure 1.5: Graph of the sum s3(t) of the development of (1.41).

Figure 1.6: Graph of the sum s4(t) of the development of (1.41).
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Let us now compose a one-sided and two-sided phase and amplitude spectrum,
using formulas (1.37), (1.38), (1.39), (1.40) and (1.24), (1.25), (1.26):

A0 =
|

|

|

|

a0
2
|

|

|

|

= 0,

An =
√

a2n + b2n =
√

0 + (−1)n+1 2
n
= 2
n
,

cn = 1
2
(an − ibn) =

1
2

(

0 − i(−1)n+1 2
n

)

= i(−1)n 1
n
,

'n = −arg cn =

⎧

⎪

⎨

⎪

⎩

−�∕2 for n = … ,−5,−3,−1, 2, 4, 6,… ,

�∕2 for n = … ,−6,−4,−2, 1, 3, 5,… .

The two-sided amplitude (resp. phase) spectrum is shown in Figure 1.7 (resp. 1.8).
The values of the coefficients are given in table 1.1.

n -3 -2 -1 0 1 2 3
an — — — 0 0 0 0
bn — — — — 2 -1 2/3
cn i∕3 −i∕2 i 0 −i i∕2 −i∕3

|cn| 1∕3 1∕2 1 0 1 1∕2 1∕3

An — — — 0 2 1 2/3
'n −�∕2 �∕2 −�∕2 — �∕2 −�∕2 �∕2

Table 1.1: Table of coefficients of harmonic analysis of a function (1.41).

Example 4 Let us develop the periodic function in the Fourier series f (t) with a
basic interval of periodicity (−�, �] (see Figure 1.9) given by:

f (t) =

⎧

⎪

⎨

⎪

⎩

t for t ∈ [0, �],

−t for t ∈ (−�, 0),
(1.46)

and do a spectral analysis.
We will analyze the problem exactly as in the previous example.
Firstly, we verify Dirichlet’s conditions:

1. the function is obviously periodic,
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Figure 1.7: Two-sided amplitude spectrum of the function (1.41).

Figure 1.8: Two-sided phase spectrum of the function (1.41).

Figure 1.9: Graph of the function (1.46)



18 CHAPTER 1. FOURIER SERIES

Figure 1.10: Graph of the sum s2(t) of the development of (1.46).

2. the function is continuous,
3. the function has on the interval (k�, � + k�) a derivative for k ∈ ℤ.

Hence, we can apply (1.9), (1.10) and (1.11) to get Fourier coefficients:

a0 = 1
� ∫

�

−�
f (t) d t = 1

�

(

∫

0

−�
−t d t + ∫

�

0
t d t

)

= �,

an = 1
� ∫

�

−�
f (t) cos(nt) d t = 1

�

(

∫

0

−�
−t cos(nt) d t + ∫

�

0
t cos(nt) d t

)

=

= 2
�n2

((−1)n − 1),

bn = 1
� ∫

�

−�
f (t) sin(nt) d t = 1

�

(

∫

0

−�
−t sin(nt) d t + ∫

�

0
t sin(nt) d t

)

= 0.

It is worth noting that if a developed function is even, and all coefficients bn
are zero, then the Fourier series will have only cosine elements; it will be even.
This is not a coincidence, as we will show in the next section. The sought-after
development of our function is therefore

f (t) = �
2
− 4
�

∞
∑

n=1

cos(2n − 1)t
(2n − 1)2

,

where we applied an = 0 for even n.
Due to Dirichlet’s theorem 5, the sum of this series equal f (t) for t ∈ ℝ; a graph

of the sum is in Figure 1.9. Partial sums of the first members:

s2(t) = �
2
− 4
�

(

cos(t) +
cos(3t)

9

)

, (1.47)

s3(t) = �
2
− 4
�

(

cos(t) +
cos(3t)

9
+

cos(5t)
25

)

, (1.48)

are given in Figures 1.10 and 1.11 respectively.
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Figure 1.11: Graph of the sum s3(t) of the development of (1.46).

Let us now compose a one-sided and two-sided phase and amplitude spectrum,
using formulas (1.37), (1.38), (1.39), (1.40) and (1.24), (1.25), (1.26):

A0 =
|

|

|

|

a0
2
|

|

|

|

= �∕2,

An =
√

a2n + b2n =
√

2
�n2

((−1)n − 1) + 0 = 2
�n2

|(−1)n − 1|,

cn = 1
2
(an − ibn) =

1
2

( 2
�n2

((−1)n − 1) − i0
)

= 1
�n2

((−1)n − 1),

'n = −arg cn =

⎧

⎪

⎨

⎪

⎩

0 for n = ±2,±4,±6,… ,

� for n = ±1,±3,±5,… .

The two-sided amplitude (resp. phase) spectrum is shown in Figure 1.12 (resp.
1.13). The values of the coefficients are given in table 1.2.

n -3 -2 -1 0 1 2 3
an — — — � −4∕� 0 −4∕(9�)

bn — — — — 0 0 0
cn −2∕(9�) 0 −2∕� �∕2 −2∕� 0 −2∕(9�)

|cn| 2∕(9�) 0 2∕� 0 2∕� 0 2∕(9�)

An — — — �∕2 4∕� 0 4∕(9�)

'n � 0 � — � 0 �

Table 1.2: Table of coefficients of harmonic analysis of a function (1.46).
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Figure 1.12: Two-sided amplitude spectrum of the function (1.46).

Figure 1.13: Two-sided phase spectrum of the function(1.46).

1.4 Sine and cosine series

In Exercises 3 and 4 we observed the interesting property that when the given func-
tion is odd (resp. even), then the Fourier series contains only sine (resp. cosine)
elements. The following theorems describe this observation

Theorem 2 Let f (t) be an odd function with a period of 2� satisfying Dirichlet’s
conditions. Then its Fourier expansion contains only sine terms

f (t) =
∞
∑

n=1
bn sin(nt). (1.49)

Proof: Firstly, by Dirichlet’s theorem 5 the series (1.49) converges.
Now we will show that an = 0 for n ∈ ℕ ∪ {0} and bn ∈ ℝ. Since the function

f (t) is even, that is f (−t) = −f (t) for each t, and also f (t) cos(nt) is odd, we get
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for n ∈ ℕ

a0 = 1
� ∫

�

−�
f (t) d t = 1

�

(

∫

0

−�
−f (−t) d t + ∫

�

0
f (t) d t

)

=

= 1
�

(

−∫

�

0
f (t) d t + ∫

�

0
f (t) d t

)

= 0,

an = 1
� ∫

�

−�
f (t) cos(nt) d t =

= 1
�

(

∫

0

−�
f (t) cos(nt) d t + ∫

�

0
f (t) cos(nt) d t

)

=

= 1
�

(

−∫

�

0
f (t) cos(nt) d t + ∫

�

0
f (t) cos(nt) d t

)

= 0,

where we used linear substitutions to calculate the first integral in the penultimate
equality t = −t.

The function f (t) sin(nt) is obviously even, for n ∈ ℕ we have

bn = 1
� ∫

�

−�
f (t) sin(nt) d t =

= 1
�

(

∫

0

−�
f (t) sin(nt) d t + ∫

�

0
f (t) sin(nt) d t

)

=

= 1
�

(

∫

�

0
f (t) sin(nt) d t + ∫

�

0
f (t) sin(nt) d t

)

=

= 2
� ∫

�

0
f (t) sin(nt) d t.

□

Theorem 3 Let f (t) be an even periodic function with a period of 2� satisfying
Dirichlet’s conditions. Then its Fourier evolution contains only cosine terms

f (t) =
a0
2

+
∞
∑

n=1
an cos(nt). (1.50)

Proof: We will lead the proof as before, now f (−t) = f (t). Hence, the function
f (t) sin(nt) is obviously odd and for n ∈ ℕ we have

bn = 1
� ∫

�

−�
f (t) sin(nt) d t =

= 1
�

(

∫

0

−�
f (t) sin(nt) d t + ∫

�

0
f (t) sin(nt) d t

)

=

= 1
�

(

−∫

�

0
f (t) sin(nt) d t + ∫

�

0
f (t) sin(nt) d t

)

= 0.



22 CHAPTER 1. FOURIER SERIES

Next, the function f (t) cos(nt) is even and for n ∈ ℕ ∪ {0} it is
an = 1

� ∫

�

−�
f (t) cos(nt) d t =

= 1
�

(

∫

0

−�
f (t) cos(nt) d t + ∫

�

0
f (t) cos(nt) d t

)

=

= 1
�

(

∫

�

0
f (t) cos(nt) d t + ∫

�

0
f (t) cos(nt) d t

)

=

= 2
� ∫

�

0
f (t) cos(nt) d t.

□

The previous proofs are also instructive for how to calculate the relevant coef-
ficients.

If the function f (t) is even with the period T = 2l with the basic interval of
periodicity (−l, l], all coefficients will be an = 0 and

bn =
2
l ∫

l

0
f (t) sin

(

n�
l
t
)

d t.

If the function f (t) is odd with the period T = 2l with the basic interval of
periodicity (−l, l], all coefficients will be bn = 0 and

an =
2
l ∫

l

0
f (t) cos

(

n�
l
t
)

d t.

Let us assume that on the interval (0, l] is given a function f (t) satisfyingDirich-
let’s conditions and we would like develop it into a Fourier series. Such a task can
be performed in various ways. The entered function can be extended to an interval
(−l, l], which we can do by defining the interval (−l, 0) so that the extension is even
or odd.
Definition 1 Let f (t) be a piecewise continuous function on the interval (0, l]. Odd
periodic extension of the function f (t) with the basic interval of periodicity (−l, l]
is a function g(t) defined by

g(t) =

⎧

⎪

⎨

⎪

⎩

f (t) for t ∈ [0, l],

−f (−t) for t ∈ (−l, 0).
(1.51)

Definition 2 Let f (t) be a piecewise continuous function on the interval (0, l].
Even periodic extension of the function f (t) with the basic interval of periodic-
ity (−l, l] is a function g(t) defined by

g(t) =

⎧

⎪

⎨

⎪

⎩

f (t) for t ∈ (0, l],

f (−t) for t ∈ (−l, 0).
(1.52)
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Figure 1.14: Graph of odd extension of the function (1.53).

The series (1.49) is called a sine Fourier sequence and the sequence (1.50)
cosine Fourier sequence.

The attentive reader has noticed that we assume a basic interval (0, l], which
may seem restrictive when the specified function is defined on an interval (a, b].
Then just perform a coordinate transformation � = t− a and transform the interval
(a, b] on (0, l], where l = b − a.
Example 5 Let’s develop the following function in the sine and cosine Fourier se-
ries

f (t) = t sin(t) for t ∈ (0, �]. (1.53)
Sine Fourier sequence

Firstly, we make an odd extension (see Figure 1.14). The developing function
has a period of 2� and the basic interval of periodicity (−�, �]. according to The-
orem 2, an = 0 and bn = 2

l
∫ l
0 f (t) sin

(

n�
l
t
)

d t. So, for n = 2, 3,… it is

bn =
2
� ∫

�

0
t sin(t) sin (nt) d t = 4n

�
(−1)n − 1

(n − 1)2(n + 1)2
.

For n = 1 we get
b1 =

2
� ∫

�

0
t sin2(t) d t = �

2
.

The series gets the form

f (t) = �
2
sin(t) +

∞
∑

n=2

4n
�

(−1)n − 1
(n − 1)2(n + 1)2

sin(nt).

Cosine Fourier sequence
Firstly, we make an even extension (see Figure 1.15). The developing func-

tion has a period of 2� and the basic interval of periodicity (−�, �]. according to
Theorem 3, bn = 0 and an = 2

l
∫ l
0 f (t) cos

(

n�
l
t
)

d t. So, for n = 0, 2, 3,… it is

an =
2
� ∫

�

0
t sin(t) cos (nt) d t = 2

(−1)n+1

(n − 1)(n + 1)
.
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Figure 1.15: Graph of even extension of the function (1.53).

