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Preface

This textbook provides an introduction to the theory of discrete dynamical
systems and it is written, not only, for undergraduate students of applied
mathematics and engineering. This text is based on talks that I presented
at the Mathematical Institute of the Silesian University at Opava in years
2005–2011, Palacký University of Olomouc, VŠB – Technical University of
Ostrava in years 2011–2022, and textbook for students [25].

Goals of this text

The main aim of this text is to present elementary and basic notions of
modern theory of dynamical systems and to describe their properties. Goals
of chapters are the following:

1 Dynamical modeling: We introduce fundamental models, i.e. popula-
tion growth in one and two dimensions, like (im)migration, predator prey or
overlapping generation systems. This chapter was mainly motivated by the
book written by F.R. Marotto [30].

2 Elementary dynamics: We focus on preparatory behavior of discrete
dynamical systems. That is, we define a dynamical system and describe
essential concepts that will be used in the following text. This chapter was
mainly motivated by the book written by R.L. Devaney [12].

3 Chaos: This chapter is devoted to the notion of chaos. Here we define a
chaos in the sense of Devaney through transitivity, periodically dense prop-
erty and sensitive dependence on initial conditions. We also define a chaos in
the sense of Li and Yorke and we compare both this notions of chaos. This
chapter was mainly motivated by the book written by S.N. Elaydi [14].

4 Fractals: Here we derive a definition of a fractal. We attain definitions of
topological, box, similarity and fractal dimension. We also discuss iterated
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function systems yielding the Collage theorem. All notions and properties
are demonstrated on a set of classical examples like the Koch curve and
snowflake, Sierpinski gasket, Cantor set and Barnsley’s fern. This chapter
was mainly motivated by the book written by S.N. Elaydi [14].

5 Topological dynamics: Finally, we give a more general perspective on
behaviour introduced in the previous chapters. These basic notions are con-
structed on more general spaces. We will observe further properties of dis-
crete dynamical systems. This chapter was mainly motivated by the books
written by R.L. Devaney [12] and P. Walters [40].

6 Simulations of dynamical properties: In this chapter there are given
and explained source codes in Matlab that produces pictures through the
text. We mainly focus on algorithms that will be used for standard dy-
namical systems (construction of trajectories, cobweb diagrams) and also for
algorithms producing fractals (Koch curve and snowflake, Sierpinski gasket
and Barnsley’s fern). This chapter was mainly motivated by the book written
by S. Lynch [27].

Prerequisites

For successful reading of this text linear high school algebra and multi vari-
able calculus are required.

Apologies and ackowledgements

The author apologies himself for errors that might appear in the text, hence
he will be appreciative for any comments or remarks that improves the text.

The author thanks to his students for pointing out mistakes in previous
versions of this text (namely, Lukáš Kapera).

The author is also grateful for toleration of his wife during the time period
of writing the text, without her responsiveness would this text never exist.

prof. RNDr. Marek Lampart, Ph.D.
Ostrava, Czech Republic

November 23, 2023

typeset by LATEX 2ε



Chapter 1

Dynamical modeling

The main tool used across many disciplines including epidemiology, ecology,
economy, chemistry and social sciences is a difference equation.

If we denote by xn the number of species in the n-th generation and the
real model depends only on predecessor under some rule signed by f then we
obtain first order difference eguation

xn`1 “ fpxnq. (1.1)

For examples see the following Examples 1 and 2.
If the model depends not only on predecessor but many preceding gener-

ations than the n-th order difference eguation can be defined by

xn`1 “ fpxn, xn´1, . . . , x2, x1q. (1.2)

Samples of such phenomena are given in Examples 4, 5 and also by overlap-
ping generation models 3.

1.1 Population growth models

1.1.1 One dimensional cases

We start our modeling by classical models coming from ecology, that are
population models. We begin with a simple linear case and obtain one differ-
ence equation depending on time under iteration process. Later we discuss
nonlinear cases and finally we construct predator prey models as a system of
difference equations.
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8 CHAPTER 1. DYNAMICAL MODELING

For the first model we have to take into account a growth process. That
is, the number of births during any generation is proportional to that genera-
tion’s population size. We have to assume that the number of deaths during
each generation is also proportional to the generation’s population size. The
constant reflecting the birth is called the birth rate and denoted b and ob-
viously 0 ď b. Analogously the constant reflecting death is called the death
rate and denoted d and it is easy to see that 0 ď d ď 1 since no more than
100% of a population can die.

Now, we can develop a linear population model as follows: Let us denote
by Pn the population of the n-th generation. The number of births during
that generation will be bPn and the number of deaths dPn. So, the number
Pn`1 of next pn` 1q-th generation will be determined by adding the number
of births and subtracting the number of death to Pn:

Pn`1 “ Pn ` bPn ´ dPn “ p1` b´ dqPn.

For simplicity we absorb parameters of birth and death into one parameter
r “ 1` b´ d called growth rate and we get

Pn`1 “ rPn. (1.3)

It seems that the above deduced model is seldom the case in the natural
world. If members of the same class as that of the population under con-
sideration, but who originated elsewhere, may regularly join the set being
modeled, thereby contributing to an increase in its size — a immigration
occur. In the second case a fixed number of the group may be regularly
removed — a migration or harvest. We deduce

Pn`1 “ rPn ` k (1.4)

where the constant k stands for the immigration if it is positive and for
migration (harvest) if it is negative.

The following theorem is a useful tool for calculating a value of n-th
generation without knowing the value of its predecessor, the proof is straight
forward and is left to the reader.

Theorem 1 The solution of the (1.3) model is given by

Pn`1 “ rpn`1qP0
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0 1 2 3 4

P0 “ 1ˆ 108 P1 “ 2ˆ 108 P2 “ 4ˆ 108 P3 “ 8ˆ 108 P4 “ 16ˆ 108

Table 1.1: Table of values of the (1.5) model for the first six generations.

and the solution of the (1.4) model is given by

Pn`1 “ rpn`1qP0 ` k ¨
n
ÿ

i“0

ri.

Example 1 Let us study the growth of the bacterial cultures in a yogurt.
This is a basic example of Microbiology (see, e.g. [31]). It is known that
each cell splits into two new cells. In this case, the birth rate is b “ 2, the
death rate is d “ 1 and the growth rate equals to r “ 2. So, we get the linear
population model

Pn`1 “ 2Pn. (1.5)

One can observe that

P1 “ 2P0,

P2 “ 2P1 “ 22P0,

and it can be inductively proved that for any n P N

Pn`1 “ 2Pn “ 2n`1P0.

The standard rate of alive microorganisms in 1 g is 100ˆ106 (e.g. Bifidobac-
terium or Lactobacillus acidophillus 1). If we are given 1 g at the beginning
of the test, P0 “ 100 ˆ 106, then we can easily evaluate values of this model
(1.5) for the first six generations with unite volume step, see Table 1.1.

Example 2 Let us calculate the time (number of unite volume steps) needed
for getting 100 g of alive microorganisms where 1 g is given at the beginning.
For this purpose we use the model determined in the previous example.

To solve this problem we have to find n, such that

Pn “ 100ˆ 100ˆ 106
“ 1010.

1The author would like to thank to Josef Hak M.D. for the helpful discussions on the
topic of the Microbiology.
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We know that P0 “ 108 and Pn “ 2n P0 “ 2n ˆ 108 that is

2n ˆ 108
“ 1010,

2n “ 102,

log2 2n “ log2 102,

n “ 2 log2 10 « 6.6439.

Consequently, to get 1010 alive microorganisms we need approximately 7 unit
value steps.

The foregoing example illustrates that linear models are not good for the
simulation of phenomenon in the global case since:

1. the colony is growing if the growth rate is greater then one (so called
exponential growth),

2. the colony is dying off if the growth rate is greater than zero and smaller
than one (so called exponential decay).

We have to improve the linear model by other effects to get non-linear models.
Non-linear models provide better explanation than linear ones for complex
phenomena we sometimes observe in the world.

Now, let us improve our linear population model (1.3) by the principle
of the density dependence. That is, the larger the population, the smaller
its growth rate is likely to be. As it was pointed out, linear models do not
take density dependence into account. One possibility how to construct a
nonlinear model from linear one is to modify a growth rate r in (1.3). Let
us replace r by a decreasing function of the population size Pn. We get a
non-linear model

Pn`1 “ RpPnqPn (1.6)

here, RpPnq represents the growth rate function. The simplest type of RpPnq
is a linear function

RpPnq “ r

ˆ

1´
Pn
C

˙

(1.7)

where r is the growth rate and C is a constant representing the carrying ca-
pacity, i.e., the largest population the environment can sustain. Substituting
(1.7) into (1.6) we get

Pn`1 “ r

ˆ

1´
Pn
C

˙

Pn “ µPnpC ´ Pnq (1.8)
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so called logistic equation (see section 2.3 The quadratic family).
Another possibility how to implement the growth rate function by density

dependence with fewer restrictions is to put

RpPnq “ re´Pn{N (1.9)

where r stands for growth rate and N is the population level that produces
the maximum population. Whence we get

Pn`1 “ rPne
´Pn{N . (1.10)

1.1.2 Two dimensional cases

In this section we introduce predator prey models, that is the population
growth models of two species in which one, the prey, provides sustenance
for the second one, the predator. If there is no dependence between the
predators and preys, we can model them separately by

Pn`1 “ r1Pn,

Qn`1 “ r2Qn.

(1.11)

Nevertheless, the predator consumes the prey. So the next generation of the
prey population Pn`1 will decline proportionally to the size of the present
predator population Qn. Analogously, the next generation of the predator
population Qn`1 will increase proportionally to the size of the present prey
population Pn. Combining this two facts we get the linear predator prey
model

Pn`1 “ r1Pn ´ s1Qn,

Qn`1 “ s2Pn ` r2Qn.

(1.12)

The model (1.12) could be improved by migration or immigration at a
constant level. In this case we get

Pn`1 “ r1Pn ´ s1Qn ` k1,

Qn`1 “ s2Pn ` r2Qn ` k2.

(1.13)
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where r1, r2, s1 and s2 are non-negative predator prey constants, k1 and k2

are non-negative migration or immigration constants. Let us note, that the
model (1.11) is a special case of (1.12), and the model (1.12) is a special case
of (1.13).

Example 3 (Overlapping generations systems) Let us suppose that the
n-th generation of a species depends on two consecutive generations simulta-
neously. That is, Pn`1 is dependent on both Pn and Pn´1, while using linear
dependence we get

Pn`1 “ rPn ` sPn´1 (1.14)

As a real example of the (1.14) one can use an asexual reproduction of haploid
organisms on a multiplicative fitness landscape (see [32]).

The model (1.14) is of the second order since the difference between the
highest and the lowest subscripts is 2 “ pn`1q´pn´1q. Let us put Qn “ Pn´1

so Qn`1 “ Pn and putting it into (1.14) we get a linear system

Pn`1 “ rPn ` sQn,

Qn`1 “ Pn.

(1.15)

It is also worth noticing that the overlapping generation systems are used
for economical pension schemes (see, e.g. [18], [19]).

The linear model (1.12) does not reflect the fact that the next generation
of prey is increasing to a degree that is directly proportional to the number
of contacts between predator and prey during the previous time step, and
that the next predator population is decreased by a similar quantity. Hence,
s1PnQn should be subtracted from the next prey population and r2PnQn

should be added into next predator population. Consequently, we get a non-
linear predator prey model

Pn`1 “ r1Pn ´ s1PnQn,

Qn`1 “ s2Pn ` r2PnQn.

(1.16)
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n 0 1 2 3 4 5 6 7 8

Pn 1.9 2.09 2.299 2.0484 1.4783 1.3122 1.9032 3.4157 1.8517

Qn 1.1 1.1 0.891 0.7217 0.8876 1.4503 1.7947 0.5421 0.0228

Table 1.2: Table of values of the 1.17 model for the first eight generations.

Example 4 The following model was introduced in [2] and developed later
in [5] and [18]. The model is defined as follows:

Pn`1 “ Pnp4´ Pn ´Qnq,

Qn`1 “ PnQn.

(1.17)

Let us assume that we have P0 “ 1.1 units of predators and Q0 “ 1.9 unites
of preys at the beginning. Then the values of the next generations could be
calculated, see Table 1.2. The values of the species are in the Figure 1.1.
So called time series graph is two dimensional coordinate system where the
horizontal axis stands for n and the vertical axis for the corresponding value
of Pn.

Figure 1.1: The values of the species of the (1.17) model.

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

4

Time [n]

Pr
ed

at
or

 a
nd

 P
re

y 
[Q

n, P
n]

 

 
Qn
Pn



14 CHAPTER 1. DYNAMICAL MODELING

1.2 Contagious disease models

1.2.1 One dimensional cases

Let In denote the number of infected individuals at a time n in a population
of size N . Then it makes sense to say that the next number of infected In`1

equals to the number currently infected In, minus the number of those who
have recently recovered rIn plus the number of new cases NC, here r stands
for recovery rate. We get

In`1 “ In ´ rIn `NC. (1.18)

Obviously, 0 ď r ď 1, if r “ 0 then there is no recovery, only new cases
appears; if r “ 1 then in one time step all infected individuals become healthy
and only new cases acts here. Now, the task is to determine those NC new
cases.

To solve this problem we use generally accepted principle. The number
of recent contacts between infected and susceptible individuals, and hence
the number of new cases, are each directly proportional to the size of the
infected population In multiplied by the size of the susceptible population
N ´ I ´ n in this case. Hence, we get

NC “ kInpN ´ Inq (1.19)

where k is infection constant which means that it is difficult to get the disease
if k is small, but if k is large then the illness is easily transmitted from one
individual to another.

Combining (1.18) and (1.19) we finally get a non-linear infection model
showing quadratic characteristic (compare with (1.8))

In`1 “ In ´ rIn ` kInpN ´ Inq (1.20)

It is also possible to make some additional assumption on new cases NC
from epidemiological principles and get new cases in the form

NC “ kI2
npN ´ Inq. (1.21)

Now, putting (1.21) into (1.18) we get another non-linear infection model
showing cubic characteristic

In`1 “ In ´ rIn ` kI
2
npN ´ Inq. (1.22)

In both cases (1.20) and (1.22) the immunity was not taken into considera-
tion. This will be done in the next section.
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1.2.2 Two dimensional cases

In a previous section the non-linear infection model (1.22) was investigated.
This model does not reflect the immunity. Suppose now that temporary
immunity is conferred after infection and recovery. This creates a new group
of recovered and immune individuals Rn. Let us assume that the fraction t
of the recovered population (0 ď t ď 1) lose immunity at each step. Since
tRn leaves the recovered and immune group at each step and rIn enters it
we have

Rn`1 “ Rn ´ tRn ` rIn. (1.23)

Observe that the number of susceptible individuals to the disease equals to
N ´ In ´Rn at a time n.