For n = 1 we get
a1 =

2
� ∫

�

0
t sin(t) cos (t) d t = 1

2
.

The series gets the form

f (t) = 1 + 1
2
cos(t) +

∞
∑

n=2
2

(−1)n+1

(n − 1)(n + 1)
cos(nt).

1.5 Properties of Fourier series

Theorem 4 For every piecewise continuous function f (t) on the interval [a, b] it
holds that

lim
n→∞∫

b

a
f (t) sin(nt) d t = 0, (1.54)

lim
n→∞∫

b

a
f (t) cos(nt) d t = 0. (1.55)

Proof: If the interval [a, b] has the length 2�, then it is easy to see that formulae
(1.54) and (1.55) hold. If the interval [a, b] has a length greater than 2�, then split
it into k + 1 intervals

[a, b] =

[ k
⋃

i=1
[a + 2(i − 1)�, a + 2i�]

]

∪ [a + 2k�, a + 2k� + b],

where the length of the last one is less then 2�. Now, extend the function f (t) on
the right from point b such that it will equal zero on the interval [b, a+ 2(k+ 1)�].
Then

∫

b

a
f (t) sin(nt) d t =

k+1
∑

i=1
∫

a+2i�

a+2(i−1)�
f (t) sin(nt) d t

and each of the integrals on the right is for n → ∞ in a limit equal to zero. Analo-
gously to (1.55), proving this theorem. □
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The following theorem, which we mentioned in section 1.1 and used in section
1.3, gives the answer to the question of what conditions the functions must meet
f (t), so that the respective Fourier series converge.
Theorem 5 (Dirichlet’s) If the function f (t) fulfills the so called Dirichlet condi-
tions, then the Fourier series of the function f (t) is convergent at every t to the
value

1
2
(f (t + 0) + f (t − 0))

and it holds that

1
2
(f (t + 0) + f (t − 0)) =

a0
2

+
∞
∑

n=1
an cos(nt) + bn sin(nt).

Moreover in points t, where f (t) is continuous, it is

1
2
(f (t + 0) + f (t − 0)) = f (t).

Proof of Dirichlet’s theorem: It is possible to show that (see [9]), for every n it
holds that

1 = 1
� ∫

�

0

sin
((1

2
+ n

)

t
)

sin
( t
2

) d t. (1.56)

The second relation will be multiplied by
f (t + 0) + f (t − 0)

2
(1.57)

and we get

f (t + 0) + f (t − 0)
2

= 1
� ∫

�

0

[

f (t + 0) + f (t − 0)
2

] sin
((1

2
+ n

)

u
)

sin
(u
2

) d u.

(1.58)
Now, we introduce

Rn(t) = sn(t) −
f (t + 0) + f (t − 0)

2
, (1.59)

where
sn(t) =

1
2
a0 +

n
∑

k=1
(ak cos(kt) + bk sin kt). (1.60)

To prove this theorem, it is now sufficient to show that
lim
n→∞

Rn(t) = 0.
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For the partition sum it holds that (see [9])

sn(t) =
1
� ∫

�

0

[

f (t + u) + f (t − u)
2

] sin
((1

2
+ n

)

u
)

sin
(u
2

) d u. (1.61)

Then from (1.58) and (1.61) we get

Rn(t) = 1
� ∫

�

0

[

f (t + u) + f (t − u)
2

] sin
((1

2
+ n

)

u
)

sin
(u
2

) d u −

−1
� ∫

�

0

[

f (t + 0) + f (t − 0)
2

] sin
((1

2
+ n

)

u
)

sin
(u
2

) d u.

We adjust the integral

Rn(t) = 1
� ∫

�

0

[

f (t + u) − f (t + 0)
2

] sin
((1

2
+ n

)

u
)

sin
(u
2

) d u +

+1
� ∫

�

0

[

f (t − u) − f (t − 0)
2

] sin
((1

2
+ n

)

u
)

sin
(u
2

) d u =

= I1 + I2.

On both integrals I1 and I2 it is possible to apply Theorem 4. Indeed, for I1 we
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have

�I1 = ∫

�

0

⎡

⎢

⎢

⎢

⎣

f (t + u) − f (t + 0)

2 sin
(u
2

)

⎤

⎥

⎥

⎥

⎦

sin
((1

2
+ n

)

u
)

d u =

= ∫

�

0

⎡

⎢

⎢

⎢

⎣

f (t + u) − f (t + 0)

2 sin
(u
2

)

⎤

⎥

⎥

⎥

⎦

sin
(u
2

)

cos(nu) d u +

+∫

�

0

⎡

⎢

⎢

⎢

⎣

f (t + u) − f (t + 0)

2 sin
(u
2

)

⎤

⎥

⎥

⎥

⎦

cos
(u
2

)

sin(nu) d u =

= 1
2 ∫

�

0
[f (t + u) − f (t + 0)] cos(nu) d u +

+∫

�

0

⎡

⎢

⎢

⎢

⎣

f (t + u) − f (t + 0)

2 sin
(u
2

)

⎤

⎥

⎥

⎥

⎦

cos
(u
2

)

sin(nu) d u =

= J1 + J2.

To the integral J1 it is possible to apply Theorem 4 directly. For the integral J2 it
is necessary to investigate the behavior of the function

f (t + u) − f (t + 0)

2 sin
(u
2

)

in the point u = 0. We get it with a simple adjustment
f (t + u) − f (t + 0)

2 sin
(u
2

) =
f (t + u) − f (t + 0)

u

u
2

sin
(u
2

) .

The first factor converges for u→ 0 to the limit
lim
u→0

f (t + u) − f (t + 0)
u

= lim
ℎ→0

f (t + ℎ) − f (t + 0)
ℎ

= f ′(t),

which is assumed to be final. The second factor has a limit for u→ 0 equal to 1 and
this function is piecewise continuous. Hence, also on the integral J2 it is possible
to apply Theorem 4.

Consequently,
lim
n→∞

I1 = 0.

It will be proved analogously
lim
n→∞

I2 = 0.

Hence, this theorem is proved. □
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1.6 The space L2(a, b)

Let us denote byL2(a, b) the set of all appropriate (see Remark 1) complex func-
tions f ∶ (a, b) → ℂ, for which the integral is

∫

b

a
|f (t)|2 d t (1.62)

finite. A function belonging to this space L2(a, b) is called integrable with square.
Remark 1 The attentive readermay have noticed the highlightedword appropriate
in the above definition. This expression is essential for the correctness of the text.
It is not possible to build a space of integrable functions with a square without
restrictions. Mathematicians can define this limitation precisely, in a single word
measurable. Under the condition of measurable is all correct. In order to use
this term, we must build a theory of measure that goes beyond this text and many
engineering studies. Overall, therefore, the functions that are permissible for us,
suitable, they are the ones we usually encounter in practice and in this text, unless
otherwise stated. For further restrictions, pay attention to the following notes.

The space L2(a, b) with the operation of adding (ℎ(t) = f (t) + g(t)) and a
multiplication of the scalar (ℎ(t) = cf (t)) is linear. To see this, we must verify the
following conditions:

1. the sum of each of the two functions from L2(a, b) is again a function from
L2(a, b). We know that the inequality |a+b|2 ≤ 2(|a|2+|b|2)works. So, it is
enough to put a = f (t) and b = g(t). Then |f (t)+g(t)|2 ≤ 2(|f (t)|2+|g(t)|2).
By integration of a given function on the interval (a, b) we have ∫ b

a |f (t) +
g(t)|2 d t ≤ 2(∫ b

a |f (t)|2 d t+ ∫ b
a |g(t)|2 d t). Both integrals on the right-hand

side of the inequality are finite, so the integral on the left-hand side is finite,
and a function f (t) + g(t) is integrable with the square.

2. multiplication of a function from L2(a, b) by a complex number is again a
function from L2(a, b). Indeed, ∫ b

a |cf (t)|2 d t = |c|2 ∫ b
a |f (t)|2 d t, so the

function cf (t) is integrable with the square.
Example 6 By integration it is possible to verify
f (t) = 1 + i

√

t
∈ L2[1, 2], f (t) = 1 + i

√

t
∉ L2(0, 1] a f (t) = 1 + i

4
√

t
∈ L2(0, 1].

Remark 2 A special space is often used to solve many problems; L1(a, b), the
space of functions integrable on an interval (a, b). This space is again linear. We
say that the function f belongs to L1(a, b) if it is on the interval (a, b) (absolute)
integrable, that is

∫

b

a
|f (t)| d t <∞.
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Apparently, if f (t) ∈ L2(a, b), then f (t) ∈ L1(a, b). The converse implication is
not true in general, see Example 8.
Example 7 By integration it is possible to show
f (t) = 1 + i

√

t
∈ L1[1, 2] a f (t) = 1 + i

4
√

t
∈ L1(0, 1].

Example 8 Let’s decide if the function f (t) = 1
√

t − 1
is integrable with a square,

or at least absolute integrable on the interval [1, 2]. Let’s calculate the relevant
integrals:

∫

2

1

1
√

t − 1
d t = lim

u→1∫

2

u

1
√

t − 1
d t = lim

u→1
[2
√

t − 1]2u = 2,

∫

2

1

(

1
√

t − 1

)2

d t = lim
u→1∫

2

u

1
t − 1

d t = lim
u→1

[ln |t − 1|]2u = ∞.

Hence, the function 1
√

t − 1
∈ L1[1, 2], but 1

√

t − 1
∉ L2[1, 2].

Let us now state a sufficient condition for integrable functions with a square.
Theorem 6 Each piecewise continuous function on a closed interval is integrable
with a square on this interval.

Remark 3 The above given theorem characterizes the elements of space L2(a, b)
and supplements Remark 1. For completeness, however, it is necessary to define a
piecewise continuous function. It is a function that meets the following conditions:

1. there is a finite partition of the interval (a, b) such that partial intervals are
pairwise disjoint and their union is exactly the interval (a, b),

2. the function restricted on each partial interval is continuous.

The only thing to consider is the boundedness of the function on the respective
partial interval, which the diligent reader can handle themselves.

Let f and g be functions from L2(a, b), then scalar multiplication of the func-
tions f and g on the interval (a, b) is defined by

(f, g) = ∫

b

a
f (t)g(t) d t. (1.63)

The norm of the function f from L2(a, b) is given by
‖f‖ =

√

(f, f ). (1.64)
We therefore understand the norm of a function as its distance from the zero

function.
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f0(t)

t0 a b
-

6

s s
Figure 1.16: Graph of the function f0

f1(t)

t0 a b

1

-

6

scs s
Figure 1.17: Graph of the function f1

Remark 4 The inquisitive reader may have noticed that if they take a function, for
example f0(t) a f1(t) defined in Figures 1.16 and 1.17 then

‖f0‖ = ‖f1‖ = 0.

So it gets the same norm for two different functions, which is not right. Taking into
account Remark 1, then according to the Lebesgue measure these functions are
equal; they differ only on a set of zero measure.

Let us formulate the basic properties of the scalar product and norm; the proof
is easy and that is why we leave it to the reader:
Lemma 2 Let f , g and ℎ be functions from L2(a, b) and c ∈ ℂ, then

1. (f, f ) = ∫ b
a f (t)f (t) d t = ∫ b

a |f (t)|2 d t = ‖f‖2,

2. (cf , g) = c(f, g),

3. (f + ℎ, g) = (f, g) + (ℎ, g),

4. (f, g) = (g, f ),

5. Schwarz-Buňakovsky inequality: |(f, g)| ≤ ‖f‖‖g‖,

6. ‖f‖ = 0 if and only if f (t) = 0 for almost every t,
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7. ‖cf‖ = |c|‖f‖,

8. ‖f + g‖ ≤ ‖f‖ + ‖g‖.

The system of functions {fn}∞n=1 from L2(a, b) is orthogonal, if scalar multi-
plication of each of the two different functions equals zero, that is if for any form
m ≠ n it holds that

(fm, fn) = 0. (1.65)
In addition, if the norm of each sequence function is equal to one, we call such a
system orthonormal, that is

(fm, fn) =

⎧

⎪

⎨

⎪

⎩

1 for m = n,

0 for m ≠ n.
(1.66)

Example 9 The system of functions {eint}∞n=−∞ is on the interval [0, 2�] orthog-
onal, but not orthonormal. Firstly, ∫ 2�

0 |eint|2 d t = 2�, hence eint ∈ L2[0, 2�] for
each n. Next

(fm, fn) =

⎧

⎪

⎨

⎪

⎩

∫ 2�
0 eimte−int d t = 2� for m = n,

∫ 2�
0 eimte−int d t = 0 for m ≠ n.

(1.67)

The given system of functions can be normalized in a simple way by multiplying
each function by the inverse value of the norm, i.e.

{ eint

‖eint‖

}∞

n=−∞
=
{ eint
√

2�

}∞

n=−∞
.

Then obviously
‖

eint
√

2�
‖

2 = 1
2�

(eint, eint) = 1.

Example 10 The sequence of trigonometric functions
1, cos(t), sin(t), cos(2t), sin(2t),…

is on the interval (−�, �) orthogonal, but not orthonormal. In really:

for m ≠ n je

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∫ �
−� cos(mt) sin(nt) d t = 0,

∫ �
−� cos(mt) cos(nt) d t = 0,

∫ �
−� sin(mt) sin(nt) d t = 0,

(1.68)
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for m = n it is

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∫ �
−� cos(mt) sin(mt) d t = 0,

∫ �
−� cos(mt) cos(mt) d t = �,

∫ �
−� sin(mt) sin(mt) d t = �.

(1.69)

By normalizing a given sequence, we obtain an orthonormal system of functions:
1

√

2�
,
cos(t)
√

�
,
sin(t)
√

�
,
cos(2t)
√

�
,
sin(2t)
√

�
,…

Example 11 The system of functions {eint}∞n=−∞ is not on the interval [0, �] or-
thogonal. In really:

(fm, fn) = ∫

�

0
eimte−int d t =

(−1)m−n − 1
m − n

≠ 0 for m − n odd.

Let a given sequence of functions be {fn}∞n=1 fromL2(a, b). If there is a function
f ∈ L2(a, b) such that

lim
n→∞

‖fn − f‖ = 0, (1.70)
then the sequence is called {fn}∞n=1 convergent to f in the norm L2(a, b). Some-
times the designation convergence in a diameter or convergence in terms of stan-
dard deviation is also used.

The sequence of functions {fn}∞n=1 from L2(a, b) converges onM to a function
f uniformly, if for any � > 0 there is n0 such that for every n > n0 and every z ∈M
is |fn(z) − f (z)| < �.

Note that if we know the sequence {fn}∞n=1 is uniformly convergent, it is also
convergent. The following example shows that this may not be the case.

Example 12 The geometric sequence {tn}∞n=1 is convergent but not uniformly on
the interval [0, 1). It is easy to see that a given sequence converges to 0 on the
interval [0, 1). Next, it holds that sup |tn| = 1 for t ∈ [0, 1), so 0 is not a limit,
hence a given sequence is not convergent uniformly.

1.7 Generalized Fourier sequence

As we have already described in the previous paragraphs, the whole theory of
Fourier series arose from the need to develop a given periodic function into a pe-
riodic function formed by trigonometric functions; see Example 10. Most of the
theorems valid for Fourier series remain valid if we replace the trigonometric func-
tions in the original considerations with a system of functions that are orthogonal
or orthonormal (see Section 1.6).
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Therefore, the question arises whether the given function f (t), which is inte-
grable with the square on the interval [a, b], develops into an infinite series

∞
∑

n=0
�n'n(t)

using an orthonormized system of functions {'n}∞n=0,'n ∈ L2(a, b) and determines
the coefficients �n.
1. Approximation

We will approximate the function f (t) by a polynomial Tn based on the smallest
standard deviation, provided that {'n(t)}∞n=0 is an orthonormal system of functions.
So the question is how to choose the coefficients �n in the polynomial

Tk(t) = �0'0(t) + �1'1(t) +⋯ + �k'k(t),

to make the value of the integral

Ik =
1

b − a ∫

b

a
[f (t) − Tk(t)]2 d t

minimal. Let’s modify the given integral

Ik =
1

b − a

(

∫

b

a
[f (t)]2 d t − 2∫

b

a
[f (t)Tk(t)] d t + ∫

b

a
[Tk(t)]2 d t

)

.

Then it is

∫

b

a
f (t)Tk(t) d t =

k
∑

n=0
�n ∫

b

a
f (t)'n(t) d t.

Denote an = ∫ b
a f (t)'n(t) d t and let’s call this number the Fourier coefficient of the

function f (t) with respect to a given set of functions {'n(t)}∞n=0. Then we have

∫

b

a
f (t)Tk(t) d t =

∞
∑

n=0
�nan.

Now let’s compute

∫

b

a
[Tk(t)]2 d t = ∫

b

a
[
k
∑

n=0
�n'n]2 d t =

= ∫

b

a

⎛

⎜

⎜

⎜

⎝

k
∑

n=0
�2n'

2
n + 2

k
∑

m,n=0
n<m

�n�m'n'm

⎞

⎟

⎟

⎟

⎠

d t =

=
k
∑

n=0
�2n ,
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due to the orthonormality of the system{'n(t)}∞n=0. The integral therefore has theform

Ik = 1
b − a

(

∫

b

a
f (t)2 d t +

k
∑

n=0
(�2n − 2�nan + a2n − a

2
n)

)

= (1.71)

= 1
b − a

(

∫

b

a
f (t)2 d t +

k
∑

n=0
(�n − an)2 −

k
∑

n=0
a2n

)

. (1.72)

This equation applies to any choice of coefficients �n. Integral Ik therefore, has a
minimum value when selected �n = an. Denote the polynomial Tk with coefficients
�n = an as Pk and relevant integrals Jk. Then

Jk =
1

b − a ∫

b

a
[f (t) − Pk(t)]2 d t =

1
b − a

(

∫

b

a
[f (t)]2 d t −

k
∑

n=0
a2n

)

. (1.73)

Because for every k
Jk ≥ 0,

it is
k
∑

n=0
a2n ≤ ∫

b

a
[f (t)]2 d t. (1.74)

the inequality (1.74) is called Bessel. Because the formulae (1.73) and (1.74) hold
for any k, infinite sequence

∞
∑

n=0
a2n

is convergent, since all partial sums are smaller than the given fixed positive number
according to (1.74) ∫ b

a [f (t)]
2 d t.

2. Closedness
Let us now address the natural question of whether

lim
k→∞

Jk = 0.

Orthonormal systems that meet this property are called closed. Therefore, the fol-
lowing applies to them:

lim
k→∞∫

b

a
[f (t) −

k
∑

n=0
an'n(t)]2 d t = ∫

b

a
[f (t)]2 d t −

∞
∑

n=0
a2n = 0,

so
∫

b

a
[f (t)]2 d t =

∞
∑

k=0
a2k, (1.75)
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equality (1.75) is called Parseval. We have already proved that the sequence of
trigonometric functions is in the interval [0, 2�] orthonormal, see Example 10.
Closedness can be proved by Fejér theorems.
3. Orthonormality

In the previous sections, we have already shown that the orthonormality of a
system of functions significantly simplifies the development of a given function
using these functions. Unfortunately, a power sequence of functions

'k(t) = tk where k = 0, 1,… (1.76)
it is not orthonormal or normalized, despite the frequent task of developing a func-
tion f (t) into a power series. The way to compile the coefficients of such a power
series is known; it is enough to develop the given function f (t) into a Taylor series.
This method is theoretically good, but in practice we come across a problem that
may not have a solution, namely determining the values of all orders of derivation
of a given function. This problem can be eliminated by not developing the function
with the system (1.76), but by a system composed of polynomials, which forms an
orthonormed set of functions on a given interval.
Theorem 7 (Schmidt’s) Let

{'n(t)}∞n=0 (1.77)
be a sequence of continuous and nonzero functions on the interval [a, b] such that
each finite block'0(t),'1(t),… , 'k(t) denotes k+1 linearly independent functions.
Then a sequence of functions can be created from this sequence

{ n(t)}∞n=0 (1.78)
continuous on this interval [a, b] such that

1. each of its finite blocks  0(t),  1(t),… ,  k−1(t) denotes k linearly indepen-
dent functions,

2. each function k(t) is a linear combination of functions'0(t),'1(t),… , 'k−1(t),

3. the sequence (1.78) forms an orthonormal sequence.
The proof of this theorem has two parts. The first part is constructive; the ap-

propriate orthonormal system is constructed. In the second, the validity of the prop-
erties described by the sentence is verified. Now let’s do the construction, as the
verification of the given properties is easy to do and has been left for the reader as
an exercise.
Construction of the sequence(1.78):
1. Put

 0(t) =
'0(t)
c0

, (1.79)
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where c20 = ∫ b
a '

2
0(t) d t. The function  0(t) is obviously normalized. Hence,

∫

b

a
 2
0 (t) d t = 1∕c20 ∫

b

a
'2
0(t) d t = 1.

2. Now, introduce
�1(t) = '1(t) − a10 0(t), (1.80)

where a10 is picked in such away that the function�1(t) is orthogonal to the function
 0(t), so it will be

∫

b

a
�1(t) 0(t) d t = ∫

b

a
['1(t) − a10 0(t)] 0(t) d t = 0.

From here we have
a10 = ∫

b

a
a10 

2
0 (t) d t = ∫

b

a
'1(t) 0(t) d t.

Denote
c21 = ∫

b

a
�2
1 (t) d t,

then the function
 1(t) =

�1(t)
c1

(1.81)
is on the interval [a, b] orthonormal to the function  0(t).

Similarly, we introduce a function
�2(t) = '2(t) − a20 0(t) − a21 1(t), (1.82)

where we choose a20 and a21 such that �2(t) is orthogonal to the functions  0(t)
and  1(t). We can easily deduce that

a20 = ∫

b

a
'2(t) 0(t) d t, (1.83)

a21 = ∫

b

a
'2(t) 1(t) d t. (1.84)

Then the function
 2(t) =

�2(t)
c2

where c22 = ∫

b

a
�2
2 (t) d t, (1.85)

is normalized and orthogonal to  0(t) and  1(t).
3. To specify additional members of the sequence (1.78) it is enough to proceed
analogously with the help of mathematical induction. Note the numbers ck are gen-
erally different from zero with respect to the linear independence of each finite sec-
tion of the sequence (1.77). From the construction (1.78), the linear independence
of each finite block then follows.
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Example 13 Apply Theorem 7 to the power sequence of functions (1.76) on the
interval [−1, 1]. Using the process described above, we derive polynomials which,
except for constant factors, are so-called Legender polynomials. Let’s construct the
first three members of the sought orthonormed system.

Firstly, '0(t) = 1 and

c20 = ∫

1

−1
'2
0(t) d t = 2,

so
c0 =

√

2
and

 0(t) =
1
√

2
.

Next, put
�1(t) = '1(t) − a10 0(t) = t − a10

1
√

2
,

a10 = ∫

1

−1
'1(t) 0(t) d t = ∫

1

−1

t
√

2
= 0,

hence
�1(t) = t

and
c21 = ∫

1

−1
�2
1 (t) d t = ∫

1

−1
t2 d t = 2

3
.

So, we get
 1(t) =

�1(t)
c1

= t
√

2∕3
=
√

3
2
t.

Now, let
�2(t) = '2(t) − a20 0(t) − a21 1(t) = t2 − 1

3
,

c22 = ∫

1

−1
�2
2 d t =

8
45

and
 2(t) =

�2(t)
c2

=
√

5
2

(3
2
t2 − 1

2

)

.