Now, from the (1.18) we know that

In`1 “ In ´ rIn `NC. (1.24)

To determine new cases we have to take into account that the product of
the population sizes of the two groups: In and N ´ In ´Rn, hence

NC “ kInpN ´ In ´Rnq. (1.25)

Finally, putting (1.25) into (1.24) we get non-linear infection recovery
model

In`1 “ In ´ rIn ` kInpN ´ In ´Rnq,

Rn`1 “ Rn ´ tRn ` rIn.

(1.26)

Example 5 Let us simulate influenza in Ostrava while epidemic occurs. For
this purpose we use the infection recovery model (1.26). The epidemic is
standardly defined in such a way that there are 2% ill inhabitants. Let us
assume that

• there live 300 000 inhabitants in Ostrava,

• if someone recovers from influenza then he never becomes ill again,

• it takes 7 days to recovery from influenza,

• as a time unit we take one day,
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N I0 R0 k r t

300 000 6000 0 1{N 1/7 0.

Table 1.3: Table of parameters of the (1.27) model.

• the infection constant is reciprocal to the population rate.

So we get parameters of the (1.26) model written in the Table 1.3.

Now, the model has the following form

In`1 “ In ´
1

7
In `

1

300 000
Inp300 000´ In ´Rnq,

Rn`1 “ Rn `
1

7
In.

(1.27)

It follows from computational simulations that the maximal value of ill in-
habitants is after 5 days. Then significant reduction occurs and after 60 days
they are all healthy. Computational results are in Table 1.4 and graphs of In,
Rn and NCn are in Figure 1.2.

Figure 1.2: The values of the species of the (1.27) model.
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n 0 1 2 3 4 5 6

In 6ˆ 103 1.1ˆ 104 2.0ˆ 104 3.5ˆ 104 6.1ˆ 104 9.9ˆ 104 1.4ˆ 105

Rn 0 8.5ˆ 102 2.4ˆ 103 5.3ˆ 103 1.0ˆ 104 1.9ˆ 104 3.3ˆ 104

NCn 0 5.8ˆ 103 1.1ˆ 104 1.8ˆ 104 3.1ˆ 104 4.6ˆ 104 6.1ˆ 104

Table 1.4: Table of values of the (1.27) model for six days.

1.3 Exercises

1. Compute P1–P5 of the following linear models and find out their solu-
tions:

(a) Pn`1 “ 1.2Pn ` 100 where P0 “ 10,

(b) Pn`1 “ 0.2Pn ` 100 where P0 “ 10,

(c) Pn`1 “ 1.3Pn ´ 10 where P0 “ 1000,

(d) Pn`1 “ 0.3Pn ´ 10 where P0 “ 1000.

2. Construct the linear population model that satisfies:

(a) the population is initially 75 000,

(b) the population increases 15% each generation.

3. Construct the linear population model that satisfies:

(a) the population is initially 125 000,

(b) the population birth rate is 7% and the death rate is 5%.

4. Construct the linear harvesting model that satisfies:

(a) the population is initially 10 000,

(b) the population increases 5% each generation,

(c) the harvesting occurs at a constant rate of 150 each generation.

5. Construct the linear harvesting model that satisfies:
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(a) P0 “75 000,

(b) P1 “77 000,

(c) P2 “79 500.

6. Find out exact solutions of the difference equations:

(a) xn`1 “ 1.5xn where x0 “ 0,

(b) xn`1 “ ´1.75xn where x0 “ 3000,

(c) xn`1 “ ´0.5xn where x0 “ 1.

7. Assume that the population is growing by 5% per generation.

(a) How many generations will it take for an initial population of 1000
to grow to 1600?

(b) What growth rate will make this happen in four generations?

8. Assume an initial generation 150 000 growing 2% each generation and
immigration at a constant rate 2500 per generation.

(a) What is the 10th generation value?

(b) What must have been the population five generations ago?

9. Identify r, s and N in the following infection model:

(a) In`1 “ 0.6In ` 2.9Inp1´ In{750q,

(b) In`1 “ 3.6Inp1´ 0.025Inq,

(c) In`1 “ 5In ´ 0.025I2
n.

10. Construct a disease model assuming that at each step rIn recovers and
the number of new cases is proportional to the product of:

(a) I2
n and p1´ In{Nq

2,

(b) I2
n and 1´ I2

n{N
2,

(c) I2
n and e´In{N .

11. Construct the linear predator prey model with given parameters:

(a) r1 “ 1.3, r2 “ 0.9, s1 “ 0.3, s2 “ 0.6 and k1 “ k2 “ 0,
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(b) r1 “ 4, r2 “ 0.9, s1 “ 0, s2 “ 0.4 and k1 “ k2 “ 10,

(c) r1 “ 1, r2 “ 1, P0 “ 2000, Q0 “ 1000, P1 “ 1800, Q1 “ 2400 and
k1 “ k2 “ 0.

12. Construct linear overlapping model with no (im)migration or harvest-
ing:

(a) P´1 “ 100, P0 “ 200, P1 “ 300 and P2 “ 400.

(b) r “ 1{2, P0 “ 400, P1 “ 800 and P2 “ 2400.

13. Find out the solution of the (1.4) system and compare it with Theorem
1.

14. Find the general form of all solutions and find the unique solution that
satisfies the given initial conditions:

(a)

Pn`1 “ Pn ´Qn,

Qn`1 “ Pn `Qn

where P0 “ 800 and Q0 “ 100,

(b)

Pn`1 “ 0.4Pn ´ 0.6Qn,

Qn`1 “ 0.8Pn ` 0.4Qn

where P0 “ 500 and Q0 “ 200.

15. Example 5 revised: Each parameter in the model (1.27) is constant,
the influence of the type of the day is not taken into consideration. It
is known that the number of infected humans is directly dependent on
the number of working days. Take into account this fact and include it
into the model in the dependence of weekends and holidays (so-called
non-autonomous dynamical systems will be constructed).
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Chapter 2

Elementary dynamics

The main aim of the theory of dynamical systems is to understand the even-
tual or asymptotic behavior of an iterative process. If the process is derived
from differential equation whose independent variable is time, then behavior
of the solution is continuously dependent on time. If the process is given
by difference equation (or a map), then the theory studies properties of the
iterations. We are now going to investigate discrete time situation.

A (discrete) dynamical system is an ordered pair pX, fq where X is a
state space and f : X Ñ X is a map (an action) which is into but not
necessarily onto. Hence, the set X is invariant under f , that is fpXq Ă
X1. There are additional assumptions on the state space and action while
studying dynamical properties. Standardly, X is endowed by a metric d, that
is the map d : X ˆ X Ñ r0,8q satisfying the following conditions for each
x, y, z P X:

1. (non-negativity) dpx, yq ě 0,

2. (identity) dpx, yq “ 0 if and only if x “ y,

3. (symmetry) dpx, yq “ dpy, xq,

4. (triangle inequality) dpx, zq ď dpx, yq ` dpy, zq.

So, the metric measures the distance between two points. The assumption
given on a map f is continuity, that is f is continuous in any point of X
which means that for any ε ą 0 there is δ such that dpx, yq ă δ implies
dpfpxq, fpyqq ă ε.

1strongly invariant means fpXq “ X

21
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Example 6 The Euclidean distance between points x and y is the length of
the line segment connecting them. If we assume that x, y P R then dpx, yq “
|x ´ y| and if x, y P R2 then dpx, yq “

a

px1 ´ y1q
2 ` px2 ´ y2q

2 where x “
px1, x2q and y “ py1, y2q. Analogously could be defined the Euclidean distance
between points in Rn.

In the previous section we constructed several difference equations that
are closely related to the notion of dynamical system. In Example 4 the
investigated model consists of two species, predators and preys, so the state
space 4 is a subset of R2 and a derived map F : 4 Ñ 4 is given by
F px, yq “ pxp4 ´ x ´ yq, xyq, it is not difficult to verify that 4 is a triangle
with vertices p0, 0q, p0, 4q and p4, 0q. As a consequence of this process we can
now focus on properties of a dynamical system pX, fq where X is a (compact)
metric space and f is a continuous map on X. Recall, that a set X Ă Rn

is compact if it is closed and bounded, so the unit closed interval I and also
the unit circle S1 are compact sets.

Firstly we have to know what an iteration process is. Given f , then its
iterations at a point x are points fnpxq where f 0pxq “ idpxq (id is the identity
map) and for n ą 0 fnpxq stands for n fold composition of f

fnpxq “ f ˝ f ˝ ¨ ¨ ¨ ˝ f
looooooomooooooon

n times

pxq.

Definition 1 The forward orbit of x P X with respect to f is the set

Orb`f pxq “ tf
n
pxq, n P NY t0uu.

The backward orbit of x P X with respect to f is the set

Orb´f pxq “ tf
´n
pxq, n P Nu.

The full orbit of x P X with respect to f is the set

Orbf pxq “ Orb`f pxq YOrb´f pxq.

Definition 2 The point x P X is a fixed point of the map f if fpxq “ x.
The point x P X is a periodic point of period n of the map f if fnpxq “ x
and fmpxq ‰ x for any 1 ď m ă n.
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The set of all fixed points of the map f is denoted by Fixpfq, the set of
all periodic points with period n by Pernpfq and Perpfq denotes the set of
all periodic points of the map f , that is

Perpfq “
ď

nPN

Pernpfq.

Example 7 Let us define dynamical system pX, fq in such a way that X “ R
and fpxq “ x3. It is easy to see, that Fixpfq “ t´1, 0, 1u and that there
are no other periodic points, so Fixpfq “ Perpfq. Hence, Orb`f p0q “ t0u,

Orb`f p1q “ t1u and also Orb`f p´1q “ t´1u since those points are fixed.

Now, Orb`f p1.01q “ t1.01, 1.013, 1.019, 1.0127 . . . u, the point 1.01 tends to the
infinity under f , see cobweb diagram in Figure 2.1a. On the other hand
Orb`f p0.99q “ t0.99, 0.993, 0.999, 0.9927 . . . u and the point 0.99 tends to 0,
again see the cobweb diagram in Figure 2.1b. Consequently, X “ R is in-
variant under f as well as Fixpfq. So, invariant set can contain proper subset
that is again invariant.
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Figure 2.1: Cobweb diagram of fpxq “ x3 for (a) x “ 1.01 and (b) x “ 0.99.

Example 8 Put λ P R, Rλpxq “ x` 2πλ and X “ S1 be a unit circle. The
map Rλ now denotes the rotation on the circle where x stands for the rotation
angle in a counterclockwise direction. We have to distinguish between two
cases. If λ is rational number then all points are periodic. If λ is irrational
number then there are no periodic points, see the following theorem.
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For the following theorem we need the notion of a dense set. Roughly
speaking a set A is dense in I if any open interval U Ă I intersects A, formal
definition is given in Definition 7. This definition could be also extended in
a natural way to the n-th dimensional cube or a circle.

Theorem 2 Each orbit of the irrational rotation of the unit circle is dense
in the unit circle.

Proof: Let us identify a point from S1 by an angle α. We are going to prove
that Orb`Rpαq is dense in S1, that is for any arbitrarily small open subset Arc
of S1 there is n P N such that Rn

λpαq P Arc.
Firstly, any two points of the orbit of the point α are distinct, for if

Rn
λpαq “ Rm

λ pαq we would have pm´nqλ P Z, hence, m “ n. Any infinite set
of points on S1 must have a limit point. Thus, given any ε ą 0, there must
be integers n,m P N such that |Rn

λpαq ´ Rm
λ pαq| ă ε. Let k “ m ´ n, then

|Rk
λpαq ´ α| ă ε.
Secondly, Rλ preserves length of arcs in S1. Consequently, Rk

λ maps the
arc of endpoints λ and Rk

λpαq to the arc of endpoints Rk
λpαq and R2k

λ pαq
with the same length, that is |Rk

λpαq ´ R2k
λ pαq| ă ε. Hence, the points

α,Rk
λpαq, R

2k
λ pαq, R

3k
λ pαq . . . form a partition of S1 into arcs of the length

less than ε. Ending the proof, the assertion follows from the fact that ε was
arbitrarily chosen. ˝

2.1 One dimensional stability

The classical task of dynamical systems is stability. In this section we discuss
stability of one dimensional maps, that is X Ă R.

Definition 3 The point x P Fixpfq is hyperbolic if |f 1pxq| ‰ 1. A hyperbolic
fixed point x is attracting provided there is an open set x P U such that for
y P Uztxu we have limnÑ8 f

npyq “ x. We say that a hyperbolic point x is
repelling, if there is an open set x P U such that for y P Uztxu, there is ny
such that fnypyq R U .

Theorem 3 Let pR, fq be a dynamical system and x P Fixpfq. Assume that
f is differentiable at x.

1. If |f 1pxq| ă 1 then the point x is attracting.
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2. If |f 1pxq| ą 1 then the point x is repelling.

Proof: We are going to prove the first part, the second one could be proved
analogously.

Since |f 1pxq| ă 1, there is an interval rx´ ε, x` εs and λ with 0 ă λ ă 1
such that |f 1pyq| ď λ for any y P rx ´ ε, x ` εs. Now, by the Mean Value
Theorem for y P rx´ ε, x` εs there is z between y and x such that

|fpyq ´ x| “ |fpyq ´ fpxq| “ |f 1pzq| ¨ |y ´ x| ď λ|y ´ x| ă |y ´ x|.

Thus, fpyq is closer to x than y, so fpyq P rx ´ ε, x ` εs and we can repeat
the argument, hence, by induction we get

|f jpyq ´ x| ď λj|y ´ x|.

This shows that f jpxq P rx ´ ε, x ` εs for any j ě 0. Since λj|y ´ x| goes to
zero, f jpyq converges to x as j tends to the infinity, proving that the fixed
point x is attracting. ˝

Let us note that the above definition and theorem formulated for fixed
point could be extended for any periodic point using n-th derivative of the
map in the suitable point.

Example 9 Let us continue with the Example 7. There are three fixed points
for fpxq “ x3 and it is easy to calculate derivative f 1pxq “ 3x2. Hence, by
Theorem 3 we have that both 1 and ´1 are repelling, since f 1p˘1q “ 3 ą 1
and 0 is attracting fixed point since f 1p0q “ 0 ă 1.

The following example illustrates that the condition |f 1pxq| ă 1 from
Theorem 3 is essential and if this condition is not fulfilled than we have to
analyze local stability individually.

Example 10 Let fpxq “ lnpx ` 1q. It is easy to see that Fixpfq “ t0u
and that f 1pxq “ 1{px ` 1q. So, f 1p0q “ 1 and we can not apply Theorem
3. Moreover, this point is not attracting nor repelling since any point from
p0,8q tends to 0 and any point from p´1, 0q tends to ´8, see Figure 2.2
for a cobweb diagram. Hence, this is a saddle point, compare it with the
definition in the next section.
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Figure 2.2: Cobweb diagram of fpxq “ lnpx ` 1q for (a) x “ 0.1 and (b)
x “ ´0.01.