The first three members of the search sequence are:
 0(t) = 1

√

2
,

 1(t) =
√

3
2
t,

 2(t) =
√

5
2

(3
2
t2 − 1

2

)

.



38 CHAPTER 1. FOURIER SERIES

Consequently, we can develop the function f (t), which is continuous on the
interval [−1, 1], into a series made up of these polynomials.

1.8 Gibbs phenomenon

In the previous sections we dealt with the development of functions from L2(a, b)
into the Fourier series. We already know that the Fourier series of functions f ∈
L2(0, 2�) converges in a norm of the spaceL2(0, 2�) to the function f . In addition,
if other conditions are met (see Theorem 2.11 from [7]), then the Fourier series
converges uniformly. A simple example of a function that does not meet these
conditions is

f0(t) =
� − t
2

pro t ∈ (0, 2�),

which is periodically extended to the whole ℝ; see Figure 1.18. It can be verified
(see Chapter 2 from [12]), that

f0(t) =
∞
∑

k=1

sin(kt)
k

, (1.86)

here equality applies in the sense of convergence in L2(l, l+2�), l ∈ ℝ, and also in
terms of the uniform convergence on each interval with extreme points 2l� + � and
2(l+1)�−�, where � ∈ (0, �) (see Theorem 2.4 from [7]). The problem is therefore
the points of discontinuity of the function f0; for example, we do not know what
is happening at the point t = 0. At this point the sum of the series (1.86) equals 0,
thus, the average limit on the right and left is zero.

1
2
[

f0(0 + 0) + f0(0 − 0)
]

= 0.

Let us now focus on the error of the partial sum of the series (1.86)

Rn(t) = sn(t) − f0(t) =
n
∑

k=1

sin(kt)
k

− � − t
2

for t ∈ (0, 2�).

We can easily verify that

R′
n(t) =

1
2
+

n
∑

k=1
cos(kt) =

sin
((

n + 1
2

)

t
)

2 sin
(1
2
t
)

,

Rn(0) = −�
2

and hence

Rn(t) = −�
2
+ ∫

t

0

sin
((

n + 1
2

)

x
)

2 sin
(1
2
x
)

d x.
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The function sn(t) is increasing in a neighborhood of zero. Now let’s look for
such a point tn > 0, in which the function Rn(t) has a local extreme and is closest
the zero. From the equation R′

n(t) = 0 we get
sin

((

n + 1
2

)

t
)

= 0

and so
xn = �

(

n + 1
2

)−1
.

If we denote n + 1∕2 = p and apply the substitution px = s we get

Rn(tn) = ∫

�∕p

0

sin(px)

2 sin
(1
2
x
)
d x − �

2
= ∫

�

0

sin(s)

2p sin
(

s
2p

) − �
2
.

For a large enough p (that is large enough for n) it is

2p sin
(

s
2p

)

≥ 0,

for s ∈ (0, �) and
lim
p→∞

2p sin
(

s
2p

)

= s.

Now we find the integral majorant and we get
lim
n→∞

Rn(tn) = ∫

�

0

sin(s)
s

d s − �
2
.
= 0, 18�

and for a large n it is
sn(tn)

.
= 1, 18�

2
.

Each partial sum sn(t) has a maximum that exceeds by about 18% the maximum
of the function f0, see Figure 1.18. This phenomenon is calledGibbs phenomenon.

The maximum with increasing n is still significantly different to the maximum
of the function f0, just the point tn is tending to zero, in which the maximum is
reached. Therefore, we can never achieve a partial sum series (1.86) that approxi-
mates the function f0 uniformly.

It is possible to demonstrate (see Chapter 6 in [7]) that each function f , which
has a finite number of points of discontinuity of the first kind, can be written in the
form

f (t) = g(t) + ℎ(t),

where g(t) is a function thatmeets our additional conditions imposed on the function
f0 and whose Fourier series converges uniformly, and where

ℎ(t) =
m
∑

i=1
cif0(t − ti)
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f (t)
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Figure 1.18: Gibbs phenomenon

is a function that captures the jumps of a function f .

From the properties of the function f0 we know that the Fourier series of a
function f converges at every point t to the value

1
2
[f (t + 0) + f (t − 0)]

and that in every neighborhood of the function f , the Gibbs phenomenon mani-
fests itself. Thus, a partial sum of the Fourier series of a function f will be in a
neighborhood of each point of discontinuity ti and acquire, except for a negligible
deviation, a value

1
2
[f (ti + 0) + f (ti − 0)] ± 1

2
1, 18[f (ti + 0) + f (ti − 0)],

therefore, the partial sums will not converge uniformly around the point of discon-
tinuity.

1.9 Worked example

In this section wewill solve one example in which wewill look for the Fourier series
of a periodic signal. As follows from the previous sections, the Fourier series of
a periodic signal is a mathematical notation of the statement that a periodic signal
f (t) with a repetition frequency of 1∕T can be composed of a constant signal and
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harmonic signals of frequencies 1∕kT where k = 1, 2, 3,… . Hence,

f (t) = A0 + A1 cos(!t + '1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

the first (basic) harmonic

+

+A2 cos(2!t + '2) + A3 cos(3!t + '3)+

+⋯ + Ak cos(k!t + 'k)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
k-th harmonic (higher)

+⋯

= A0
⏟⏟⏟

direct component (mean value)

+
∞
∑

k=1
Ak cos(k!t + 'k),

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
alternating component

(1.87)

whereAk is the amplitude of k-th harmonic component, k! is the circular repetition
frequency k-th harmonic component and 'k is the initial phase of k-th harmonic
element.

From the above formula (1.87) it is obvious that each periodic signal has an
alternating and direct element. The direct component is equal to the mean value
of the signal over the repetition period. The alternating component consists of har-
monic signals with zero mean values, so it is the original signal devoid of the direct
component. The alternating component contains the so called first harmonic of a
frequency, which is the same as the repetition frequency of the periodic signal, and
from the higher harmonic, of which there is generally an infinite number and whose
frequency is an integer multiple of the frequency of the first harmonic.

In decomposition of the above periodic signal (1.87) the sub-components are
unambiguous and every two different periodic signals of the repetition frequency
! are unambiguously represented by different pairs of sets {A0, A1,…Ak,…} and
{'0, '1,…'k,…}; see the section Fourier series in the complex plane 1.2. The
graphical representation of these sets in the form of spectral lines on the frequency
axis is called the spectrum of the signal.

If a signal passes through an electrical circuit, we can understand it as the pas-
sage of a set of its harmonic components. Due to the different transmission capa-
bilities of the circuit at different frequencies, the individual harmonic components
at the output of the circuit will be differently attenuated and phase shifted, so that
the output signal will also be periodic, but will be distorted compared to the input
signal. The signal spectrum, resp. the distribution of its spectral lines on the fre-
quency axis, together with the frequency characteristics of the circuit, provides a
useful and illustrative tool for understanding the phenomena associated with signal-
circuit interactions.

Because the harmonic signal can be written in other forms than those shown in
the discussed formula (1.87) (specifically in the decomposition into sine and cosine
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f (t)

t

1

0 1.5−1.5
-

6

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

@
@
@

@
@

@

@
@
@

Figure 1.19: Graph of the periodic signal f (t) = |t| with the basic periodicity
interval (−0.5, 1).

components and also in a complex form as the sum of two rotating phasors), there
are corresponding shapes of the Fourier series, see sections 1.4 and 1.2. Further
motivational considerations and applications can be found in the work [1], which
are also motivated by the previous paragraphs.

Let us now construct a Fourier series using 10 harmonic signals

f (t) = |t|

on the basic periodicity interval (−0.5, 1) see Figure 1.19. Next, let’s perform a
harmonic analysis, that is, construct an amplitude and phase spectrum.

The procedure and the necessary formulae for the calculations are given in the
section Fourier series in the complex field 1.2. The result can therefore be found by
direct calculation using a pencil and paper, or we can use a suitable algorithm. We
will use the Matlab software; the relevant code of the m-file is given below with
comments; compare the formulae from the Fourier series section in the complex
field 1.2 with the kernel of the 1.1 algorithm written in lines 19 to 29.

After performing the calculation of the above algorithm in Matlab, we obtain
the solution of the calculation, i.e. the Fourier series of the respective 10 harmonics
(Figure 1.20), amplitude (Figure 1.21) and phase (Figure 1.22) spectrum.
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Algorithm 1.1: Fourier series development algorithm
1 function Fourier_series(f,a,b,N)
2

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 % Development of given function f(t) from L2(a,b)
5 % into Fourier series
6 % in complex plane using N harmonic components
7 % Calling sequence: Fourier_series(’abs(t)’,-0.5,1,10)
8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
9

10 syms t real; % Symbolic variable t
11 T=sym(b-a); % Period
12 w=2*pi/T; % Angular speed
13

14 % Computation of coefficients c_n of Fourier series f_N
15 % and its assembly
16 % Computation of amplitudes A_n
17 %and phases FIn for n=-N,...,N
18

19 fN=0; An=zeros (2*N+1 ,1); FIn=zeros (2*N+1 ,1);
20 for n=-N:N
21 cn=1/T*int(f*exp(-i*w*n*t),t,a,b);
22 % Coefficient of the n-th element of FR
23 fN=fN+cn.*exp(i*w*n*t);
24 % Assembly of Fourier series f_N
25 An(n+N+1)= abs(double(cn));
26 % Computation of amplitude (indexation vec. from 1)
27 FIn(n+N+1)=- angle(double(cn));
28 % Computation of phase (indexation vec. from 1)
29 end;
30

31 % Graphs of functions f and f_N
32 figure; hold on; grid on; box on;
33 set(gca ,’FontSize ’ ,14);
34

35 % Original funkction f
36 hf=ezplot(f,[a,b]);
37 set(hf,’Color ’,’Red’,’LineWidth ’ ,2);
38

39 % Approximation f_N by N harmonic elements
40 hfN=ezplot(fN ,[a,b]);
41 set(hfN ,’Color ’,’Blue’,
42 ’LineWidth ’,2,’LineStyle ’,’--’);
43 xlabel(’t’);
44 title([’Fourierova rada funkce f(t)=’,f]);
45 legend(’f(t)’, [’f_{’,num2str(N),’}(t)’],
46 ’Location ’,’NorthEastOutside ’);
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Algorithm 1.2: Algoritmus rozvoje ve Fourierovu řadu
47

48 % Amplitude spectrum
49 figure; hold on; grid on; box on;
50 set(gca ,’FontSize ’ ,14);
51 bar(-N:N,An); xlabel(’n’);
52 title(’Amplitudove spektrum ’)
53

54 % Phase spectrum
55 figure; hold on; grid on; box on;
56 set(gca ,’FontSize ’ ,14);
57 bar(-N:N,FIn); xlabel(’n’);
58 title(’Fazove spektrum ’)
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Figure 1.20: Graph of 10 harmonic.
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Figure 1.22: Phase spectrum of given signal

1.10 Appendix

Historically, Fourier series have emerged in the field of mathematical physics. The
motivation was to solve the initial boundary value problem for the wave and diffu-
sion equation at the finite interval. J. Fourier (1768 - 1830), a Frenchmathematician
and physicist, came up with a solution to the problem.
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The method he proposed, which today bears his name, later led to a systematic
study of trigonometric series, now called Fourier series. We will construct it for
the wave equation; other constructions and examples can be found in [4].

Let us initially construct a boundary value problem that describes the oscillation
of the string on a finite length interval l. The end points of the string are fixed in
the zero position. Consider the initial deviation '(x) and the initial speed  (x). So
the problem has the shape

utt = c2uxx, 0 < x < l, t > 0,

u(0, t) = u(l, t) = 0, t > 0,

u(x, 0) = '(x), ut(x, 0) =  (x), 0 < x < l,

(1.88)

where u = u(x, t) describes the deflection of the string at a point x and time t.
Let’s assume that the solution exists and has the shape

u(x, t) = X(x)T (t), (1.89)
where X = X(x) and T = T (t) are real functions of one real variable having a
continuous second derivative. The variables x and t in this case are separated from
each other. Letting (1.89) into the equation of the problem (1.88) we get

XT ′′ = c2X′′T .

We divide by an element −c2XT ; here we assume that XT ≠ 0, so

−
T ′′(t)
c2T (t)

= −
X′′(x)
X(x)

.

This relationship tells us that the expression on the left depends only on the time
variables t and the expression on the right depends only on the spatial variables x.
Moreover, this equality must apply to all t > 0 and x ∈ (0, l) and hence

−
T ′′(t)
c2T (t)

= −
X′′(x)
X(x)

= �

where � is a constant.
So we converted the original partial differential equation to an ordinary differ-

ential equation with separated variables with unknown functions X(x) and T (t)
X′′(x) + �X(x) = 0, (1.90)
T ′′(t) + c2�T (t) = 0. (1.91)

Next, we have the boundary conditions of the problem (1.88), sowe have bound-
ary conditions

X(0) = X(l) = 0. (1.92)
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We will first solve the marginal problem (1.90), (1.92). The obvious trivial
solutionX(x) = 0 is not interesting for us, therefore, if we rule out the case � ≤ 0.
If � > 0, then the equation (1.90) has the solution

X(x) = C cos(
√

�x) +D sin(
√

�x)

and from the boundary conditions (1.92) it follows that
X(0) = C = 0,

X(l) = D sin(
√

�l) = 0.

So we get a non-trivial solution where
sin(

√

�l) = 0,

or
�n =

(n�
l

)2 , n ∈ ℕ.

Every �n corresponds to the solution
Xn(x) = Cn sin

(n�x
l

)

, n ∈ ℕ, (1.93)
where Cn are arbitrary constants.

Now let’s solve the equation (1.91); the solution for � = �n takes the form
Tn(t) = An cos

(n�ct
l

)

+ Bn sin
(n�ct

l

)

, n ∈ ℕ, (1.94)
where An and Bn are again arbitrary constants. The original partial differential
equation (1.88) solves the sequence of functions

un(x, t) =
(

An cos
(n�ct

l

)

+ Bn sin
(n�ct

l

))

sin
(n�x

l

)

, n ∈ ℕ,

which meets the prescribed boundary conditions. The attentive reader may have
noticed that instead of AnCn (resp. BnCn) we write An (resp. Bn), since they are
arbitrary real constants. The problem is linear, and therefore any finite sum is again
the solution

u(x, t) =
N
∑

n=1

(

An cos
(n�ct

l

)

+ Bn sin
(n�ct

l

))

sin
(n�x

l

)

, n ∈ ℕ. (1.95)

We still have to take into account the initial conditions. So function (1.95) will
fulfill the initial conditions, if applicable

'(x) =
N
∑

n=1
An sin

(n�x
l

)

, (1.96)

 (x) =
N
∑

n=1

n�c
l
Bn sin

(n�x
l

)

. (1.97)
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The task for any initial data (1.88) is uniquely solvable and the appropriate solution
is given by formula (1.95). The conditions (1.96) and (1.97) are very restrictive
and difficult to guarantee. For this reason, we are looking for a solution to problem
(1.88) in the form of an infinite sum, and we express it in the form of a Fourier
series

u(x, t) =
∞
∑

n=1

(

An cos
(n�ct

l

)

+ Bn sin
(n�ct

l

))

sin
(n�x

l

)

, n ∈ ℕ. (1.98)

The constantsAn andBn are then given as Fourier coefficients of sine developments
of functions '(x) and  (x), hence

'(x) =
∞
∑

n=1
An sin

(n�x
l

)

,

 (x) =
∞
∑

n=1

n�c
l
Bn sin

(n�x
l

)

.

In other words, solving problem (1.88) for the wave equation, it is at all times t ex-
pressed in the form of a Fourier sine series in the variable x, if the initial conditions
of '(x) and  (x) can be expressed. It turns out that for a sufficiently wide class of
functions, such a decomposition is possible, and the respective series converge. In
this case, we calculate the coefficients using the formulae

An =
2
l ∫

l

0
'(x) sin

(n�x
l

)

d x,

Bn =
2
n�c ∫

l

0
 (x) sin

(n�x
l

)

d x.

Finally, it should be noted that convergence needs to be discussed for correctness.
Convergence considerations need to be applied to functions ' and  ;, this have
been done in the previous sections.



Chapter 2

Laplace transform

The Laplace transform is an effective method for solving various practical tasks in
the fields of mathematical physics, electrical engineering, and control systems.

This chapter is motivated by the works [5] - [13] and is organized as follows.
We will first introduce the necessary terms, then in section 2.1 we will pay attention
to the properties of the Laplace transform. In section 2.2 we will learn to perform
the inverse Laplace transformation, and finally in section 2.3 we will look at the
following application examples: solution of differential equations (and systems),
examples from areas of electrical engineering and control systems.

We will consider complex functions f of the real variable t ∈ (−∞,∞), that is
f ∶ ℝ → ℂ, and complex variable p = x+iy ∈ ℂ. Let us assume that the improper
integral

∫

∞

0
f (t)e−pt d t (2.1)

exists and has a finite value for at least one p. Then the integral (2.1) is called the
Laplace integral of the function f .

Example 14 Let’s calculate the Laplace integral of a function f (t) = 1. By (2.1)
we have

∫

∞

0
f (t)e−pt d t = ∫

∞

0
e−pt d t = lim

�→∞∫

�

0
e−pt d t = lim

�→∞

(

1
p
− 1
p
e−p�

)

.

Since � ∈ ℝ, for p = x + iy it holds that |e−p�| = e−x�. So, for Re p > 0 it
holds that lim�→∞ e−p� = 0, and the Laplace integral of the function f (t) = 1 for
Re p > 0 converges and equals the function 1∕p. For Re p ≤ 0 the Laplace integral
does not exist.

Example 15 Let’s calculate the Laplace integral of a function f (t) = eat where

49
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a ∈ ℂ. By (2.1) we have

∫

∞

0
f (t)e−pt d t = ∫

∞

0
eate−pt d t = lim

�→∞∫

�

0
e(a−p)t d t =

= lim
�→∞

(

1
a − p

e(a−p)� − 1
a − p

)

= 1
p − a

for Re(p− a) > 0. So, the Laplace integral f (t) = eat converges for Re p > Re a to
the function 1∕(p − a) and otherwise diverges.
Definition 3 Let f be a complex function of a real variable t ∈ (−∞,∞). Let
M ⊂ ℂ be a set of all p, for which the Laplace integral (2.1) converges. Then the
complex function F defined by

F (p) = ∫

∞

0
f (t)e−pt d t (p ∈M) (2.2)

is called the Laplace image of the function f . A given map that assigns a function
f to its Laplace image F , is called a Laplace transform, and is denoted by

(f (t)) = F (p).

Definition 4 The function f is called a subject (sometimes also preimage or orig-
inal), if the following conditions are fulfilled:

1. f is on the interval [0,∞) piecewise continuous,

2. f (t) = 0 for each t < 0,

3. there is a real number M > 0 and � such that for each t ∈ [0,∞) it holds
that

|f (t)| ≤Me�t. (2.3)
Definition 5 Let �0 = inf{� ∈ ℝ ∶ � satisf ies (2.3)}. The number �0 is called
the growth index of the function f .

An important example of the subject is the Heaviside function shown in Figure
2.1, defined by

�(t) =

⎧

⎪

⎨

⎪

⎩

0, for t < 0,

1, for t ≥ 0.
(2.4)

Theorem 8 (on the existence of the Laplace image) Let f be a preimagewith the
growth index �0. Then the Laplace integral

F (p) = ∫

∞

0
f (t)e−pt d t

converges in the half-plane Re p > �0 (see Figure 2.1) absolutely and defines
Laplace image (f (t)) = F (p), which is in this half-plane analytical function.
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Figure 2.1: Heaviside function.
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Figure 2.2: Half-plane Re p > �0.

Proof: First, let’s prove the absolute convergence of the integral in the half-plane
Re p > �0. The existence of the integral ∫ �

0 f (t)e
−pt d t, for every � > 0, follows

from the fact that f (t) is on [0,∞) piecewise continuous. If p = x + iy and Re p >
�0, then |e−pt| = e−xt. From the third condition to the subject, then for each � such
that x > � > �0 it follows that

|f (t)e−pt| ≤Me�te−xt =Me(�−x)t.

So,
|

|

|

|

∫

∞

0
f (t)e−pt d t

|

|

|

|

≤ ∫

∞

0
|f (t)e−pt| d t ≤M ∫

∞

0
e(�−x)t d t =

[

Me(�−x)t

� − x

]∞

0
.

Since � − x < 0, it is limt→∞ e(�−x)t = 0 and
|

|

|

|

∫

∞

0
f (t)e−pt d t

|

|

|

|

≤ M
x − �

. (2.5)

Thuswe have proved that the Laplace integral converges absolutely in the half-plane
Re p > �0.

Now, we will show that F is analytic in the half-plane Re p > �0. Let �1 be
such that x ≥ �1 > � > �0. Then from the third condition we have the subject

|f (t)e−pt| ≤Me(�−�1)t.
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The expression of the right side of inequality does not depend on p and since �−�1 <
0, integral

∫

∞

0
Me(�−�1)t d t

converges. Thus the Laplace integral converges in the half-plane Re p ≥ �1 abso-
lutely. Moreover, it holds that

)
)p

[f (t)e−pt] = −tf (t)e−pt

and
| − tf (t)e−pt| ≤Mte(�−�1)t,

where
∫

∞

0
Mte(�−�1)t d t = M

(� − �1)2
.

That means, the integral
∫

∞

0
−tf (t)e−pt d t

converges in the half-plane Re p ≥ �1.
Overall, therefore, the Laplace integral of a function f can be integrable ac-

cording to the parameter p. That is, the function F is analytical in the half-plane
Re p ≥ �1 > �0. Since �1 was arbitrarily taken, it follows that F is analytical in the
half-plane Re p > �0. □

Corollary 1 Let (f (t)) = F (p) and x = Re p. Then limx→∞ F (p) = 0.

Proof: The statement follows from (2.5) and the proof of Theorem 8. □

Example 16 Let’s find a function f (t) such that its Laplace image equals the func-
tion√p.

Firstly, limx→∞
√

x + iy ≠ 0. That is, according to the previous Corollary 1 the
function√p cannot be a Laplace image of any function f (t).

Proof of the following statement, which gives us complete information about
the behavior of the function F in the neighborhood of∞, exceeds the scope of this
text and can be found, for example, in [7].
Theorem 9 (the first limit) Let f be a preimage with a growth rate �0 a � > �0.
Then for the Laplace image F of the function f it holds that

lim

p→ ∞

Re p ≥ �

F (p) = 0.
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2.1 Properties of the Laplace transform

In this section we will deal with the basic properties of Laplace transformation. We
will formulate a theorem, which will be the corner stone for the operator calculus,
and give a number of examples to illustrate it. These examples will give us a large
number of images of the functions that are important and used in practice. We close
the section with the second and third limit theorem and Duhamel’s formula.
Theorem 10 (rules of the operator calculus) Let fk be preimages,(fk(t)) = Fk(p)
and ck ∈ ℂ for k = 1, 2,… n. Then
I. linearity

(
n
∑

k=1
ckfk(t)) =

n
∑

k=1
ckFk(p),

II. time scaling

(f (�t)) = 1
�
F
(p
�

)

, � > 0,

III. Laplace domain shifting

(eatf (t)) = F (p − a),

IV. derivative by a parameter
)f (t, �)
)�

=
)F (p, �)
)�

, kde (f (t, �)) = F (p, �),

V. time shifting for every � > 0 it holds that

(f (t − �)�(t − �)) = e−�pF (p),

VI. time domain derivative

(f (n)(t)) = pnF (p) − pn−1f (0+) −⋯ − f (n−1)(0+),

where f and its derivatives up to the order n − 1 are continuous and f (i)(0+) =
limt→0+ f

(i)(t),
VII. Laplace domain derivative

(−tf (t)) = F ′(p),
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VIII. time domain integration


(

∫

t

0
f (�) d �

)

=
F (p)
p
,

IX. Laplace domain integration


(

f (t)
t

)

= ∫

∞

p
F (z) d z = lim

Re q→∞∫

q

p
F (z) d z,

where f (t)∕t is a preimage with a growth rate �0, ∫
∞
p F (z) d z exists, and graph of

the integrating curve∫ ∞
p F (z) d z is a subset of Re p > �0.