2.2 Higher dimensional stability

Let us introduce analogous phenomena derived in previous section for a
higher dimensional dynamical systems.

A fixed point x for f : Rn Ñ Rn is called hyperbolic if Dfpxq has no
eigenvalues on the unit circle, where Dfpxq is the Jacobian matrix of f at
the point x. Such a hyperbolic point x is

1. a sink fixed point if all eigenvalues ofDfpxq are less than one in absolute
value,

2. a source fixed point if all eigenvalues of Dfpxq are greater than one in
absolute value,

3. a saddle fixed point otherwise, i.e., if some eigenvalues of Dfpxq are
less and some larger than one in absolute value.

Proposition 1 ([12]) Supposing that f : Rn Ñ Rn has a sink fixed point x.
Then there is an open set containing x in which all points tend to x under
forward iteration of f .

The largest such open set in Rn is called the stable set of x and is denoted
by W spxq.
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Proposition 2 ([12]) Supposing that f : Rn Ñ Rn has a source fixed point
x. Then there is an open set containing x in which all points tend to x under
backward iteration of f .

The largest such open set in Rn is called the unstable set of x and is denoted
by W upxq.

Example 11 Let us return to Example 4, here a dynamical system p4, F q is
investigated, where F : 4Ñ 4 is given by F px, yq “ pxp4´x´yq, xyq and 4
is a triangle with vertices p0, 0q, p0, 4q and p4, 0q. Putting xp4´x´yq “ x and
xy “ y one can easily compute, that FixpF q “ tp0, 0q, p1, 2q, p3, 0qu. Now let
us verify whether these fixed points are stable or not and let us find suitable
stability regions. Firstly,

DF px, yq “

¨

˚

˝

4´ 2x´ y ´x

y x

˛

‹

‚

.

Now, by calculating characteristic polynomials we get eigenvalues. So,

detpDF p0, 0q ´ λIq “ det

¨

˚

˝

4´ λ 0

0 ´λ

˛

‹

‚

“ λpλ´ 4q,

hence, λ1 “ 0 and λ2 “ 4 and corresponding eigenvectors are v1 “ p0, 1q
and v2 “ p1, 0q. So, the fixed point p0, 0q is a saddle and has stable set with
basin v1, that is W sp0, 0q “ vp0, 1qw and W up0, 0q “ vp1, 0qw. Which means,
that a point that is close to the origin is falling down in the direction of
the vector v1 and leaving small neighborhood of the origin in the v2 direction
under iterations.

Analogously could be calculated that p1, 2q is a source and W sp0, 0q “ v w,
W up0, 0q “ vp1, 0q, p0, 1qw. Finally, the fixed point p3, 0q is a source.

2.3 The quadratic family

The main aim of this section is to study one specific example, that is the
quadratic family given by the map

Fµpxq “ µxp1´ xq (2.1)
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defined on the unit closed interval I “ r0, 1s and we focus on parameters µ
in the interval r0, 4s, graphs of Fµ and their iterations for several parameters
µ are given in Figure 2.3.
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Figure 2.3: Morphology of Fµ for some values of the parameter µ. Case (a)
corresponds to µ “ 1, case (b) corresponds to µ “ 2, case (c) corresponds to
µ “ 3 and case (d) corresponds to µ “ 4.

Lemma 1 For Fµpxq “ µxp1´ xq defined on I it holds:

1. Fµp0q “ 0 and Fµppµq “ pµ where pµ “ pµ´ 1q{µ,

2. if 1 ă µ ď 4 then 0 ă pµ ă 1,
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3. if µ “ 1 then FixpF1q “ t0u,

4. if 0 ă µ ă 1 then pµ R I.

Proof:

1. We have to solve the equation Fµpxq “ x, that is µxp1 ´ xq “ x.
Trivial solution is x0 “ 0, hence, Fµp0q “ 0 and the second one is
pµ “ pµ´ 1q{µ, so Fµppµq “ pµ.

2. If 1 ă µ ď 4 then from classical analysis of the function P pµq “
pµ´ 1q{µ one gets 0 ă pµ ă 1.

3. If µ “ 1 then pµ “ p1´ 1q{1 “ 0 and FixpF1q “ t0u.

4. If 0 ă µ ă 1 then the analysis of the function P pµq “ pµ´ 1q{µ yields
pµ R I.

˝

The following lemma follows directly from graphical analysis, we give also
analytic proof.

Lemma 2 Let 0 ă µ ă 1, then for any x P I it holds

lim
nÑ8

F n
µ pxq “ 0.

Proof: Obviously, the assertion trivially follows for x P t0, 1u. Let us ob-
serve that for given 0 ă µ ă 1 and any x P p0, 1q it holds

µxp1´ xq ă x.

Consequently, Fµpxq is closer to zero than x hence

lim
nÑ8

F n
µ pxq “ 0

ending the proof. ˝

From the last two conditions of Lemma 1 and Lemma 2 it follows that
it is essential to pick µ ą 1. Now, let us justify the condition given on the
domain of (2.1).
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Lemma 3 Let µ ą 1, then

1. if x ă 0 then limnÑ8 F
n
µ pxq “ ´8,

2. if x ą 1 then limnÑ8 F
n
µ pxq “ ´8.

Proof: Firstly assume that x ă 0, then µxp1´xq ă x. Hence, Fµpxq ă x and
F n
µ pxq is a decreasing sequence of points. This sequence is not converging to a

point p P R, since F n`1
µ pxq Ñ Fµppq ă p, whereas, F n

µ pxq Ñ p. Consequently,
limnÑ8 F

n
µ pxq “ ´8 ending the proof of the first part.

Secondly assume x ą 1. Then Fµpxq ă 0 and again by the first part
limnÑ8 F

n
µ pxq “ ´8. ˝

From now we analyze dynamical properties of (2.1) with the respect to
µ. Proof of the following lemma is left to the reader as an exercise using
Theorem 3.

Lemma 4

1. The fixed point pµ is attracting for Fµ if µ P p1, 3q,

2. the fixed point pµ is repelling for Fµ if µ P p3, 4s,

3. the fixed point 0 is attracting for Fµ if µ P p0, 1q,

4. the fixed point 0 is repelling for Fµ if µ P p1, 4s.

Lemma 5 Let 1 ă µ ă 3 and 0 ă x ă 1 then limnÑ8 F
n
µ pxq “ pµ.

Proof: Let us firstly prove the case when µ P p1, 2q. Let x P p0, 1{2s, then it
is easy to see that for x ‰ pµ

|Fµpxq ´ pµ| ă |x´ pµ|.

So, limnÑ8 F
n
µ pxq “ pµ. If x P p1{2, 1q then obviously Fµpxq P p0, 1{2s and

using previous arguments we again get limnÑ8 F
n
µ pxq “ pµ.

Let us now discuss the case when µ P p2, 3q. In this case pµ P p1{2, 1q.
Now, let us pick a point a P p0, 1{2q such that Fµpaq “ pµ. We are going
to consider three cases depending whether x belongs to the interval p0, aq,
ra, pµs or ppµ, 1q. Easily ra, pµs is mapped inside r1{2, pµs, more precisely
F 2
µpra, pµsq Ă r1{2, pµs. Hence, for any x P ra, pµs is limnÑ8 F

n
µ pxq “ pµ.
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Now, if x ă a then there is k P N such that F n`k
µ pxq P ra, pµs, hence, using

previous step we again have limnÑ8 F
n
µ pxq “ pµ. Easily, Fµ maps the interval

ppµ, 1q onto p0, pµq, so for any x P ppµ, 1q we get limnÑ8 F
n
µ pxq “ pµ, closing

the proof of this part, since p0, 1q “ p0, aq Y ra, pµs Y ppµ, 1q.
To the end of the proof it remains to discuss the case µ “ 2 which is easy

to check, and is left to the reader. ˝

Figure 2.4: Illustration to the proof of Lemma 5 for µ “ 2.85.

Remark 1 Point out that proof of Lemma 5 gives more information than
point 1. of Lemma 4, that is interval of attractivity, the maximal set U for
which Definition 3 holds, was located.

Hence, the map Fµ has exactly two fixed points in I for µ P p1, 4s. By
Lemma 5 the behavior of Fµ is very pure for µ P r0, 3q, any point tends to
a fixed point. The situation will change dramatically if we increase µ above
3. Now, let us discuss the situation for µ ą 4, the following construction is
depicted on Figure 2.5.

It is easy to see that the map Fµ has maximum at the point 1{2 with the
value µ{4. Assuming µ ą 4 we have µ{4 ą 1, so the values of Fµ are out of
I. Let us denote the set

A0 “ tx P I : Fµpxq ą 1u.

Clearly, A0 is an open set with center 1{2 and for any x P A0 it holds

lim
nÑ8

F n
µ pxq “ ´8,
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Figure 2.5: Morphology of Fµ for some values of the parameter µ. Case (a)
corresponds to the construction of A0, I0 and I1; case (b) corresponds to the
construction of A1 and I00, I01, I10, I11.

and if x P IzA0 then Fµpxq P I but not necessarily F 2
µpxq P I. So let A1 be

the set of such points from I that they leave I under second iteration, that
is

A1 “ tx P I : Fµpxq P A0u.

If x P A1 then F 2
µpxq ą 1 and again limnÑ8 F

n
µ pxq “ ´8. Now, we can

inductively define
An “ tx P I : F n

µ pxq P A0u.

Then is

An “ tx P I : F i
µpxq P I for i ď n but F n`1

µ pxq R Iu,

so the set An consists of all points which escape from I at the pn ` 1q-st
iteration and they tend to ´8. Now, we know the ultimate fate of any point
which lies in An for some n, it therefore remains only to analyze the behavior
of those points which never escape form I, i.e., the set of points which lie in
the set

Λ “ Iz
8
ď

n“0

An.

The task now is to describe this set more precisely and later answer the
question: what are their behaviors.
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The set A0 is open connected interval so the set IzA0 contains two com-
ponents, closed intervals, denoted by I0 and I1 where the subscripts denote: 0
left hand side and 1 right hand side, see Figure 4.5a. Now, the set IzpA0YA1q

consists of four closed intervals, I00 and I01 are subsets of I0 and I10 and I11

are subsets of I1, see Figure 4.5b. Inductively, the set IzpA0YA1Y ¨ ¨ ¨YAnq
consists of 2pn`1q closed intervals and obviously each of them is mapped by
F n`1
µ monotonically onto I. So, the structure of Λ seems to be quite compli-

cated.

Definition 4 A set C is a Cantor set if and only if it is perfect and totally
disconnected. A set is totally disconnected if it contains no interval; a set is
perfect if it is closed and without isolated points.

Example 12 (The Cantor Middle-Thirds Set C) This is a classical con-
struction of a Cantor set. Pick unit closed interval I and in a first step of
construction remove the middle third, that is open interval p1{3, 2{3q. Now,
remove from what remains two middle thirds, that are intervals p1{32, 2{32q

and p7{32, 8{32q. Continue with removing the middle thirds in this fashion.
So, in the n-th step one removes 2n´1 intervals of the length 1{3n. Finally,
the set C has the following form

C “ Iz
8
ď

n“1

3n´1´1
ď

k“0

ˆ

3k ` 1

3n
,
3k ` 2

3n

˙

.

This procedure is analogous to the construction of the set Λ and this set C is
an example of fractal, see chapter 4 Fractals.

At the end of this section we formulate the following theorem whose proof
goes beyond this text and could be found e.g. in [12].

Theorem 4 Let µ ą 4. Then the set Λ is a Cantor set.

2.4 The symbolic dynamics

In this section we are going to investigate one special dynamical system that
is very useful and frequently used for construction of counterexamples.

Let Σ2 be a set of all sequences over two point alphabet, that is

Σ2 “ ts “ s0s1s2 ¨ ¨ ¨ : si P t0, 1u, i P NY t0uu.
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This set is called shift space and it is standardly endowed by the following
metric: for any s, t P Σ2

dps, tq “
8
ÿ

i“0

|si ´ ti|

2i
. (2.2)

Lemma 6

1. d is a metric on Σ2.

2. Let s, t P Σ2 and si “ ti for 0 ď i ď n, then dps, tq ď 1{2n.

3. If dps, tq ă 1{2n then si “ ti for 0 ď i ď n.

Proof:

1. We are going to verify four conditions form the definition of a metric
given at the beginning of this section. It is easy to see that dps, tq ě 0
for any s, t P Σ2 and dps, tq “ 0 if and only if si “ ti for any i, so s “ t.
Now, dps, tq “ dpt, sq since |si ´ ti| “ |ti ´ si| for any i. Finally, let
r, s, t P Σ2, then for any i it holds |si ´ ri| ` |ri ´ ti| ě |si ´ ti| and we
deduce dps, rq ` dpr, tq ě dps, tq.

2. If si “ ti for i ď n, then

dps, tq “
n
ÿ

i“0

|si ´ si|

2i
`

8
ÿ

i“n`1

|si ´ ti|

2i
ď

8
ÿ

i“n`1

1

2i
“

1

2n
.

3. Now, if sk ‰ tk for some k ď n, then

dps, tq ě
1

2k
ě

1

2n
.

So, if dps, tq ă 1{2n then si “ ti for 0 ď i ď n ending the proof.

˝

Remark 2 Point out that maxs,tPΣ2 dps, tq “
ř8

i“0 1{2i “ 2 showing diampΣ2q “

2. Here, diampXq stands for the diameter of the space X defined by diampXq “
supx,yPX dpx, yq, where d is the metric on X.
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Now, let us define a dynamical system pΣ2, σq by defining σ. The map σ
is called a shift map and is defined by

σ : Σ2 Ñ Σ2, σps0s1s2 . . . q “ ps1s2s3 . . . q. (2.3)

Lemma 7 The shift map is continuous.

Proof: For the proof we follow the so called εδ definition. Let ε ą 0 and
s “ s0s1s2 . . . . Now, pick n such that 1{2n ă ε and let δ “ 1{2n`1. If now
t P Σ2 is such that dps, tq ă δ, then by Lemma 6 it follows that si “ ti for
i ď n` 1. Hence, the ith entires of σpsq and σptq agree for i ď n. Therefore
dpσpsq, σptqq ď 1{2n ă ε ending the proof. ˝

Remark 3 This note is addressed to readers with basic knowledge of topol-
ogy. Here, elegant alternative proof of Lemma 7 is given.

A basis for the topology of Σ2 is the family of cylinder sets

Ctrs0, . . . , sks “ tx P Σ2 : xt “ s0, . . . , xt`k “ sku.

Any cylinder is clopen set. Hence, using known equivalence of continuity,
that is the preimage of any open set is open, Lemma 7 directly follows. For
more details on topological properties of shifts see e.g. [44].