Proof:
I. linearity

From the linearity of the integral we have

(
n
∑

k=1
ckfk(t)) = ∫

∞

0

( n
∑

k=1
ckfk(t)

)

e−pt d t =

=
n
∑

k=1
ck ∫

∞

0
fk(t)e−pt d t =

n
∑

k=1
ckFk(p),

where ∫ ∞
0 fk(t)e−pt d t = Fk(p). Note that the integral

∫

∞

0

( n
∑

k=1
ckfk(t)

)

e−pt d t

converges in half-planeRe p > �0 where �0 = maxi=1,2,…n{�i0} and �i0 is the growthindex fi for every i.
II. time scaling

By (2.2) we have
(f (�t)) = ∫

∞

0
f (�t)e−pt d t.

Let’s substitute on the right side u = �t, (that is d t = 1∕� d u), then

(f (�t)) = 1
� ∫

∞

0
f (u)e−pu∕� d u = 1

�
F
(p
�

)

.

Obviously, if �0 is a growth index of f depending on t, then ��0 is a growth index
of f depending on u.
III. Laplace domain shifting

By (2.2) we have

(eatf (t)) = ∫

∞

0
eatf (t)e−pt d t = ∫

∞

0
f (t)e−(p−a)t d t = F (p − a),
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where ∫ ∞
0 f (t)e−(p−a)t d t converges to Re(p − a) > �0, �0 is a growth index of f .

IV. derivative by a parameter
The proof of this part goes beyond the complexity of this text, and can be found

in [7].
V. time shifting

By (2.2) we have

(f (t − �)�(t − �)) = ∫

∞

0
f (t − �)�(t − �)e−pt d t.

Moreover,f (t − �)�(t − �) = 0 for every t ∈ (0, �), so

(f (t − �)�(t − �)) = ∫

∞

�
f (t − �)�(t − �)e−pt d t.

If we introduce substitutiont − � = u, then we get

(f (t − �)�(t − �)) = ∫

∞

0
f (u)�(u)e−p(u+�) d u = e−p� ∫

∞

0
f (u)e−pu d u,

consequently,

(f (t − �)�(t − �)) = e−p� ∫

∞

0
f (t)e−pt d t = e−p�F (p).

VI. time domain derivative
Firstly, let’s prove the case for i = 1, i.e.

(f ′(t)) = pF (p) − f (0+).

By (2.2) we have
(f ′(t)) = ∫

∞

0
f ′(t)e−pt d t,

for Re p > �0. We note that if �0 is the growth index of the function f ′, then it is
also the growth index of f . We now calculate the integral on the right hand using
the method of integration by parts, i.e. for t ∈ (0,∞) putting

u(t) = f (t), v(t) = e−pt,
u′(t) = f ′(t), v′(t) = −pe−pt.

Then
(f ′(t)) = [f (t)e−pt]∞0 + p∫

∞

0
f (t)e−pt d t. (2.6)

Since |f (t)| ≤Me�t (� > �0) for every p such that Re p > � > �0 then it holds that
|f (t)e−pt| ≤Me(�−Re p)t.
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Moreover limt→∞Me(�−Re p)t = 0 and
lim
t→∞

f (t)e−pt = 0. (2.7)
If we substitute (2.7) into (2.6) we get

(f ′(t)) = pF (p) − f (0+).

For arbitrary n the proof can be done by mathematical induction.
VII. Laplace domain derivative

From the proof of Theorem 8 it follows that

∫

∞

0
f (t)e−pt d t

and
∫

∞

0
−tf (t)e−pt d t

and they are uniformly convergent in the half-plane Re p ≥ � > �0, where �0
is growth index f . The Laplace integral of the function f can be differentiated
according to the parameter p, so, if

(f (t)) = ∫

∞

0
f (t)e−pt d t = F (p),

then
F ′(p) = ∫

∞

0

)
)p

(f (t)e−pt) d t = ∫

∞

0
−tf (t)e−pt d t.

Finally, by (2.2) we have
(−tf (t)) = F ′(p).

VIII. time domain integration
Denote

(g(t)) = 
(

∫

t

0
f (�) d �

)

= G(p).

Apparently it is true that
g′(t) = f (t), g(0) = 0.

It follows from the property of deriving an object that
(g′(t)) = pG(p) − g(0+).

Hence,
(f (t)) = pG(p).

Consequently,
G(p) =

F (p)
p
.
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IX. Laplace domain integration
Let (f (t)∕t) = G(p). Then by Theorem 8 the function G is analytical in the

half-plane Re p > �0. Since

|G(p)| ≤ ∫

∞

0

|

|

|

|

f (t)
t
e−pt

|

|

|

|

d t ≤M ∫

∞

0
e−(�−�0)t d t = M

� − �0
,

whereM is a positive constant and Re p = � > �0, we have
lim
�→∞

|G(p)| = 0. (2.8)
From the property of image derivation we have

(−f (t)) = G′(p)

and
F (p) = −G′(p).

Then for integrals of functions F a −G′ we have

G(p) − G(q) = ∫

q

p
F (z) d z,

here we integrate along the curve with endpoints p and q fulfilling the condition
Re q > Re p > �0.

Now just go to the limit in the previous formula Re q = � → ∞; we apply (2.8)
and get

G(p) = ∫

∞

p
F (z) d z.

□

Examples 17 to 24 demonstrate how to use properties of Theorem 10.
Example 17 Find the Laplace image of a function f (t) = sin(!t).

According to Euler’s formulae, it holds that

sin(!t) = ei!t − e−i!t
2i

.

If we put in Exercise 15 parameter a = ±i! and apply I. from Theorem 10, then for
Re p > Re(±i!) = | Im!| we get

(sin(!t)) = 1
2i

(

1
p − i!

− 1
p + i!

)

= !
p2 + !2

.

Example 18 Find the Laplace image of a function f (t) = eat sin(!t). We will use
the result of Example 17 for the calculation and property III. from Theorem 10. So,
for Re p > Re a + | Im!| we have

(eat sin(!t)) = !
(p − a)2 + !2

.
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Example 19 Find the Laplace image of a function f (t) = tneat. From Exercise 15
we know that

(eat) = 1
p − a

.

Let us now use property IV. from Theorem 10 and derive the left and right sides
according to the parameter a

(teat) = 1
(p − a)2

.

The next derivatives take the form
(t2eat) = 2

(p − a)3
,

(t3eat) = 3!
(p − a)4

,

⋮

(tneat) = n!
(p − a)n+1

.

Example 20 Find the Laplace image of a function f (t) = �(t − �). Note that the
function f is a Heaviside function shifted by �, hence

�(t − �) =

⎧

⎪

⎨

⎪

⎩

0, for t < �,

1, for t ≥ �.

From Example 14 we know that (�(t)) = 1∕p. Now, from property V. of Theo-
rem 10 it follows that

(�(t − �)) = e−�p

p
.

Example 21 Find the Laplace image of a function f (t) = sin(!t − ')�(!t − ')
where ' > 0 and ! > 0. From property II. from Theorem 10 it follows that

(sin(!t − ')�(!t − ')) = 1
!
F
( p
!

)

,

where (sin(t − ')�(t − ')) = F (p). From Example 17 we know that
(sin(t)) = 1

p2 + 1
and from property V. of Theorem 10 we get

F (p) = (sin(t − ')�(t − ')) = 1
p2 + 1

e−'p.

Consequently,
(sin(!t − ')�(!t − ')) = 1

!
1

(p∕!)2 + 1
e−'p∕! = !e−'p∕!

p2 + !2
.



2.1. PROPERTIES OF THE LAPLACE TRANSFORM 59

Example 22 Find the Laplace image of a function f (t) = sin3(t). Firstly, denote
(sin3(t)) = F (p). Next

(sin3(t))′ = 3 sin2(t) cos(t)

and
(sin3(t))′′ = 6 sin(t) cos2(t) − 3 sin3(t) = 6 sin(t) − 9 sin3(t),

then by Example 17 we have

((sin3(t))′′) = 6
p2 + 1

− 9(sin3(t)) = 6
p2 + 1

− 9F (p). (2.9)

Moreover,
(sin3(t))|t=0+ = (sin3(t))′|t=0+ = 0

and by property VI. from Theorem 10 we have
(sin3(t))′′) = p2F (p) − p ⋅ 0 − 0 = p2F (p). (2.10)

Let’s now compare (2.9) and (2.10); we get
6

p2 + 1
− 9F (p) = p2F (p),

so
F (p) = 6

(p2 + 1)(p2 + 9)
.

Example 23 Find the Laplace image of a function f (t) = tn.
From Example 14 we know that

(�(t)) = 1
p
.

Then by property VIII. from Theorem 10 we get

(t) = 
(

∫

t

0
1 d �

)

= 1
p2
,


(

t2

2

)

= 
(

∫

t

0
� d �

)

= 1
p3
,

⋮


( tn

n!

)

= 
(

∫

t

0

�n−1

(n − 1)!
d �

)

= 1
pn+1

.

Hence,
 (tn) = n!

pn+1
.
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Example 24 Find the Laplace image of a function f (t) = sin(t)∕t.
From Example 15 we know that

(sin(t)) = 1
p2 + 1

.

Then by property IX. from Theorem 10 we get


(

sin(t)
t

)

= ∫

∞

p

1
z2 + 1

d z = [arctan(z)]∞p = �
2
− arctan(p) = arccotan(p).

Theorem 11 (the second limit) Let f and f ′ be preimages and f be on the inter-
val (0,∞) continuous. If (f (t)) = F (p) and �0 is the growth index of the function
f ′, then

lim
p→∞

pF (p) = f (0+).

Proof: From property VI. of Theorem 10 it follows that
(f ′(t)) = pF (p) − f (0+).

Since f ′(t) is a preimage with the growth rate �0, then from Theorem 9 it follows
that

lim
p→∞

(pF (p) − f (0+)) = 0

in the half-plane Re p ≥ � > �0. So,
lim
p→∞

pF (p) = f (0+).

□

Theorem 12 (the third limit) Let f and f ′ bee preimages and f be on the interval
(0,∞) continuous. If (f (t)) = F (p) and limt→∞ f (t) ≠ ∞ exists, then

lim
p→0

pF (p) = lim
t→∞

f (t).

Proof: We know that
(f ′(t)) = pF (p) − f (0+).

Then by (2.2) we have

(f ′(t)) = ∫

∞

0
f ′(t)e−pt d t = pF (p) − f (0+). (2.11)

Moreover it holds that

lim
p→0∫

∞

0
f ′(t)e−pt d t = ∫

∞

0
lim
p→0

f ′(t)e−pt d t. (2.12)
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Then from (2.11) and (2.12) it follows that

lim
p→0

(

pF (p) − f (0+)
)

= ∫

∞

0
f ′(t) d t = lim

t→∞
f (t) − f (0+).

However, we assume that it exists that limt→∞ f (t) ≠ ∞, so
lim
p→0

pF (p) = lim
t→∞

f (t).

□

Definition 6 A convolution of functions f and g is called a function ℎ defined by

ℎ(t) = ∫

∞

−∞
f (�)g(t − �) d �, t ∈ ℝ

and denoted by
ℎ = f ∗ g.

If functions f and g are preimages, then

ℎ(t) = (f ∗ g)(t) = ∫

t

0
f (�)g(t − �) d �,

which follows from the properties of preimages, i.e. f (�) = 0 for � < 0 and
g(t − �) = 0 for t < �. The proof of the following properties of convolution is
simple and we leave it to the reader.

Theorem 13 The convolution has the following properties:

1. comutativity: f ∗ g = g ∗ f ,

2. associativity: (f ∗ g) ∗ ℎ = f ∗ (g ∗ ℎ),

3. distributivity on adding f ∗ (ℎ + g) = (f ∗ ℎ) + (f ∗ g),

4. (cf ) ∗ g = f ∗ (cg) = c(f ∗ g), where c is a constant.

Example 25 Find the convolution of preimages f (t) = t and g(t) = sin(t).
Let us follow the definiton:

(f ∗ g)(t) = sin(t) ∗ t = ∫

t

0
sin(�)(t − �) d � = t − sin(t).

Note that the second equality holds due to the assumption that both functions are
preimages (that is f (�) = 0 for � < 0 and g(t − �) = 0 for t < �).
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Theorem 14 (multiplication of images) Let f and g be preimages with growth
rates �f0 and �g0 , (f (t)) = F (p) and (g(t)) = G(p). Then �0 = max{�f0 , �

g
0} is a

growth index of the function ℎ = f ∗ g. Moreover, it holds that

((f ∗ g)(t)) = F (p)G(p).

Corollary 2 (Duhamel’s formula) Let f and g be preimages,(f (t)) = F (p) and
(g(t)) = G(p). Let f ′ be a preimage and f be continuous on the interval [0,∞).
Then

pF (p)G(p) = (f (0+)g(t) + (f ′ ∗ g)(t)).

Example 26 Find the preimage of the Laplace image
1

(p2 + 1)2
.

From Example 17 we know that
(sin(t)) = 1

p2 + 1
.

Put
F (p) = G(p) = 1

p2 + 1
.

Now, use Theorem 14
1

(p2 + 1)2
= F (p)G(p) = (sin(t) ∗ sin(t)) =

= ∫

t

0
sin(�) sin(t − �) d � = 1∕2 sin(t) − 1∕2 t cos(t).

Theorem 15 Let f and g be preimages with growth rates �f0 and �g0 , �0 = max{�f0 , �
g
0},

(f (t)) = F (p) and (g(t)) = G(p). Then

(f (t)g(t)) = 1
2�i ∫

a+i∞

a−i∞
F (z)G(p − z) d z,

where p ∈ ℂ, Re p > a + �0 and �0 < a.

By a symbol ∫ a+i∞
a−i∞ we mean a limit ∫ a+i∞

a−i∞ = limb→∞ ∫ a+ib
a−ib and in the integral

∫ a+ib
a−ib we are integrating on the integration curve z = a + it, t ∈ [−b, b], where we
pick 0 < b ∈ ℝ and a ∈ ℝ such that �0 < a. The proofs of Theorems 14 and 15 we
leave to the reader, they can be found, e.g., in [6].
Example 27 By Theorem 15 find the Laplace image of the function et sin(t).

From Examples 17 and 15 we know that
(f (t)) = (sin(t)) = 1

p2 + 1
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and
(g(t)) = (et) = 1

p − 1
.

Moreover, �f0 = 0, �g0 = 1 and �0 = max{0, 1} = 1. Then by Theorem 15

(sin(t)et) = 1
2�i ∫

a+i∞

a−i∞

1
z2 + 1

1
(p − z) − 1

d z,

where a > 1 and Re p > a+1. Then by a basic theorem on residua the integral can
be computed

(sin(t)et) = −Res
[

1
z2 + 1

1
(p − z) − 1

]

z=p−1
= 1

(p − 1)2 + 1
.

2.2 Inverse Laplace transform

In the previous section, we dealt with the calculation of the Laplace image F to the
given preimage f . We defined the Laplace transform as a representation

 ∶ P → O,

which assigns an preimage of the set P to its image of the setO. Let us now examine
the inverse operation, the inverse representation inverse Laplace transform

−1 ∶ O → P ,

which assigns a given complex function to the complex variable F preimage f , for
which it holds that (f (t)) = F (p).

To do this, you need to answer questions about:
Q1: the existence of inverse Laplace transform,
Q2: how to define the domain of −1.

The following theorem gives a partial answer to the question Q1:
Theorem 16 (Lerch’s) Let (f (t)) = F (p) and (g(t)) = F (p). Then f = g up to
isolated points, in which at least one of the functions is not continuous.

Note that the condition on isolated points from Lerch’s theorem is not limiting,
in practice we do not care about the values in isolated points.

To solve the question Q2, it is obvious that F must satisfy the necessary condi-
tions of Laplace’s image F of the object f . That is

1. there is �0 ∈ ℝ such that F is in the half-plane Re p > �0 analytic,
2. in the arbitrary half-plane Re p ≥ � > �0 it holds that limp→∞ F (p) = 0.
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Theorem 17 Let F be analytic in ℂ up to finitely many singular points ai ∈ ℂ
(i = 1, 2,… n). Let for every a ∈ ℝ such that for a > maxi=1,2,…,n{|ai|} it holds
that:

1. there is a sequence of circle lines ki with a center at 0 and radiiRi, for which
it holds that |a| < R1 <⋯ < Rn <… a limn→∞Rn = ∞ such that

lim
n→∞

max
p∈kn

{|F (p)|} = 0,

2. the integral ∫ a+i∞
a−i∞ |F (p)| d p has a finite value.

Then on ℝ there is the continuous preimage f that is given by

f (t) =

⎧

⎪

⎨

⎪

⎩

∑n
i=1 Res[F (p)e

pt]p=ai for t > 0,

0 for t ≤ 0.
(2.13)

Remark 5 Note that the residues in formula (2.13) are calculated in the singulari-
ties of the function F (p)ept. The functions ept are analytic in ℂ, therefore, they are
crucial for calculating the residua function F (p).

If, for example, ai is a simple pole, then according to the rules for counting
residues

Res[F (p)ept]p=ai = eait Res[F (p)]p=ai .

If ai is a pole of the second order we get

Res[F (p)ept]p=ai = lim
p→ai

d
d p

[(p − ai)2F (p)ept] =

= Res[F (p)]p=aie
ait + lim

p→ai
[(p − ai)2F (p)]teait.

We notice that images play a significant role, F , which has a rational form,
see Examples 17 - 24. Let us now consider the inverse Laplace transform of the
functions

F (p) =
P (p)
Q(p)

, (2.14)
where P (p) and Q(p) are polynomials over a complex field.

Theorem 18 The function (2.14) is a Laplace image of some preimage if and only
if deg(P (p)) < deg(Q(p)).

Proof: Firstly, in the half-plane Re p ≤ � it holds that

lim
p→∞

F (p) = lim
p→∞

P (p)
Q(p)

= 0.
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This only happens in cases where deg(P (p)) < deg(Q(p)) (deg denotes degree of
the polynomial).

On the other hand, let deg(P (p)) < deg(Q(p)). This means that there is de-
composition of the right hand (2.14) on partial fractions over the field of complex
numbers

F (p) =
P (p)
Q(p)

=
m
∑

k=1

rk
∑

l=1

Pkl
(p − ak)l

, (2.15)

where Pkl ∈ ℂ, rk is a multiple of the root ak of polynomial Q(p) and m is the
number of different zero points of the polynomial Q(p).

From Example 19 we know that


(

tl−1

(l − 1)!
eakt

)

= 1
(p − ak)l

.

Due to the linearity of the Laplace transform and (2.15) we have for t > 0

F (p) =
P (p)
Q(p)

= 

( m
∑

k=1

rk
∑

l=1

Pkltl−1

(l − 1)!
eakt

)

.

Then from Theorem 16 it follows that

f (t) =

⎧

⎪

⎨

⎪

⎩

∑m
k=1

∑rk
l=1

Pkltl−1

(l−1)! e
akt for t > 0,

0 for t < 0.

□

From the proof of the foregoing theorem it follows that

Theorem 19 (the second theorem on decomposition) The Laplace imageF of the
function f is a rational function if and only if if for t > 0 we can describe the for-
mula f as a linear combination of functions in the form tneat, where n ∈ ℕ0 and
a ∈ ℂ.

Example 28 Find out the preimage of the function F (p) = p + 1
p2 − p

.
To do this we use the notes in Remark 5. The function F has two single poles,

0 and 1. So, we have
Res[F (p)ept]p=0 = −1, Res[F (p)ept]p=1 = 2et.

Then by Equation (2.13) of Theorem 17 we have for t > 0

f (t) = −1 + 2et.
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Example 29 Find out the preimage of the functionF (p) = 1
(p + 1)(p − 1)3(p2 + 1)

.
The computations will be done analogously to the previous example, hence

using Remark 5. The function F has three single poles −1, ±i and one pole of the
third order. Hence,

Res[F (p)ept]p=−1 = −1∕16 e−t, Res[F (p)ept]p=i = 1∕8 eit

Res[F (p)ept]p=−i = −1∕8 e−it, Res[F (p)ept]p=1 =
2t2 − 6t + 5

2
et.

Then by Equation (2.13) Theorem 17 we have for t > 0

f (t) = −1∕16 e−t + 1∕8 eit − 1∕8 e−it + 2t2 − 6t + 5
2

et.

Table 2.1: Table of Laplace transforms of common functions

Time domain Laplace domain Region of convergence

1 1
p

Re(p) > 0

eat 1
p − a

Re(p) > Re(a)

sin(!t) !
p2 + !2

Re(p) > 0

cos(!t)
p

p2 + !2
Re(p) > 0

sinh(!t) !
p2 − !2

Re(p) > |!|

cosh(!t)
p

p2 − !2
Re(p) > |!|

eat sin(!t) !
(p − a)2 + !2

Re(p) > a



2.3. APPLICATIONS OF THE LAPLACE TRANSFORM 67

Table 2.1: Table of Laplace transforms of common functions

Time domain Laplace domain Region of convergence

eat cos(!t)
p − a

(p − a)2 + !2
Re(p) > a

tn, n ∈ ℕ n!
pn+1

Re(p) > 0

tneat, n ∈ ℕ n!
(p − a)n+1

Re(p) > Re(a)

t sin(!t)
2p!

(p2 + !2)2
Re(p) > 0

t cos(!t)
p2 − !2

(p2 + !2)2
Re(p) > 0

2.3 Applications of the Laplace transform

Solution of ordinary differential equations

Consider the Cauchy problem for a linear differential equation with constant
coefficients ai (i = 1, 2,… , n) and the initial conditions

x(n) + a1x(n−1) +⋯ + a(n−1)x′ + anx = f, (2.16)
x(t0) = x0, x

′(t0) = x′0,… , x(n−1)(t0) = x(n−1)0 . (2.17)
Next, suppose the right side of the equation f and a solution x including their

derivatives up to the order of n are preimages. Under these conditions, we can solve
the given problem by the Laplace transform.

Without loss to generality, we can assume that the initial conditions are given
in point t0 = 0, hence

x(0+) = x0, x
′(0+) = x′0,… , x(n−1)(0+) = x(n−1)0 . (2.18)
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Denote (x(t)) = X(p) and (f (t)) = F (p). Then the equation (2.16) can be
written as (Theorem 10)

[pnX(p) − pn−1x0 − pn−2x′0⋯ − x(n−1)0 ] +

a1[pn−1X(p) − pn−2x0 − pn−3x′0⋯ − x(n−2)0 ] +

⋮

a(n−1)[pX(p) − x0] +

anX(p) = F (p).

(2.19)

After the adjustments we get

X(p) =
F (p) − P (p)

Q(p)
, (2.20)

where Q(p) = pn + a1pn−1 + ⋯ + an−1p + an is a characteristic polynomial of
Equation (2.16) and the degree of the polynomial P is at most (n − 1).