Lemma 8

1. The set Pernpσq contains exactly 2n points.

2. The set Perpσq is dense in Σ2.

3. There is a point with dense orbit in Σ2 for σ.

Proof:

1. If a point s is periodic of period n for σ, then it has the form

s “ ps0s1s2 . . . sn´1 s0s1s2 . . . sn´1 . . . q.

Hence, there are 2n periodic points of period n for σ each being a
concatenation of finite blocks of zeros and ones each of the same length
n.
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2. For the proof we have to construct a sequence αn of points in Σ2 that
is converging to the given point s P Σ2. For the given point s P Σ2 we
construct a sequence in the following form

αn “ ps0s1s2 . . . sn s0s1s2 . . . sn . . . q.

So, αn is constructed in such a way that it repeat sequence whose entires
agree with s up to n-th position. Now, by Lemma 6 dpαn, sq ď 1{2n,
so αn tends to s for nÑ 8.

3. Put

s‹ “ p 01
loomoon

1blocks

00 01 10 11
loooomoooon

2blocks

000 001 010 . . . 111
loooooooooomoooooooooon

3blocks

. . . q.

Now applying arguments used in the previous point of this proof we
get that Orbσps

‹q is dense in Σ2 ending the proof.

˝

2.5 Topological conjugacy

The goal of this section is to detect whether two dynamical systems have the
same dynamical properties, that is they have the same types and number of
periodic points etc. This tool is topological conjugacy, see Figure 2.6.

Definition 5 Let pX, fq and pY, gq be two dynamical systems. They are said
to be topological conjugated if there exists a homeomorphism h : X Ñ Y such
that h ˝ f “ g ˝ h. The homeomorphism is called a topological conjugacy.

X X

Y Y

f

g

h h

Figure 2.6: Diagram of topological conjugacy.
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Next lemma is a natural consequence of the foregoing definition, proof of
this statement is left to the reader as an exercise. As a hint an observation
gn “ h ˝ fn ˝ h´1 can be recommended that is derived from

gn “ h ˝ f ˝ h´1
˝ h

loomoon

id

˝f ˝ h´1
¨ ¨ ¨h ˝ f ˝ h´1

looooooooooooooooooooooomooooooooooooooooooooooon

n-fold composition of h˝f˝h´1

“ h ˝ fn ˝ h´1.

Lemma 9 Let pX, fq and pY, gq be two dynamical systems conjugated by
conjugacy h : X Ñ Y .

1. If x P Pernpfq then hpxq P Pernpgq.

2. The cardinality of Pernpfq equals to Pernpgq.

3. If Pernpfq is dense in X then Pernpgq is dense in Y .

4. If x has a dense orbit in X then hpxq has a dense orbit in Y .

Remark 4 Let us remark that the conjugacy does not have to exist and
if it exists then it is not necessarily unique, see 2.6 Exercise 6. Moreover,
conjugacy does not preserve differentiability, that is there are conjugated maps
such that one of which is smooth and the other does not have derivative in a
point, see 3.5 Exercise 3.

Remark 5 Note, the topological conjugacy defines an equivalence relation,
that is the topological conjugacy is reflexive, symmetric and transitive. See
Figure 2.7.

Example 13 Let us verify that the family Fµ is conjugated to the family ga
defined by

gapxq “ ax2
´ 1.

The task is to find out the conjugacy with respect to the parameter.
This conjugacy have to preserve fixed points. The fixed points of Fµ are

0 and pµ, while x˘ “ r1˘ p1` 4aq1{2s{2a are fixed for ga. Let us note that:

1. gap´x`q “ x` and Fµp1q “ 0,

2. the critical points of Fµ and ga are 1{2 and 0 respectively.
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X X

Y Y

Z Z

f

g

w

h1

h2

h1

h2

h = h2 ◦ h1 h = h2 ◦ h1

Figure 2.7: Transitivity diagram of topological conjugacy.

Assume that the conjugacy has the form

hpxq “ mx` b.

Since ´x` ă x´ ă x` and 0 ă pµ ă 1 the following must be fulfilled

hp´x`q “ 1,

hpx´q “ pµ,

hpx`q “ 0,

hp0q “ 1{2.

Substituting in h we get

mp´x`q ` b “ 1,

mpx´q ` b “ 1´ 1{µ,

mpx`q ` b “ 0,

m ¨ 0` b “ 1{2.

From the last equation we obtain that b “ 1{2. Subtracting the first equation
from the second one we get mp1{aq “ ´1{µ or m “ ´a{µ. Substituting
these values in the third equation we get ´r1 ` p1 ` 4aq1{2s{2µ “ ´1{2,
µ “ 1` p1` 4aq1{2 or 4a “ µ2 ´ 2µ. The last two expressions give necessary
conditions for the maps to be conjugated:

µ “ 1` p1` 4aq1{2 or 4a “ µ2
´ 2µ
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and
hpxq “ 1{2´ ax{µ.

Now, we can verify that h is desired conjugacy:

Fµ ˝ hpxq “ Fµp1{2´ ax{µq

“ µ{4´ a2x2
{µ

and

h ˝ gapxq “ hpax2
´ 1q

“ a{µ` 1{2´ a2x2
{µ.

Consequently, these two quantities are equal since 4a “ µ2 ´ 2µ, that shows
the family Fµ is conjugated to the family ga when the parameters are correctly
related.

Now, let us observe that Fµ defined in Section 2.3 is conjugated with
the shift constructed in Section 2.4. We use the same notation as in these
sections.

Definition 6 The itinerary of x P I is a sequence Spxq “ s0s1s2 . . . where

sj “ 0 if F j
µpxq P I0,

sj “ 1 if F j
µpxq P I1.

Next auxiliary result will be useful in the sequel, its proof could be found
in e.g. [12].

Lemma 10 If µ ą 2`
?

5 then S : Λ Ñ Σ2 is a homeomorphism.

Lemma 11 The map Fµ is conjugated to σ if µ ą 2`
?

5, that is S ˝ Fµ “
σ ˝ S.

Proof: A point x P Λ could be defined uniquely by the nested sequence of
intervals

č

ně0

Is0s1s2...sn...

determined by the itinerary Spxq. Now

Is0s1s2...sn “ Is0 X F
´1
µ pIs1q X ¨ ¨ ¨ X F

´n
µ pIsnq
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so that FµpIs0s1s2...snq could be written in the form

Is1 X F
´1
µ pIs2q X ¨ ¨ ¨ X F

´n`1
µ pIsnq “ Is1s2...sn

since FµpIs0q “ I. Hence

S ˝ Fµpxq “ S ˝ Fµ pX
8
n“0Is0s1s2...snq

“ S pX8n“1Is0s1s2...snq

“ s1s2s3 . . .

“ σ ˝ Spxq

ending the proof. ˝

Theorem 5 If µ ą 2`
?

5 and Fµpxq “ µxp1´ xq, then:

1. the cardinality of PernpFµq is 2n,

2. PerpFµq is dense in Λ,

3. Fµ has a dense orbit in Λ.

Proof: By Lemma 11 Fµ and σ are conjugated. Consequently, by Lemma 9
and Lemma 8 one gets the assertion. ˝

2.6 Exercises

1. Consider the map f : RÑ R, defined by fpxq “ ´x2` x` 2.Calculate
all periodic points of period two for this map. Draw the graph of fpxq
and mark positions of all period two points. Include cobweb diagrams
for all period two orbits and illustrate the stability of the fixed points
by cobweb plots.

2. Classify analytically the stability of all fixed points of the map f from
2.6 Exercise 1.

3. Classify analytically the stability of all fixed points of the Hénon map
H : R2 Ñ R2 defined by Hpx, yq “ py ` 1´ x2, xq.

4. Draw a cobweb diagram for a one-dimensional map of your choice show-
ing a prime period three orbit and an eventually periodic orbit.
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5. Show that for the map B3pxq “ 3x mod 1, x P r0, 1q, the number of
periodic orbits of period n is 3n ´ 1, as follows. Draw B3pxq and its
second iterate. Identify FixpB3q and Per2pB3q in your drawings and
calculate the corresponding periodic points analytically. On this basis,
argue for the result for general n.

6. Let fpxq “ x ` 2 and gpxq “ x ` 3 be defined on R. Then, for any
b P R and hb : RÑ R defined by hbpxq “ 3{2x` b verify, that f and g
are topologically conjugated by the conjugacy hb.

7. Show that the logistic map Fµ is topologically conjugated with Gapxq “
ax2 ` bx` c, where µ P p0, 1s and a ‰ 0, via the conjugacy h : r0, 1s Ñ
rp´µ´ bq{2a, pµ´ bq{2as defined by hpxq “ ´µ{a x` pµ´ bq{2a.

8. Prove that F4 is topologically conjugated to fpxq “ 2x2 ´ 1 defined on
the interval r´1, 1s. (Hint: Use linear conjugacy h : r0, 1s Ñ r´1, 1s
defined by hpxq “ ´2x` 1.)

9. Calculate the distance between the following two points in the shift
space:

(a) s “ 000 ¨ ¨ ¨ “ 0 and t “ 111 ¨ ¨ ¨ “ 1,

(b) s “ 0101 ¨ ¨ ¨ “ 01 and t “ 1010 ¨ ¨ ¨ “ 10.

10. Prove Lemmas 4, 9 and 10.
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Chapter 3

Chaos

Chaos theory studies the behavior of dynamical systems that are sensitive to
initial conditions and nonlinear. Small differences in initial conditions yield
widely diverging outcomes for chaotic systems, rendering long-term predic-
tion impossible in general. Chaotic behavior can be observed in many natural
systems, such as weather, chemical reactions or some ecological systems.

The above mentioned properties are described more precisely in the fore-
going sections using one specific example, the Tent map. The Tent map T is
defined on the unit closed interval r0, 1s by the following formula

T pxq “

$

’

&

’

%

2x if 0 ď x ă 1{2,

2p1´ xq if 1{2 ď x ď 1.

which could be equivalently rewritten

T pxq “ 1´ |2x´ 1|.

It is easy to verify that the Tent map is conjugated to the Logistic map
via the conjugacy hpxq “ sin2pπx{2q, hence they have similar dynamical
behavior.

3.1 Density of periodic points

The main aim of this section is considering a set of all periodic points of the
Tent map and a proof that it is dense on I.

43
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Definition 7 Let I be an interval in R. A set A is said to be dense in I if
for every x P I any open interval containing x intersects A. In other words,
for each δ ą 0, it holds true

px´ δ, x` δq X A ‰ H.

Example 14 The set of all rational numbers Q is dense in the set of all real
numbers R. To verify this we write a point x P R in the following way

x “
8
ÿ

n“0

dn
10n

where dn P t0, 1, 2, . . . , 9u. Let δ ą 0. Then there is a positive integer m such
that 10´m ă δ. Consider now the rational number

y “
m
ÿ

n“0

dn
10n

.

Then

|x´ y| “
8
ÿ

n“m`1

dn
10n

ď

8
ÿ

n“m`1

9

10n
“

9{10m`2

1´ 1{10
“ 1{10m.

Consequently, |x´ y| ă δ and hence Q is dense in R.

The following lemmas will be used in the proof of the goal of this section.
We say that a point x is eventually periodic under f if there are m P N
and a periodic point p such that fmpxq “ p. Roughly speaking, eventually
periodic point is a point that is mapped on a periodic point. It is easy to see
that points 1{3, 1{4, 3{4 are eventually fixed, points 1{5, 3{5 are eventually
2-periodic of the Tent map.

Lemma 12 A point p P I is eventually periodic under T if and only if it is
a rational number in I.

Proof: Let p “ r{s be in its reduced form. Assume now that s “ 2k ` 1 is
an odd integer. Then T npr{sq “ peven integerq{s for all n P N. Moreover,
there are exactly k numbers in the interval r0, 1s in the form pevenintegerq{s,
namely, 2{s, 4{s . . . , p2kq{s. So, the orbit of the point p has at most k
elements and p is eventually periodic. Assume now that s “ 2k, then for
some positive integer m either Tmppq “ integer{ odd integer, which was
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discussed, or Tmppq “ 1 and hence T n`mppq “ 0 for any n P N, hence p is
eventually periodic ending the proof of necessary condition.

Conversely, assume that p is eventually periodic of T . Then T nppq “ tn`
2np for some integer tn. The point p is eventually periodic so T nppq “ T n`kppq
for some positive integer k. Thus

tk`n ˘ 2k`np “ tn ˘ 2np

or

p “
tk`n ´ tn
˘2n ¯ 2n`k

which proves that p is rational. ˝

Lemma 13 Let p “ r{s be a rational number in I. Then the point p is
periodic if and only if r is even and s is odd integer.

Proof: Let p “ r{s P p0, 1q where r is even and s is odd integer. Now
by Lemma 12 it follows that p is eventually periodic point of the map T .
Therefore there is a least nonnegative integer m and a least positive integer
n ą m such that Tmppq “ T nppq. If m “ 0 the point p is periodic with period
n. If m ą 0 then

T´1
´r

s

¯

“
even integer

odd integer
.

Thus

Tm
´r

s

¯

“

$

’

&

’

%

2ei{s “ 4i{s if 0 ď T´1
´r

s

¯

ď 1{2,

2p1´ ei{sq “ 4i{s` 2 if 1{2 ă T´1
´r

s

¯

ď 1.

where ei is an even integer and i is integer. Hence, for Tmpr{sq to be equal to
T npr{sq we must either have both Tm´1pr{sq and T n´1pr{sq in the interval
r0, 1{2s or have both in the interval p1{2, 1s. Without lost of generality we
assume now that Tm´1pr{sq and T n´1pr{sq are in the interval r0, 1{2s. Hence

2Tm´1
pr{sq “ Tmpr{sq “ T npr{sq “ 2T n´1

pr{sq.

Consequently, Tm´1pr{sq “ T n´1pr{sq which contradicts the minimality of
m and n. Therefore m “ 0 and p is a periodic point with period n for T .

The converse implication could be proved analogously to the previous
techniques. ˝
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Theorem 6 The Tent map T has a dense set of periodic points.

Proof: Let J “ pa, bq be an open interval in I where t “ b´ a. Choose now
an odd integer s such that s ą 2{t and consider the set

A “ t1{s, 2{s, . . . ps´ 1q{su.

We observe now that for any successive numbers r{s and pr ` 1q{s in A it
holds

r ` 1

s
´
r

s
“

1

s
ă
t

s
.

This implies that there are two successive numbers m{s and pm` 1q{s in A
belonging into J . Now, one of m, m` 1 is an even integer and the interval J
contains a point in the form c “ (even integer)/(odd integer). By Lemma 13
the point c is periodic. Consequently the set of periodic points of T is dense
in I. ˝

Let us note that any irrational rotation on the unit circle does not have
dense set of periodic points, moreover there are no periodic points at all. To
see this apply Theorem 2.

Lemma 14 Any rational rotation of the unit circle has a dense set of peri-
odic points. Moreover, PerpRλq “ S1.

Proof: Let λ “ p{q be in its reduced form. Then

Rq
λpαq “ α ` 2πλq “ α ` 2πp “ α

for any α P S1. So any point α P S1 is periodic with period p ending the
proof. ˝

To the end of this section we give a lemma that could be used for flipping
dense set of periodic points from the Tent map to the Logistic map, the proof
is left to the reader as an exerciese.

Lemma 15 Let pX, fq and pY, gq be two dynamical systems conjugated by
conjugacy h : X Ñ Y . Then f has dense set of periodic points if and only if
g has.

Theorem 7 The Logistic map F4 has a dense set of periodic points.

Proof: The Tent map and the Logistic map are conjugated by the conjugacy
hpxq “ sin2pπx{2q. Now, applying Theorem 6 and Lemma 15 one gets the
assertion, ending the proof. ˝
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3.2 Transitivity

Definition 8 Let f be a continuous map on an interval I Ă R. The map f
is topologically transitive if for any pair of nonempty open intervals U and
V there is n P N such that

fnpUq X V ‰ H.

Theorem 8 For a continuous onto map f defined on the closed interval I
the following are equivalent:

1. f is topologically transitive,

2. f has a dense orbit.

Proof: Let us firstly assume, that f is topologically transitive. For each n
is the interval I covered by finitely many intervals of the length 1{n, denote
them by U1, U2, . . . , Un. For each k the set

Gk “

8
ď

n“1

f´npUkq

is open and dense in I and by [34] there is a point x P I which is contained
in Gk for all k. Since the orbit of x intersects each Uk, this orbit is dense.

Conversely, assume that f has a point x0 whose orbit is dense. Let U and
V be two non-empty open intervals in I. Then there are m P N and n P N
such that n ą m, fmpx0q P U and fnpx0q P V . Then fn´mpUq X V ‰ H.
Thus f is topologically transitive map, ending the proof. ˝

Remark 6 The Theorem 8 remains valid if we replace the space I by compact
metric space X without isolated points.

Let us note that the statement of Theorem 8 is not valid in general.

Example 15 Let X “ ta, bu be a set endowed with discrete topology struc-
ture, that is all subsets of X are open. Now define a map on X in such a
way that fpaq “ a and fpbq “ a. Now, Orb`f pbq “ X, hence we have a point
with dense orbit. On the other side, put U “ tau and V “ tbu, then for any
n P N it holds fnpUq “ U . Consequently, there is no n such that fnpUq will
intersect V , the map f is not topological transitive.
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As in the previous section we give a lemma which shows that conjugacy
preserves transitivity. Again, the proof is left to the reader as an exercise.

Lemma 16 Let pX, fq and pY, gq be two dynamical systems conjugated by
conjugacy h : X Ñ Y . Then f is transitive if and only if g is.

Theorem 9 The Tent map, Logistic map, shift map and irrational rotation
are topological transitive maps.

Proof: There are several ways how to prove the assertion. It seems that
the easiest way is to show that each of the mentioned maps has dense orbit
using Theorem 8 and Remark 6. It follows that the Tent map, Logistic map,
shift map and irrational rotation are topological transitive maps applying
Theorem 5, Lemma 9, Lemma 8 and Theorem 2, respectively. ˝

Remark 7 The rational rotation of the unit circle is not topologically tran-
sitive, since all points from the unit circle have the same period, see Lemma
14.

3.3 Sensitive dependence on initial conditions

Definition 9 A continuous map f on an interval I has sensitive dependence
on initial conditions if there is ε such that for any x0 P I there is y0 P

px0 ´ δ, x0 ` δq and k P N such that

|fkpx0q ´ f
k
py0q| ě ε.

The number ε is called a sensitive constant of f .

Example 16 The simplest map possessing sensitive dependence is the linear
map fpxq “ cx for c ą 1. It is easy to observe that for initial points x0 and
x0 ` δ one gets

fnpx0 ` δq ´ f
n
px0q “ cnpx0 ` δq ´ c

nx0 “ cnδ.

Since c ą 1 the distance |fnpx0 ` δq ´ fnpx0q| will increase to the infinity
as n tends to the infinity, regardless of how small δ is. Let us point out,
that this map has sensitive dependence on initial conditions but has no other
dynamical properties. This map is not topological transitive and does not
have dense set of periodic points.



3.3. SENSITIVE DEPENDENCE ON INITIAL CONDITIONS 49

As in the previous sections we give technical lemma that makes obvious
that conjugacy preserves sensitive dependence on initial conditions, again,
proof is left to the reader as an exercise.

Lemma 17 Let pX, fq and pY, gq be two dynamical systems conjugated by
conjugacy h : X Ñ Y . Then f has sensitive dependence on initial conditions
if and only if g has.

Now, let us consider a point x0 and its neighboring point x0`δ. The error
errn we did replacing the original point by its neighbor in the n-th iteration
defined by

errn “ |f
n
px0 ` δq ´ f

n
px0q|

and the relative error by

ˇ

ˇ

ˇ

errn
δ

ˇ

ˇ

ˇ
“
|fnpx0 ` δq ´ f

npx0q|

δ
.

If the map f has sensitive dependence on initial conditions we suppose the
relative error to grow exponentially with n and thus

enλ “ lim
δÑ0

|fnpx0 ` δq ´ f
npx0q|

δ
“

ˇ

ˇ

ˇ

ˇ

d

dx
fnpx0q

ˇ

ˇ

ˇ

ˇ

“ |f 1px0qf
1
px1q . . . f

1
pxn´1q|.

Hence

λ “ lim
nÑ8

1

n

n´1
ÿ

k“0

ln |f 1pxkq|

which motivates us to define the Lyapunov exponent of a map f with respect
to the initial point x0.

Definition 10 The Lyapunov exponent λpx0q of an orbit Orb`px0q of an
interval map f : r0, 1s Ñ r0, 1s is defined as the number

λpx0q “ lim
nÑ8

1

n` 1

n
ÿ

k“0

ln |f 1pxkq|, (3.1)

if the limit exists.
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The notions of positive Lyapunov exponent and sensitive dependence on
initial conditions play a prominent role in chaotic dynamical systems. Indeed,
it is a popular practice to use the numerical value of a Lyapunov exponent
as the quantitative measure of sensitivity or the lack thereof. A firm mathe-
matical basis for this practice is often not clear.

The Lyapunov exponent is a property of the orbit Orb`px0q since it is
easily seen that if

lim
nÑ8

1

n` 1

n
ÿ

k“0

ln |f 1pxkq|

exists then for m ą 0

lim
nÑ8

1

n` 1

n
ÿ

k“0

ln |f 1pxk`mq|

exists also and the limits are equal.
The following theorem will be very useful while determining sensitive

dependence on initial conditions, the proof is out of the scope of this text
and can be found in [23] .

Theorem 10 ([23]) Suppose f : r0, 1s Ñ r0, 1s is differentiable on I, that
the orbit Orb`px0q satisfies

inf
ně0
|f 1pxnq| ą 0

and that the Lyapunov exponent λpx0q ą 0 exists as a limit. Then the orbit
Orb`px0q exhibits sensitive dependence on initial conditions.

Remark 8

1. Let us point out that the converse implication to Theorem 10 is not
valid, the contra example was given in Example 16.

2. It is possible to replace the added condition on the derivative in Theorem
10, which means that the orbit stays away from critical points, with a
reasonable strengthening of the definition of Lyapunov exponent.

Theorem 11 The Tent map, Logistic map and shift map posses sensitive
dependence on initial conditions.



3.4. THE NOTION OF CHAOS 51

Proof: Let x0 P IzPO where PO is the set of all pre-images of zero. Since
|T 1pyq| “ 2 where y P p0, 1{2q Y p1{2, 1q we have

λpx0q “ lim
nÑ8

1

n

n´1
ÿ

k“0

ln 2 « 0.6931.

Applying Theorem 10 we get that the Tent map has sensitive dependence on
initial conditions.

Now, by Theorem 17 Logistic map and shift map are also sensitive on
initial conditions. ˝

Lemma 18 The rotation on the unit circle fails to be sensitive on initial
conditions.

Proof: Any rotation of the unit circle Rλpαq “ α` 2πλ has |R1λpαq| “ 1 for
any α P S1. Hence,

λpαq “ lim
nÑ8

1

n

n´1
ÿ

k“0

ln 1 “ 0.

Consequently, any rotation of the unit circle fails to be sensitive to initial
conditions. ˝

3.4 The notion of chaos

Definition 11 ([12]) A dynamical system pX, fq is said to be chaotic in the
sense of Devaney if:

1. f is topologically transitive,

2. the set Perpfq is dense in X.

It was originally required on f to have sensitive dependence on initial
conditions, but later on it was proved in [6] that this condition is superfluous.

Theorem 12 ([6]) If f : X Ñ X is topologically transitive and has a dense
set of periodic points then f has sensitive dependence on initial conditions.

To the end, the following theorem shows that it is enough to verify topo-
logical transitivity of a continuous map on the interval to be chaotic in the
sense of Devaney.
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Theorem 13 ([38]) If f is topologically transitive on the interval I (not
necessarily bounded) then the set Perpfq is dense in I.

Lemma 19 Let pX, fq and pY, gq be two dynamical systems conjugated by
conjugacy h : X Ñ Y . Then f is chaotic in the sense of Devaney if and only
if g is.

Proof: The assertion directly follows from Lemmas 15, 16 and 17. ˝

Theorem 14 The Tent map, Logistic map and shift map are chaotic in the
sense of Devaney.

Proof: It easily follows from Theorems 6, 7, 8 and 9. ˝

Lemma 20 The rotation on the unit circle fails to be chaotic in the sense
of Devaney.

Proof: Firstly, if the rotation is irrational than it has no periodic points.
Secondly, if the rotation is rational it is not transitive, see Remark 7. ˝

The above discussed feeling of chaos became famous for the notion of
sensitive dependence on initial conditions. Nevertheless it was not the first
concept of chaos. The first notion of chaos was given by [26], defined by:

Definition 12 ([26]) A dynamical system pX, fq is said to be chaotic in the
sense of Li and Yorke if there is an uncountable set S Ă X such that for any
x ‰ y P S

1. lim supnÑ8 dpf
npxq, fnpyqq ą 0,

2. lim infnÑ8 dpf
npxq, fnpyqq “ 0.

As in foregoing sections the following lemma shows that Li and Yorke
chaos is preserved by conjugacy, proof is also left to the reader as an exercise.

Lemma 21 Let pX, fq and pY, gq be two dynamical systems conjugated by
conjugacy h : X Ñ Y . Then f is chaotic in the sense of Li and Yorke if and
only if g is.

Theorem 15 The Tent map, Logistic map and shift map are chaotic in the
sense of Li and Yorke.
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Proof: Using Lemma 21 it is enough to show that pΣ2, σq is chaotic in the
sense of Li and Yorke. Let us pick the following two points:

s “ 0000 . . . ,

t “ 01001000100001000001 . . .

Here, t is concatenation of increasing blocks of zeros and single ones. Now,
it is easy to compute that

lim sup
nÑ8

dpσnpsq, σnptqq ą 0,

lim inf
nÑ8

dpσnpsq, σnptqq “ 0.

We constructed Li and Yorke pair and it remains to add more points to s
and t to get uncountable scrambled set. This construction is possible since
the shift space is uncountable and it is easy to control distances in the shift
space finishing the proof. ˝

Lemma 22 The rotation on the unit circle fails to be chaotic in the sense
of Li and Yorke.

Proof: As it was pointed out in the proof of Theorem 2 each rotation on
the unit circle preserves the length of an arbitrarily chosen arc. Hence, the
distance between each two points remains constant under iterations. Conse-
quently, limit of the sequence of distances of iterations of two points exists
and is finite, ending the proof. ˝

The notion of chaos was (and still is) studied by many authors. There
are many different types of notions of chaos and relations between them are
not understood well. Some of them were solved and discussed in [24]. The
following two theorems show the relationship between the chaos in the sense
of Li and Yorke and Devaney one, moreover Devaney chaos is stronger then
Li Yorke one.

Theorem 16 ([20]) Let pX, fq be a dynamical system such that f is chaotic
in the sense of Devaney. Then f is chaotic in the sense of Li and Yorke.

Theorem 17 ([10]) There is a dynamical system pX, fq which is chaotic in
the sense of Li and Yorke, but not in the sense of Devaney.
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3.5 Exercises

1. Prove that D : S1 Ñ S1 defined by Dpφq “ 2φ is transitive.

2. Prove that D : S1 Ñ S1 defined by Dpφq “ 2φ has dense set of periodic
points, and find out whether D is chaotic in the sense of Devaney or
Li and Yorke.

3. Prove the fact, that Tent map is conjugated to the Logistic map.

4. Verify that points 1{3, 1{4, 3{4 are eventually fixed, points 1{5, 3{5 are
eventually 2-periodic for the Tent map.

5. Prove the folloving statements:

(a) Let T be the Tent map. Let In,k denote the diadic interval rpk ´
1q{2n, k{2ns for any n P N and k “ t1, 2, 3 . . . 2nu. Then, T n

restricted to In,k is a linear homeomorphism onto I. That is, the
interval I is mapped onto In,k by T n.

(b) Using Exercise 5a prove: The set of periodic points is dense for
the Tent map.

(c) Using Exercise 5a prove: The set of eventually periodic points
which are not periodic is dense for T .

(d) Using Exercise 5a prove: The set of eventually fixed points which
are not fixed points is dense for T .

(e) Using Exercise 5a prove: For any n P N , the set tx P r0, 1s :
T npxq “ xu has 2n elements.

6. Calculate the Lyapunov exponents for all fixed points and for all prime
period two orbits of the following maps:

(a) fpxq “ ´x2 ` x` 2,

(b) fpxq “ 2x2 ´ 5x.

7. Calculate the Lyapunov exponents for all fixed points of the map D
defined in 3.5 Exercise 1.

8. Prove Lemma 15, Lemma 16, Lemma 17 and Lemma 21.
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9. Determine whether the Baker map B3pxq “ 3x mod 1, x P r0, 1q is
chaotic in the sense of Devaney and Li and Yorke, respectively.

10. Discuss whether the map F : 4 Ñ 4 given by F px, yq “ pxp4 ´ x ´
yq, xyq where 4 is a triangle with vertices p0, 0q, p0, 4q and p4, 0q is
chaotic in the sense of Devaney and Li and Yorke, respectively.
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Chapter 4

Fractals

Intuitively, a fractal is a set which is self-similar under magnification, a cor-
rect definition will be given later in this chapter. Before inquiring into the
mathematical basis, we introduce some well known examples.

The Koch curve
The initiator of the Koch curve is a straight line. The generator is ob-

tained by partitioning the initiator into three equal segments. Then remove
the middle third and replace it with an equilateral triangle, see Figure 4.1.