Now simply find for the functionX its preimage x. According to the uniqueness
of such an inverse Laplace transform, such an object is then (Theorem 16) a solution
of differential equation (2.16) on the interval (0,∞).
Remark 6

1. The procedure described above is called an operator method.
2. The Equation (2.19) is called an operator.
3. The advantage of the operator method is the simplicity of the solution oper-

ations.
4. With the solution we get a straight particular solution (if the initial conditions

are not known, we get a general solution).
Example 30 Let us solve the differential equation

⎧

⎪

⎨

⎪

⎩

x′′ − 2x′ + x = 4,

x(0+) = 0, x′(0+) = 1.
(2.21)

We will proceed with the operator method described above. So, put (x(t)) =
X(p), then

(x′(t)) = pX(p),

(x′′(t)) = p2X(p) − 1.



2.3. APPLICATIONS OF THE LAPLACE TRANSFORM 69

Next (4) = 4∕p, Re p > 0. The corresponding operator equation has the form
p2X(p) − 1 − 2pX(p) +X(p) = 4∕p.

We express X(p)

X(p) =
p + 4

p(p − 1)2
, Re p > 1.

After decomposition into partial fractions we get

X(p) = 4
p
− 4
p − 1

+ 5
(p − 1)2

.

The inverse Laplace transform gives for t ≥ 0 the solution
x(t) = 4 − 4et + 5tet.

In the procedure described above, decomposition into partial fractions can be
avoided. Notice that the function

X(p) =
p + 4

p(p − 1)2

has at the point 0 a single pole and at the point 1 a pole of the second order, and uses
the algorithm explained in Chapter 2.2 (see Theorem 17 and Example 29). Then
according to the known formulas for calculating residues, we get

Res[X(p)ept]p=0 = 4,

Res[X(p)ept]p=1 = 5tet − 4et.

Based on the inverse Laplace transform, we get the solution
x(t) = 4 − 4et + 5tet.

Example 31 Let us solve the differential equation
⎧

⎪

⎨

⎪

⎩

x′′ + 4x = 2 cos(2t),

x(0+) = 0, x′(0+) = 4.
(2.22)

We will proceed with the operator method described above. So, put (x(t)) =
X(p), then

(x′(t)) = pX(p),

(x′′(t)) = p2X(p) − 4.

Next(2 cos(2t)) = 2p∕(p2+4). The corresponding operator equation has the form

(p2 + 4)X(p) − 4 =
2p

p2 + 4
.
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We express X(p):
X(p) = 4

p2 + 4
+

2p
(p2 + 4)2

.

The inverse Laplace transform gives the solution
x(t) = 1∕2 (4 + t) sin(2t).

Example 32 (discontinuous right-hand side I) Let us solve the differential equa-
tion

⎧

⎪

⎨

⎪

⎩

x′′ + x = f (t),

x(0+) = 1, x′(0+) = −1,
(2.23)

where

f (t) =

⎧

⎪

⎨

⎪

⎩

1, for 0 ≤ t ≤ 1

0, for t > 1.
(2.24)

Let’s proceed similarly to the previous examples. Put (x(t)) = X(p), then
(x′(t)) = pX(p) − 1,

(x′′(t)) = p2X(p) − p + 1.

Next (f (t)) can be calculated directly from definition (2.2):

(f (t)) = ∫

∞

0
f (t)e−pt d t = ∫

1

0
e−pt d t = 1

p
(1 − e−p). (2.25)

Or, notice that f (t) = �(t) − �(t − 1) and by property V. of Theorem 10 again we
get (2.25). The corresponding operator equation has the form

(p2 + 1)X(p) − p + 1 = 1
p
(1 − e−p).

We express X(p) after decomposition to partial fractions

X(p) = 1
p
− 1

(p2 + 1)
−
(

1
p
−

p
p2 + 1

)

e−p.

The inverse Laplace transform gives the solution
x(t) = (1 − sin(t))�(t) − (1 − cos(t))�(t − 1)

or without using �(t)

x(t) =

⎧

⎪

⎨

⎪

⎩

1 − sin(t), t ∈ [0, 1),

cos(t) − sin(t), t ≥ 1.
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Example 33 (discontinuous right-hand side II)Let us solve the differential equa-
tion

⎧

⎪

⎨

⎪

⎩

x′′ + x = f (t),

x(0+) = 1, x′(0+) = 0,
(2.26)

where

f (t) =

⎧

⎪

⎨

⎪

⎩

1, for 0 ≤ t ≤ 3

2, for t > 3.
(2.27)

Let’s proceed analogously to the previous example. Put (x(t)) = X(p), then
(x′′(t)) = p2X(p) − p.

Next, it is enough to observe that f (t) = �(t) + �(t − 3), and by property V. of
Theorem 10 we get

(f (t)) = 1
p
(1 + e−3p). (2.28)

The corresponding operator equation has the form

(p2X(p) − p) +X(p) = 1
p
(1 + e−3p).

We express X(p):

X(p) =
p

(p2 + 1)
+ 1
p(p2 + 1)

(1 + e−3p).

The inverse Laplace transform gives the solution
x(t) = 1 + (1 − cos(t − 3))�(t − 3)

or without using �(t)

x(t) =

⎧

⎪

⎨

⎪

⎩

1, t ∈ [0, 3),

2 − cos(t − 3), t ≥ 3.

Example 34 (shifted initial conditions) Let us solve the differential equation
⎧

⎪

⎨

⎪

⎩

x′′ + 3x′ + 2x = et,

x(1+) = 1, x′(1+) = 1.
(2.29)
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Because the initial conditions are not given in point t0 = 0, we have to do the
substitution t = � + 1 a x(t) = x(� + 1) = y(�). Then the equation takes the form

⎧

⎪

⎨

⎪

⎩

y′′ + 3y′ + 2y = e�+1,

y(0+) = 1, y′(0+) = 1.
(2.30)

Hence, put (y(t)) = Y (p), then
(y′(�)) = pY (p) − 1,

(y′′(t)) = p2Y (p) − p − 1.

Next
(e�+1) = e(e�) = e 1

p − 1
.

We express Y (p) after the decomposition to partial fractions
Y (p) =

e∕6
p − 1

+
3 − e∕2
p + 1

+
e∕3 − 2
p + 2

.

We get from the inverse Laplace transform for � ≥ 0, the solution
y(�) = e∕6 e� + (3 − e∕2) e−� + (e∕3 − 2) e−2� .

By the inverse substitution � = t− 1 and y(�) = x(t) we have for t ≥ 1 the solution
x(t) = e∕6 et−1 + (3 − e∕2) e1−t + (e∕3 − 2) e2−2t.

Example 35 Let us solve the system of differential equations
⎧

⎪

⎪

⎨

⎪

⎪

⎩

x′ − x + y = 2,

x − y′ − y = et,

x(0+) = 1, y(0+) = 1.

(2.31)

Let (x(t)) = X(p) and (y(t)) = Y (p), then (x′(t)) = pX(p) − 1 and
(y′(t)) = pY (p) − 1. The corresponding operator system has the form

⎧

⎪

⎨

⎪

⎩

(p − 1)X(p) + Y (p) =
p + 2
p

,

X(p) − (p + 1)Y (p) = −
p

p − 1
.

(2.32)

After treatment and decomposition into partial fractions
⎧

⎪

⎨

⎪

⎩

X(p) = 2
p3

+ 1
p2

+ 1
p − 1

,

Y (p) = 2
p3

− 1
p2

+ 1
p
.

(2.33)
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The inverse Laplace transform gives the solution
⎧

⎪

⎨

⎪

⎩

x(t) = t2 + t + et,

y(t) = t2 − t + 1.
(2.34)

Tasks in electrical engineering

Consider first the simple oscillation circuit shown in Figure 2.3 described by an
integral-differential equation

L
d i(t)
d t

+ Ri(t) + 1
C ∫

t

0
i(�) d � = u(t), (2.35)

where L, R, and C are the induction, resistance and capacitance constants. Next, u
is the electromotive voltage and i is the current.

Without prejudice to generality, we can assume that no current flows through
the entire circuit at the beginning. This initial condition corresponds to a switching
situation. Thus, no current a passes through the circuit i(0+) = 0. Then the last
member left parties (2.35) represents the voltage on the capacitor plates, which at
the beginning is zero.

Denote (i(t)) = I(p) and (u(t)) = U (p); the functions I(p) and U (p) are
called operator current resp. operator voltage. Then from property VI. from The-
orem 10 we have


(

d i(t)
d t

)

= pI(p),

from VIII. of Theorem 10 we have


(

∫

t

0
i(�) d �

)

=
I(p)
p
.

We rewrite the equation (2.35) into an operator form

LpI(p) + RI(p) +
I(p)
Cp

= U (p),

after adjustment
I(p) =

U (p)

Lp + R + 1
Cp

=
U (p)
Z(p)

, (2.36)

where Z(p) is the operator impedance of the circuit. Formula (2.36) is called the
operator form of Ohm’s law.

To the end, the inverse Laplace transform then from (2.36) determines the cir-
cuit current i.
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Figure 2.3: Oscillating circuit.
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Figure 2.4: Oscillating circuit.

Example 36 Find the operator impedance and operator current flowing through the
network shown in Figure 2.4.

Firstly, the following applies to operator impedances:
branch I. consists of resistance R1 and capacitance C1, and it holds that Z1 =
R1 +

1
C1p

,
branch II. consists of resistance R2 and inductance L, and it holds that Z2 =
R2 + Lp,
branch III. consists of capacitance C2, and it holds that Z3 =

1
C2p

.
Branches II and III are connected in parallel, so their resulting impedance has

the form
1
Z4

= 1
Z2

+ 1
Z3
.

Furthermore, we can consider the circuit as a series-connected operator impedance
Z1 and Z4. Hence,

Z = Z1 +Z4 = Z1 +
Z2Z3
Z2 +Z3

.

After the establishment and application of Kirchhof’s second law U (p) = E∕p, we
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outputblackboxinput - -

Figure 2.5: Control system as a black box.

get

I(p) =
U (p)
Z(p)

= E
p

R2 + Lp +
1
C2p

(

R1 +
1
C1p

)(

R2 + Lp +
1
C2p

)

+ (R2 + Lp)
1
C2p

,

here in the considered oscillating circuit we consider the connected constant elec-
tromotive voltage u = E.

Tasks from regulatory systems

The control system can be imagined as a black box (see Figure 2.5) and its
properties can be described by the reactions of the outputs to the input signals.
The dynamic properties of control systems are determined by the relationships be-
tween output and input quantities. We will describe the dynamic properties of such
systems in time dependence using linear differential equations with constant coef-
ficients

n
∑

i=0
aiy

(i)(t) =
m
∑

j=0
bju

(j)(t),

where ai, bj ∈ ℝ a m ≤ n is a condition of system feasibility.
The time shift of the signal can be described as a traffic delay

y(t) = u(t − Td).

The transfer function of a given system is determined as the ratio of the image
of the output quantity to the image of the input quantity with respect to the Laplace
transform under the assumption of zero initial conditions.

y(n−1)(0) = y(n−2)(0) =⋯ = y′(0) = y(0) = 0.

The transfer function then has the form of a rational polynomial function

F (p) =
P (p)
Q(p)

=
bm(p − n1)(p − n2)… (p − nm)
an(p − k1)(p − k2)… (p − kn)

,

where ki are the transmission poles and nj are transmission zeros.
We use the impulse characteristic to describe the time dependence of a given

control system, which can be obtained in response to the input signal in the form
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f (t)

t
0

0, 7

-

6

Figure 2.6: Impulse characteristics of the system.

of a Dirac pulse under zero initial conditions. The impulse characteristic f (t) is
obtained after the inverse Laplace transform

−1(F (p)) = f (t).

Example 37 Find the impulse response of the transfer function

F (p) =
5p + 3

p3 + 6p2 + 11p + 6
.

We decompose the given function into partial fractions

F (p) = −1
p + 1

+ 7
p + 2

− 6
p + 3

.

The inverse Laplace transform gives the impulse response (see Figure 2.6) for t > 0

f (t) = −e−t + e−2t − 6e−3t.
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