Put the length of the initiator equal 1. Then the generator consists of four
line segments each of length 1{3. So the total length of the generator is 4{3.
In the second step each of the four line segments acts as an initiator which
is replaced by the corresponding reduced generator. The newly constructed
curve contains 16 segments each of the length 1{32 and the length of the
whole curve is p4{3q2. Now, proceed with described construction infinitely,
the limiting curve is called the Koch curve. This curve has the following
properties:

• is not differentiable anywhere (i.e. it has no tangent line),

• its length is 8 since the n-th step line has the length p4{3qn,

• it is undoubtedly self-similar since every part is itself miniature of the
whole curve.

57
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(a) (b)

(c) (d)

Figure 4.1: Construction of the Koch curve. Case (a) corresponds to the ini-
tiator, case (b) corresponds to the first step Koch curve, case (c) corresponds
to the second step and case (d) corresponds to the third step.

The Koch snowflake

The initiator of the Koch snowflake is an equilateral triangle. The gen-
erator is obtained by partitioning each side of the initiator into three equal
segments. Then remove the middle third of each segment and replace it with
an equilateral triangle, see Figure 4.2.

Now, the second step will be analogous as in the previous example and
the limiting curve is called the Koch snowflake. This curve has the following
properties:
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• is not differentiable anywhere (i.e. it has no tangent line),

• its length is 8,

• the area bounded by this curve is finite, but we can never wrap a length
of a string around its boundary.

(a) (b)

(c) (d)

Figure 4.2: Construction of the Koch snowflake. Case (a) corresponds to
the initiator, case (b) corresponds to the first step Koch snowflake, case (c)
corresponds to the second step and case (d) corresponds to the third step.
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The Sierpinski Gasket
The initiator of the Sierpinski gasket is an equilateral triangle with sides

of unit length, thought of as a solid object. The generator is obtained by
partitioning of the initiator into four equal equilateral triangles (connect
midpoints of the three sides of the triangle) each with the side length 1{2.
Then remove the middle one, see Figure 4.3. Now repeat this procedure
with new initiator, the three triangles of side length 1{2. We get 32 new
triangles of side length p1{2q2. So, in the n-th step we get 3n triangles with
the side length p1{2qn. The limiting object is the Sierpinski gasket. It has
the following properties:

• is self-similar,

• has zero area:

Denote by T the area of the original initiator. In the first step we re-
move p1{4qT , in the second 3p1{4q2 T and in the n-th step 3n´1p1{4qn T .
So, the remover area equals to

p1{4q1 T ` 3p1{4q2 T ` ¨ ¨ ¨ ` 3n´1
p1{4qn T ` ¨ ¨ ¨ “ T.

Consequently, the Sieprinski gasket has zero area.

4.1 Dimension of a fractal

The main aim of this section is to introduce the rigorous definition of fractals.
This definition is due to B. Mandelbrot [31] who constructed so called fractal
dimension and compared it with the topological one, his concept corresponds
to the notion of capacity used by Kolmogorov [22].

More precisely, a fractal is a geometrical object that is linked to the, at
least one, property [1]:

• a fractal dimension is greater then topological dimension (see Defini-
tion 13),

• self-similarity,

• it is an attractor of IFS (iterated function system, see Definition 16).
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(a) (b)

(c) (d)

Figure 4.3: Construction of the Sierpinski gasket. Case (a) corresponds to
the initiator, case (b) corresponds to the first step Sierpinski gasket, case (c)
corresponds to the second step and case (d) corresponds to the third step.

This properties are not coherent, that means that there are examples of
geometrical object having at least one, (exactly one or two) of properties
afore mentioned. For example, it is possible to construct a geometrical object
that can be generated as an attractor of IFS, its fractal dimension is greater
then topological one, but is not self-similar, see Example 18. The relation
of the three properties can be depicted, as shown in Figure 4.4, by a Venn
diagram. Point out, that the classical concept of a fractal fulfills all three
properties, and as a folklore it is assumed of having these properties.

The topological dimension intuitively gives us that a line has the topolog-
ical dimension one, a solid square two and finally a solid cube three.
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IFS

fract. dim.

self-sim.

Figure 4.4: Venn diagram of three properties defining a fractal.

Definition 13 A set S has the topological dimension 0 if every point in
S has an arbitrary small neighborhood whose boundary does not intersect
S. A set S has the topological dimension d ą 0, if every point in S has
an arbitrarily small neighborhood whose boundary intersects S in a set of
topological dimension d ´ 1 and d is the least positive integer for which this
holds. The topological dimension of a set S is denoted by DtoppSq.

It is easy to see that the set of all integers, all rational numbers or the set
of all irrational numbers have zero topological dimension. Any solid circle
or square in the plane has the topological dimension 2. Nevertheless a circle
line in the plane has the topological dimension 1.

Now the topological dimension of both, Koch curve and snowflake again
equals to one.

Suppose now that the line segment of the unit length is divided into N
equal subsegments with the scaling quotient h. Obviously, Nh “ 1, which
means N “ p1{hq1. If we have a solid square in the plane and we divide it
into N equal sub-squares with the scaling ratio h, we get Nh2 “ 1. Now on
divide a solid cube into N equal sub-cubes with the scaling quotient h then
again Nh3 “ 1. If we extend our construction into higher dimensions we get
Nhd “ 1, it means N “ p1{hqd. The exponent corresponds to the dimension
of an object. Note that

d “
lnpNq

lnp1{hq
.



4.1. DIMENSION OF A FRACTAL 63

The relationship may be also understood in the opposite way. Observe
that if we magnify a line 3 times its length is 3 times greater. If a square is
three times magnified its area is 32 times greater. Magnifying a cube three
times its volume rises 33 times.

Let us apply this approach to the Sierpiski gasket. It consists of its three
half sided copies. Hence, in this case N “ 3 and h “ 1{2. We obtain

D “
lnpNq

lnp1{hq
“

lnp3q

lnp2q
.

We can define the similarity dimension

DsimpSq “
lnpNq

lnp1{hq
.

Example 17

The Koch snowflake It is easy to observe that the Koch snowflake Ks
has the initiator consisting of three line segments each made up of four line
segments and with the scaling quotient 1{3, that is N “ 4 and h “ 1{3. So,
DsimpKsq “ ln 4{ ln 3 « 1.26 while DtoppKsq “ 1.

The Cantor set The first fractal of this text, the Cantor set, has N “ 2
and h “ 1{3. So, DsimpCq “ ln 2{ ln 3 « 0.63 while DtoppCq “ 0.

The similarity dimension may be also applied to only statistically self-
similar objects.

Example 18

A non self-similar fractal NSF As an initiator pick a unit solid square.
As generator: divide initiator into nine equal squares and delete randomly
one of them. Now, replace each of remaining subsquares with the scaled
generator. The limiting object is a fractal, but is not self-similar. Easily,
N “ 8 and h “ 1{3, so

DsimpNSF q “ lim
nÑ8

lnpNphqq

lnp1{hq
“ lim

nÑ8

lnp8nq

lnp3nq
“ ln 8{ ln 3 « 1.89

while DtoppNSF q “ 1.

Note that there exist a great deal of approaches to the fractal dimension
(see e.g. [15]). Nevertheless, for any self-similar set S the fractal dimension
DfracpSq corresponds to the similarity dimension DsimpSq.
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Definition 14 A set S Ă Rn is a fractal if

DtoppSq ă DfracpSq.

Example 19 As it was computed before, the Koch curve, the Koch snowflake,
the Cantor set and the Sierpinski gasket are fractals as defined in 14.

4.2 Iterated function systems

The main purpose of this section is to formulate mathematical background
for correct construction of fractals.

We start with a linear map F : R2 Ñ R2 defined by:

1. F px` yq “ F pxq ` F pyq and x, y P R2,

2. F pcxq “ cF pxq for any c P R and x P R2.

It is well known that each linear map may be represented by a matrix M :

M “

¨

˚

˝

a b

c d

˛

‹

‚

.

So, the map F can be written in the form

F

¨

˚

˝

x1

x2

˛

‹

‚

“

¨

˚

˝

a b

c d

˛

‹

‚

¨

˚

˝

x1

x2

˛

‹

‚

“

¨

˚

˝

ax1 ` bx2

cx1 ` dx2

˛

‹

‚

.

Moreover, a linear map F is called affine if it can be represented in the form:

F

¨

˚

˝

x1

x2

˛

‹

‚

“

¨

˚

˝

a b

c d

˛

‹

‚

¨

˚

˝

x1

x2

˛

‹

‚

`

¨

˚

˝

e

f

˛

‹

‚

.

Assume now, that pX, dq is a metric space. A map F : X Ñ X is called
a contraction if there is a factor 0 ă α ă 1, called contraction factor, such
that for any x, y P X

dpF pxq, F pyqq ď αdpx, yq.
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It is easily seen that for any affine map represented by 2ˆ 2 matrix M it
holds

dpF pxq, F pyqq “ dpMx,Myq ď ||M ||dpx, yq.

The map represented by this matrix M is contraction if ||M || ă 1 which
appears when all eigenvalues are in absolute values less then one, i.e. |λi| ă 1
for each i. Here

dpMx,Myq “ |Mx´My|.

Let us recall that
||M || “ sup

|x|ď1

t|Mx|u

where |px1, x2q| “ |x1| ` |x2|, x “ px1, x2q
T and y “ py1, y2q

T.
Let us also remind similitudes. A map F : X Ñ X is called a similitude

if there is a factor 0 ă α ă 1, such that for any x, y P X

dpF pxq, F pyqq “ αdpx, yq.

Note that in R2 a similitude is an affine contraction where the matrix M is in
addition orthogonal. It plays a key role in calculation of similarity dimension.

Let us proceed to the class of closed bounded subsets of Rn “where fractals
really live”. Let pRn, dRnq be a metric space with the metric dRn and H
denotes the set of all closed and bounded subsets of Rn. Now, we would like
to endow the space H with a suitable metric. Naturally, for A,B P H and
any a P A one defines

dpa,Bq “ inftdRnpa, bq : b P Bu

and the distance between A an B could be defined

dpA,Bq “ suptdpa,Bq : a P Au.

Unfortunately, d is not a metric. If we putA “ tpx, yq P R2 : px`1q2`y2 ď 1u
and B “ tpx, yq P R2 : px ´ 3q2 ` y2 ď 4u then we can easily compute that
dpA,Bq “ 3 and dpB,Aq “ 5. Consequently, dpA,Bq ‰ dpB,Aq so d does not
preserve the axiom of commutativity. This problem is solved in the following
definition.

Definition 15 Let A,B P H. Then the Hausdorff distance dH between the
sets A and B is defined

dHpA,Bq “ maxtdpA,Bq, dpB,Aqu.
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It is easy to verify, that dH is really a metric, proof is left to the reader as
exercise. Returning to our foregoing counterexample dHpA,Bq “ 5. Hence,
pH, dHq is a metric space.

The following lemma is a very important observation needed in the The-
orem 18. For the formulation we need the completeness of the metric space,
that is each Cauchy sequence is convergent in this space (for correct definition
see e.g. [14]).

Lemma 23 The pH, dHq is a complete metric space.

Theorem 18 Let pX, dq be a complete metric space and F : X Ñ X be a
contraction with the contraction factor c. Then F has a unique fixed point
p P X. Moreover, this fixed point p is a unique global attractor, that is for
any x P X it holds

F n
pxq ÝÝÝÑ

nÑ8
p.

We are ready to introduce iterated function systems.

Definition 16 Let F1, F2, . . . , FN be a family of contractions on Rk.Then
the system

tRk : Fi, i “ 1, 2, . . . , Nu

is called an iterated function system, briefly IFS.

Let Fi be a family of contractions in Rn for i “ 1, 2, . . . , N as above.
Define a map F : H Ñ H by

F pSq “ F1pSq Y F2pSq Y ¨ ¨ ¨ Y FNpSq,

where
FipSq “

ď

xPS

Fipxq, i “ 1, 2, . . . , N,

for each S P H.
The following lemma shows that the union map F is again a contraction

while all maps in the family are contractions, proof is left to the reader and
could be found in [14].

Lemma 24 Let F1, F2, . . . , FN be a family of contractions on Rk with con-
traction factors αi. Then the union F “

ŤN
i“1 Fi is again a contraction with

a contraction factor α “ maxi“1,2,...Ntαiu.
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According to Theorem 18 and the previous lemma, for any set S P H,
the sequence F npSq converges to the closed and bounded set AF , while n
tends to the infinity, which is called the attractor for F . Hence, the attractor
depends only on the space and the contractions comprising the IFS. See the
following theorem, its entire proof could be found in [14].

Theorem 19 Let F1, F2, . . . , FN be a family of contractions on Rk then there
is a unique attractor AF P H for the union map F “

ŤN
i“1 Fi. Moreover,

for any B P H the sequence F npBq converges to AF in the Hausdorff metric
while n tends to the infinity.

This attractor AF is an invariant set since F pAF q “ AF . Moreover it
follows that

AF “ F pAF q “ F1pAF q Y F2pAF q Y ¨ ¨ ¨ Y FNpAF q.

This means that the attractor consists of its contracted copies, hence it is
self-similar.

Definition 17 If a set S is an attractor of an iterated function system then
it is called self-similar.

The definition of self-similarity is not unique, further conditions are often
assumed, for example any two tiles FipAF q, FjpAF q of the attractor are
supposed not to have a significant overlap or all the contractions need to be
similitudes. These two additional conditions are necessary for the calculation
of the similarity dimension of attractors (see [21], [15]). It is obvious that
the attractors in our examples are generated by similitudes and their tiles do
not overlap significantly. Hence their similarity dimension may be calculated
easily.

Now, we return to examples of IFSs.

IFS for the Koch curve

We will derive the contractions comprising the IFS related to the Koch
curve from the initiator and generator. The initiator is the unit closed interval
r0, 1s and the generator consists of four segments Ki each of length 1{3 so we
have to define four contractions Fi respectively.
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F1 We obtain K1 scaling the initiator by a factor 1{3, hence

F1

¨

˚

˝

x1

x2

˛

‹

‚

“

¨

˚

˝

1{3 0

0 1{3

˛

‹

‚

¨

˚

˝

x1

x2

˛

‹

‚

.

F2 We obtain K2 contracting the initiator by a factor 1{3 and rotating in
a counterclockwise direction by an angle π{3 and then translating by a
vector p1{3, 0qT . Hence,

F2

¨

˚

˝

x1

x2

˛

‹

‚

“

¨

˚

˝

1{3 cospπ{3q ´1{3 sinpπ{3q

1{3 sinpπ{3q 1{3 cospπ{3q

˛

‹

‚

¨

˚

˝

x1

x2

˛

‹

‚

`

`

¨

˚

˝

1{3

0

˛

‹

‚

“

“

¨

˚

˝

1{6 ´
?

3{6

?
3{6 1{6

˛

‹

‚

¨

˚

˝

x1

x2

˛

‹

‚

`

¨

˚

˝

1{3

0

˛

‹

‚

.

F3 We get K3 contracting the initiator by a factor 1{3 and rotating in a
clockwise direction by an angle π{3 and then translating by a vector
p1{2,

?
3{6qT . Hence,

F3

¨

˚

˝

x1

x2

˛

‹

‚

“

¨

˚

˝

1{3 cosp´π{3q ´1{3 sinp´π{3q

1{3 sinp´π{3q 1{3 cosp´π{3q

˛

‹

‚

¨

˚

˝

x1

x2

˛

‹

‚

`

`

¨

˚

˝

1{2

?
3{6

˛

‹

‚

“

“

¨

˚

˝

1{6
?

3{6

´
?

3{6 1{6

˛

‹

‚

¨

˚

˝

x1

x2

˛

‹

‚

`

¨

˚

˝

1{2

?
3{6

˛

‹

‚

.
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F4 We get K4 contracting the initiator by a factor 1{3 and translating by

a vector p2{3, 0qT . Hence,

F4

¨

˚

˝

x1

x2

˛

‹

‚

“

¨

˚

˝

1{3 0

0 1{3

˛

‹

‚

¨

˚

˝

x1

x2

˛

‹

‚

`

¨

˚

˝

2{3

0

˛

‹

‚

.

Consequently, the Koch curve is obtained as a limit of Orb`F pSq, where S P H
and F is the union map related to the IFS tR2 : F1, F2, F3, F4u. Note that
we can choose any closed bounded set S P H not only S “ I according to
Theorem 19.

IFS for the Sierpinski gasket

The initiator is now a solid equilateral triangle Tr and the family of
contractions is given by

F1

F1

¨

˚

˝

x1

x2

˛

‹

‚

“

¨

˚

˝

1{2 0

0 1{2

˛

‹

‚

¨

˚

˝

x1

x2

˛

‹

‚

.

F2

F2

¨

˚

˝

x1

x2

˛

‹

‚

“

¨

˚

˝

1{2 0

0 1{2

˛

‹

‚

¨

˚

˝

x1

x2

˛

‹

‚

`

¨

˚

˝

1{2

0

˛

‹

‚

.

F3

F3

¨

˚

˝

x1

x2

˛

‹

‚

“

¨

˚

˝

1{2 0

0 1{2

˛

‹

‚

¨

˚

˝

x1

x2

˛

‹

‚

`

¨

˚

˝

1{4

?
3{4

˛

‹

‚

.

Consequently, the IFS is tR2 : F1, F2, F3u and we get the Sierpinski gasket

G “ lim
nÑ8

F n
pSq, S P H.
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4.3 The collage theorem

The following theorem was developed in [9] as a core of the patented IFS
compression algorithm.

Theorem 20 (The collage theorem) Let tS : F “
ŤN
i“1 Fiu be an iter-

ated function system with contraction factors α1, α2, . . . , αN and

α “ max
1ďiďN

tαiu

for which AF is the attractor. If for any ε ą 0

dHpS,
N
ď

i“1

FipSqq ă ε,

then
dHpS,AF q ă

ε

1´ α
.

Proof: The proof employs Theorem 18. Let F “
ŤN
i“1 Fi. Then limnÑ8 F

npSq “
AF . Hence

dHpS,AF q “ dHpS, lim
nÑ8

F n
pSqq “ lim

nÑ8
dHpS, F

n
pSqq ď

ď limnÑ8pdHpS, F pSqq `dHpF pSq, F
2pSqq`

` ¨ ¨ ¨ ` dHpF
n´1pSq, F npSqqq ď

ď lim
nÑ8

dHpS, F pSqq
`

1` α ` α2
` ¨ ¨ ¨ ` αN´1

q
˘

ď
ε

1´ α
.

˝

4.4 Exercises

1. Calculatethe topological and fractal dimension of fractals generated by
generators given in Figure 4.5.

2. Draw the third, fourth and fifth iterations of the fractals generated by
generators given in Figure 4.5.

3. Find the IFS for initiators and generators given in Figure 4.5.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.5: Initiators and generators for examples given in 4.4.
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Chapter 5

Topological dynamics

5.1 Fixed point Property

Let pX, fq be a (discrete) dynamical system, that is X is a compact metric
space and f : X Ñ X is a continuous map. The space X have the fixed point
property if for every continuous f the pX, fq has a fixed point (for more see
e.g. [42]).

Theorem 21 (Brower) Every compact convex space has a fixed point prop-
erty.

This theorem means that for given space, e.g. n- dimensional cube, any
continuous map has at least one fixed point (fore details see e.g. [43]).

Let us pint out that both conditions from the Brower’s fixed point theorem
are essential and could not be excluded.

5.1.1 Period order

Let us consider the following ordering of natural numbers N:

73
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3 ă 5 ă 7 ă 9 ă . . . ă p2n` 1q ¨ 20 ă . . .

3 ¨ 2 ă 5 ¨ 2 ă 7 ¨ 2 ă 9 ¨ 2 ă . . . ă p2n` 1q ¨ 21 ă . . .

3 ¨ 22 ă 5 ¨ 22 ă 7 ¨ 22 ă 9 ¨ 22 ă . . . ă p2n` 1q ¨ 22 ă . . .

3 ¨ 23 ă 5 ¨ 23 ă 7 ¨ 23 ă 9 ¨ 23 ă . . . ă p2n` 1q ¨ 23 ă . . .

...

. . . ă 2n ă . . . ă 23 ă 22 ă 2 ă 1

It consists of:

• the odd numbers in increasing order,

• 2 times the odds in increasing order,

• 4 times the odds in increasing order,

• 8 times the odds, etc.,

• at the end we put the powers of two in decreasing order.

Theorem 22 (Sharkovskii [36]) Let pR, fq be a discrete dynamical sys-
tem. If there is a periodic point for f with the period n, then there is a
periodic point of the map f with the period m, for every m P N such that
n ă m.

It is worthy to note that the it is not possible to extend the above stated
theorem on general compact metric spaces. Even in one-dimensional case
counter examples can be easily constructed, e.g. rotation Rλ on the unit
circle S1 for λ “ 1{3 has only three cycles. Fortunately, the statement of
Theorem 22 can be preserved having additional assumption (and also in
other space types):

Theorem 23 (Block [3]) Let f be a continuous map on the circle S1. Sup-
pose f has a fixed point and a periodic point of period n ą 1. Then (at least)
one of the following holds.

(i) For every integer m with n ă m, there is periodic point of f with period
m.
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(ii) For every integer m with n ă m, there is periodic point of f with period
m.

The period structure of a dynamical system is not ”self-standing”, it has
connection to its chaos behavior:

Theorem 24 (Li-Yorke [26]) Any continuous map on the interval I hav-
ing point of period three is chaotic in the sense of Li and Yorke.

5.1.2 Period doubling

Let us consider the quadratic family Fµpxq “ µxp1 ´ xq on the unit closed
interval r0, 1s. It was pointed out that for µ P p0, 3s the map Fµ has only one
fixed points. It is possible to verify that for µ P p3, 1 `

?
6s the map Fµ has

a two cycle (two points with period 2). It was proved that for the quadratic
family as µ increases new periods are added to the list of periods appearing
and never disappear once they have occurred, see e.g. [33].

Let µn be the infimum of the parameter values µ ą 0 for which Fµ has
a point of period 2n. By the Sharkovskii theorem µn ď µn`1. Let µ8 be
the limiting value of the µn as n tends to the infinity. This sequence of
bifurcations is often called the period doubling route to choas.

A natural question is to ask is the rate of convergence of the parameter µn
to µ8. In general, we want to define a quantity which measures the geometric
rate of convergence to the limiting value. Feigenbaum (1978) calculated the
rate of convergence by means of the limit

δ “ lim
nÑ8

µn ´ µn´1

µn`1 ´ µn
.

This value δ is called Feigenbaum constant.
The Feigenbaum constant of the quadratic family equals to

δ “ 3.569945672 . . . .

5.2 Topological dynamics

The main aim of this chapter is focussed on topological dynamics of discrete
dynamical systems. Namely, omega limit sets, recurrence, minimality and
transitivity.
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5.2.1 Omega limit sets

Let pX, fq be a discrete dynamical systems, recall that it is assumed that X
is a compact metric space and f is continuous. Now we can define omega
limit set of x under f

ωf pxq “ ty P X : Dni Õ 8^ fnipxq Ñ yu

or equivalently

ωf pxq “
č

nPN

tfkpxq : k ą nu.

Let us denote by CpXq the set of all continuous maps on X, for simplicity.

Lemma 25 Let f P CpXq and x P X then

1. ωf pxq ‰ H,

2. ωf pxq is a closed set,

3. ωf pxq “ fpωf pxqq.

Proof:

1. It directly follows form the fact that X is a compact space.

2. Let us denote yk arbitrary sequence from ωf pxq such that yk Ñ y P X
for k ě 1. The aim is to show that y P ωf pxq. For every j ě 1
let us pick kj such that dpykj , yq ă 1{2j. Let us pick nj such that
dpfnjpxq, ykjq ă 1{2j and nj ă nj`1. Then dpfnjpxq, yq ă 1{j and
y P ωf pxq.

3. Obviously ωf pxq Ą fpωf pxqq. On contrary, let us assume that y P ωf pxq
and fnipxq Ñ y. Then tfni´1pxqu has a convergent subsequence, hence
fnij

´1
pxq Ñ z P X. Then fnij pxq Ñ fpzq a fpzq “ y. Consequently

z P ωf pxq and ωf pxq “ fpωf pxqq.

˝

Theorem 25 ([37]) Every countable omega limit set contains a cycle.
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Proof: Let W0 be a countable omega limit set. W0 contains an isolated
point x1. If there will be no such point in W0 then W0 will be perfect, hence
uncountable. Let us put W1 “ ωf px1q, obviously W1 Ă W0. So we can define
a transfinite sequence Wβ. Then

Ş

αăβWβ contains a cycle. ˝

Example 20 The omega limit sets could be finite, infinite countable and also
uncountable, in general.

• The first case corresponds to a cycle.

• Let us construct x1, resp. x2 from Σ2 such that ωσpx1q is finite and
ωσpx2q is countable infinit. As x1 one can pick arbitrary periodic se-
quence with period k. Its omega limit set is finite and contains exactly
k points. If we put x1 “ 101 the

ωσpx1q “ t101, 011, 110u.

Now, let us construct a point whose omega limit set is countably infinite.
Let us put

x2 “ 10 100 1000 10000 100000 . . . .

It follows that

ωσpx2q “ t0u Y t00 . . . 0
loomoon

k

10 |k “ 0, 1, 2, . . . u.

• For an example of uncountable omega limit set it suffices to pick irra-
tional rotation.

Theorem 26 Let f P CpXq be topologically conjugated with g P CpY q by a
conjugacy h. Then hpωf pxqq “ ωgphpxqq.

Proof: Let us denote be A1 the set of all accumulation points of the set
A. Then ωgphpxqq “ ωh˝f˝h´1phpxqq “ ptph ˝ f ˝ h´1qnphpxqqu8n“0q

1 “ ptph ˝
fqnpxqu8n“0q

1 “ hptpfqnpxqu8n“0q
1 “ hpωf pxqq. ˝
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5.2.2 Recurrence and minimality

The point x P X is recurrent for the map f if for every open neighborhood
U of the point x there is n ě 1 such that fnpxq P U . The set of all recurrent
points of f is denoted by Recpfq.

Let us note that it is possible to define the recurrent point, equivalently,
analogously to the definition of omega limit set:

Dnk Õ 8 : fnkpxq Ñ x (5.1)

Theorem 27 Let f P CpXq then:

1. x P Recpfq ðñ x P ωf pxq,

2. Recpfq ‰ H.

Proof: 1. The assertion follows directly form the definitions of recurrent
point and omega limit set.

2. Let F be a systems of all nonempty closed invariant sets such that
Y Ă X. This system F is obviously nonempty, and is ordered by the
ordering ”Ă”. Now, by Zorn’s lemma the system F has a minimal
element Y0. We show that the point x P Y0 is recurrent. Since Y0 and
invariant under f , it follows Orb`f pxq Ă Y0. The set Orb`f pxq is also
closed and invariant. From the minimality of Y0 it follows Y0 “ Y .
That means that for every neighborhood of the point x contains some
fnpxq for n ě 1. Consequently Recpfq ‰ H. (It is possible to prove
this theorem without using Zorn’s lemma, see e.g. [16].)

˝

Example 21 The easiest example or recurrent points are periodic ones. As
nontrivial example one can think about points from Σ2 that have dense orbit.
The construction of nontrivial recurrent points will be given in 23.

Definition 18 The set M Ă X is called minimal under the map f if it is

1. nonempty and closed,

2. invariant and

3. has no proper subset with the previous two properties.
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Lemma 26 The nonempty set M is minimal if and only if ωf pxq “ M for
every x PM .

Proof: If M is minimal for every x P M then ωf pxq is nonempty, closed,
and invariant (see Lemma 25). So M “ ωf pxq.

On the other hand, if ωf pxq “ M for every x P M , then M is nonempty,
closed, and invariant (see Lemma 25). Let us assume that there is nonempty
closed and invariant set N ĂM . If y P N then M “ ωf pyq Ď N and M “ N .

˝

Theorem 28 Let f be a homeomorphism on X. Then the following state-
ments are equivalent:

1. X is minimal under f ,

2. the only closed sets E Ă X with the property fpEq “ E are H and X,

3. for every nonempty open set U Ă Xit holds

8
ď

n“´8

fnpUq “ X.

Proof: Let us prove the following implications:

1. ñ 2. Let us assume that X is minimal under f , E ‰ H is closed and
fpEq “ E. If x P E then Orb`f pxq Ă E and X “ Orb`f pxq Ă E. So, X “ E.

2.ñ 3. If U is nonempty and closed, then E “ Xz
Ť8

n“´8 f
npUq is closed

and fpEq “ E. Since E ‰ Xit follows E “ H.

3. ñ 1. Let x P X and U be a nonempty and closed subset of X. Then
there is n P Z such that x P fnpUq. Then f´npxq P U and Orb`f pxq “ X. ˝

Theorem 29 For every homeomorphism there is a minimal set.

Proof: Let F be a system of all nonempty closed sets Y Ă X. The systems
F is obviously nonempty (X P F), let us order this family by the ordering
”Ă”. By Zorn’s lemma F has a minimal element Y0, which is nonempty,
closed and invariant set Y0 that is minimal. ˝
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The above given proof uses the Axion of choice that can cause some
unpleasant reactions of some mathematicians, hence an alternative proof is
desirable without using equivalence of the Zorn’s lemma. Such proof can be
found, e.g., in [39].

It is worthy to note, that each minimal set is finite (corresponds to the
cycle) or uncountable. Hence, there is no countable infinite minimal set, see
Theorem 25.

Definition 19 The point x P Xis uniformly recurrent under the map f if
x P ωf pxq and ωf pxq is minimal. The set of all uniformly recurrent points of
f is denoted by URpfq.

Example 22 The sequence s‹ P Σ2 constructed in the section Symbolic dy-
namics, with dense orbit, is obviously recurrent but not uniformly recurrent
since its omega limit set is not minimal.

Example 23 Let us construct uniformly recurrent point in Σ2. Let us firstly
decompose the set of all positive integer into infinite subsets of infinite pair-
wise disjoint sets:

N “ tNn “ 2np1` 2N0q, n P N0u.

Now, pick A Ă Σ2 the set of all sequences containing infinitely many ones
and infinitely many zeros. This set A is obviously uncountable. Now, let us
define a map that makes ”concatenations” of each point from A in such a
way to have uniformly recurrent point. So, ϕ : A Ñ Σ2 define by: ϕpxq “
y1y2y3 . . . where yk “ xs if k P Ns. Hence, ϕpxq “ x1x2x1x3x1x2x1x4x1x2x1x3x1 . . . .
The point ϕpxq is uniformly recurrent every its block is eventually periodic.
Moreover, ωσpϕpxqq is uncountable set.

The map ϕ is injective, so the set ϕpAq is also uncountable and every its
point is uniformly recurrent with uncountable omega limit set.

The first property of the following theorem directly follows form the def-
inition of the uniformly recurrent point and the second one can be shown
analogously as in the case of recurrent point.

Theorem 30 Let f P CpXq then:

1. if M is minimal under f then every point from M is uniformly recur-
rent,

2. URpfq ‰ H.
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5.2.3 Transitivity

Definition 20 The map f P CpXq is (onesided) transitive, if there is x P X

such that Orb`f pxq “ X. Moreover, if f is homeomorphism, we call f as

(twosided) transitive, if there is x P X such that Orbf pxq “ X.

Theorem 31 Let f P CpXq and fpXq “ X. Ten the following are equival-
lent:

1. f P CpXqis (onesided) transitive,

2. if E is closed subset of X and E Ă f´1pEq, then E “ X or E nowhere
dense set,

3. for every nonempty sets U, V Ă X there is n P N such that fnpUqXV ‰
H,

4. the set of all x such that Orb`f pxq “ X, is dense and Gδ.

Proof: Let us prove the following implications:
1. ñ 2. Let us assume that Orb`f px0q “ X and E Ă f´1pEq, where

E Ă X is nonempty closed set. Let us alos assume that U Ă E is open set.
Then there is p P N such that fppx0q P U and tfppx0q, n ą pu Ă E. Then
tx0, fpx0q, . . . f

p´1px0quXE “ X and fptx0, fpx0q, . . . f
p´1px0quXEq “ fpXq.

So tfpx0q, . . . f
p´1px0qu X E “ X. After p´ 2 iterations one gets E “ X.

2.ñ 3. If U, V Ă X are nonempty and closed sets then
Ť8

n“1 f
´npUq Ă X

jis open. Then fp
Ť8

n“1 f
´npUqq Ă

Ť8

n“1 f
´npUq and by the second assump-

tion the set
Ť8

n“1 f
´npUq is dense in X. Hence fnpUq X V ‰ H.

3.ñ 4. Let use denote tUnu
8
n“1 base of the topology on X. Then the set

of all points whose orbit is dense in X can be written as
Ş8

n“1

Ť8

m“0 f
´mpUnq.

Then by the third assumption
Ş8

m“0 f
´mpUnq is dense and Gδ.

4.ñ 1. Is trivial. ˝

Definition 21 Let f P CpXq, then the point x is wandering, if there is
open neighborhood U of the point x such that for n ě 0 the sets f´npUq are
pairwise disjoint. A point x is nonwandering, if it is not wandering. The set
of all non-vangering points of f is denoted by Ωpfq (that is Ωpfq “ tx P X :
@ open set U of the point x Dn ě 1 : f´npUq X U ‰ Hu).

Theorem 32 For f P CpXq it holds:
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1. Ωpfq is closed,

2.
Ť

xPX ωf pxq Ă Ωpfq, (Ωpfq ‰ H),

3. Perpfq Ă Ωpfq,

4. fpΩpfqq Ă Ωpfq, moreover if f is homeomorphism then fpΩpfqq “
Ωpfq,

5. if E is minimal for f , then E Ă Ωpfq.

Proof: 1. It follows from the definition of Ωpfq that XzΩpfq is open set.

2. Let x P X and y P ωf pxq. We are going to show, that y P Ωpfq. Let
V be a neighborhood of y. We would like to find n ě 1 such that
f´npV q X V ‰ H, we are looking for n ě 1 and z P V such that
fnpzq P V . We know that fnipxq Ñ y for some sequence tniu. Let
us pick ni0 ă ni1 such that fn0pxq P V and fn1pxq P V . Finally, put
n “ ni1 ´ ni0 and z “ fn0pxq.

3. If fnpxq “ x, n ą 0, and U is a neighborhood of x, then x P f´npUqXU .

4. Let x P Ωpfq and V be a neighborhood of fpxq. Then f´1pV q is the
neighborhood of the point x, se there is n ą 0 such that f´pn`1qpV q X
f´1pV q ‰ H. Hence, f´npV q X V ‰ H and fpxq P Ωpfq. Moreover, f
is homeomorphism, so Ωpfq “ Ωpf´1qand hence f´1Ωpfq Ă Ωpfq.

5. Follows directly from (2).
˝

Definition 22 For f P CpXq we say that:

1. f is transitive, if for every open sets U, V Ă X there is n P N such that
fnpUq X V ‰ H,

2. f is totaly transitive if for every n P N the map fn is transitive,

3. f is weakly mixing, if f ˆ f : X ˆX Ñ X ˆX is transitive,

4. f is mixing if for every nonempty open sets U, V Ă X there is n P N
such that for every N ą n it holds fNpUq X V ‰ H.
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Let us point out that transitivity is equivalent with onesided transitivity,
see Theorem 31.

Note, that the property of weakly mixing is possible to define analogously
to the transitivity, that is f is weakly mixing if for every three nonempty
open sets U, V,W Ă X there is n P N such that fnpUq X W ‰ H and
fnpV q XW ‰ H. So it obviously follows:

Theorem 33 For f P CpXq the following holds:
f is mixing ñ f is weakly mixing ñ f is totally transitive ñ f is transitive.

Remark 9 To the end, let us note that the above mentioned dynamical prop-
erties are also observable on invariant subsets of the state space. More pre-
cisely it is possible to find portions of a given dynamical system on which the
property holds but is not working on its union.

For example, the family of logistic maps fµ : r0, 1s Ñ r0, 1s, where 0 ď
µ ď 4, by

fµpxq “ µxp1´ xq

can be demonstrated. The interval Iµ “ rf
2
µp1{2q, fµp1{2qs is called the core

of fµ, when µ P p2, 4s, see Figure 5.1. For the choice of parameter µ P r0, 2s
the interval Iµ is still well defined but does not have such nice properties.
Namely, I2 “ t1{2u, I0 “ t0u and for µ P p0, 2q it is not invariant under fµ,
hence not remarkable in these cases. The core Iµ is strongly invariant, that
is fµpIµq “ Iµ, and every point from p0, 1q is attracted to Iµ. The dynamics
on the core can be very rich. For example, in [8] the authors show that for
the family of tent maps the dynamics on the core is topologically exact for
some range of parameters, which, generally speaking, means that most rich
dynamical behavior is present in the core. In the case of logistic maps, the
calculations are much harder and spectrum of possible dynamical behaviors is
richer. However, it is known that for some parameters the dynamics on the
core of logistic map is the same (in the sense of topological conjugacy) as on
the core of tent map with slope corresponding to µ (e.g. see [11]).

5.2.4 Exercieses

Prove the following sttements:

a) The map f P Cpxq is transitive iff there is x P X with dense orbit.
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Figure 5.1: Graph of fµ for µ “ 3.8 and the graph restricted to the core Iµ
(bounded by box).

b) The map f is called bitransitive if f 2 is transitive. If f P CpIq is
bitransitive, then fn is transitive for every n P N. Find a countra
example for the opposite implication.

c) The set of all periodic points of transitive map f P CpIq is dense in I.

d) Prove Theorem 33 and find countra examples to given implications.

e) The Tent map T is transitive.



Chapter 6

Simulations of dynamical
properties

This chapter is devoted to the Matlab R© commands that are used for illus-
trating of dynamical properties. The scripts and functions listed in this
chapter are very easy and they are written without using stronger tools like
Simulink R©. For better results of simulations it will be useful to use some
stronger tools like Simulink R© and it is left to the reader to improve given
source codes and discuss their flanks. Given Listings could be found in a
different forms on the Internet and it is also possible to rewrite them into
Mathematica R© or Maple R©.

6.1 Elementary tools

Time series

Time series could be simulated in several ways in Matlab R©, here we use
the for loop. In Listing 6.1 there are commands of the 1.17 model that was
given in Example 4. In the following Listing 6.2 there are provided commands
for a script of the influenza model that was introduced in Example 5.

Iterations and Cobweb pot

For simulations of iterations at a point and cobweb plot we use a function
handle in Matlab R© that provides a means of calling a function indirectly.
In Listing 6.3 there are given commands for iterations where iterates func-
tion is defined, this function has three parameters. If we pick fcn = @(x)

4*x.*(1-x) as a function that will iterate our initial point x0 = 0.1 and

85
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Listing 6.1: Iteration of the point

1 N=55; % the number of iterates

2 format long e;

3

4 X=zeros(N,1);

5 Y=zeros(N,1);

6 t=zeros(N,1);

7

8 X(1)=1.1; % x-coordinate of the initial point

9 Y(1)=1.9; % y-coordinate of the initial point

10

11 for i=1:N-1;

12

13 X(i+1)=X(i)*(4-X(i)-Y(i));

14 Y(i+1)=X(i)*Y(i);

15

16 t(i+1)=i;

17 end

18

19

20 plot(t(1:end),X(1:end),t(1:end),Y(1:end),’r’);

21 xlabel(’Time [n]’,’FontSize’,18);

22 ylabel(’Predator and Prey [Q_n, P_n]’,’FontSize’,18);

23 legend(’Q_n’,’P_n’);
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Listing 6.2: Iteration of the point

1 NN=50; % the number of iterates

2

3 I=zeros(NN,1);

4 R=zeros(NN,1);

5 NC=zeros(NN,1);

6

7 t=zeros(NN,1);

8

9 format long e;

10

11 N=300000; % initial parameters of the model

12 I(1)=0.02*N;

13 R(1)=0;

14 NC(1)=0;

15

16 for i=1:NN-1;

17

18 nc=(1/(N)).*I(i)*(N-I(i)-R(i));

19 I(i+1)=I(i)-1/7*I(i)+nc;

20 R(i+1)=R(i)+1/7*I(i);

21 NC(i+1)=(1/(N)).*I(i)*(N-I(i)-R(i));

22

23 t(i+1)=i;

24 end

25

26 plot(t(1:end),I(1:end),...

27 ...t(1:end),R(1:end),’r’,t(1:end),NC(1:end),’g’);

28 xlabel(’Time [n]’,’FontSize’,18);

29 ylabel(’I_n, R_n, NC_n’,’FontSize’,18);

30 legend(’I_n’,’R_n’,’NC_n’);
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we iterate it N = 10 times, we get a vector 0.1, 0.36, 0.9216, 0.28901376,
0.82193922612265, 0.585420538734197, 0.970813326249438, 0.113339247303761,
0.401973849297512, 0.961563495113813, 0.147836559913285.

Now, in Listing 6.4 there are commands for a cobweb plot, the function
cobweb is defined. This commands use previously defined iterates function
and extra parameters xmin and xmax that define range of the plot. We put
additionally xmin = 0 and xmax = 1 for previously given parameters and we
get cobweb plots given in Figure 6.1.
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Figure 6.1: Cobweb plots of the map fpxq “ 4xp1 ´ 4q at a point 0.1. Case
(a) corresponds to N “ 10 and case (b) corresponds to N “ 100.

6.2 Chaos control

Lyapunov exponent

In Listing 6.5 there are commands needed for calculating Lyapunov expo-
nents defined in section 3.3 of the Logistic family introduced in section 2.3.
Graph of dependence of the Lyapunov exponent on parameter µ is given in
Figure 6.2.

Bifurcation diagrams

For complete understanding of the chaotic behavior the bifurcation dia-
gram of the Logistic family is given. Algorithm is evident from Listing 6.6
and the situation is depicted in Figure 6.2.
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Listing 6.3: Iteration of the point

1 function Y=iterates(fcn,x0,N)

2

3 %%

4 % fcn is the name of the function,

5 % x0 is the starting point,

6 % N is the number of iterates.

7 %%

8

9 Y=[x0];

10 x=x0;

11 for i=1:N

12 y=feval(fcn,x);

13 Y=[Y y];

14 x=y;

15 end;
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Figure 6.2: Lyapunov exponents of the Logistic family.

6.3 Fractals

Koch curve

The Listing 6.7 was downloaded from [13] and could be used for the
performance of the Koch curve, see Figure 4.1.

Koch snowflake The next Listing 6.8 was downloaded from [28] and is used
for the Koch snowflake, the mathematical background here needs complex
analysis, see Figure 4.2.
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Listing 6.4: Cobweb plot

1 function cobweb(fcn,x0,N,xmin,xmax)

2

3 %%

4 % fcn is the name of the function,

5 % x0 is the initial point

6 % N is the number of iterates,

7 % xmin and xmax give the range of x-values to be plotted.

8 %%

9

10 dx=(xmax-xmin)/1000;

11 x=xmin:dx:xmax;

12 y=feval(fcn,x);

13

14 plot(x,y,’b’,[xmin xmax],[0 0],’k’,...

15 ...[0 0],[min(y)-.1*abs(min(y)) max(y)],’k’,...

16 ...[xmin xmax],[xmin xmax],’g’);

17 xlabel(’x’,’FontSize’,18);

18 ylabel(’f(x)’,’FontSize’,18);

19 hold on

20 Y=iterates(fcn,x0,N);

21 YY(1)=Y(1);

22 for i=1:N

23 XX(2*i-1)=Y(i);

24 XX(2*i)=Y(i);

25 YY(2*i)=Y(i+1);

26 YY(2*i+1)=Y(i+1);

27 end;

28 XX(2*N+1)=Y(N+1);

29 plot(XX,YY,’r’,x0,0,’r*’);
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Listing 6.5: Lyapunov exponents for the Logistic family

1 clear all;

2 format long e;

3 itermax=499;

4 LE=[];

5

6 for mu=0.001:0.001:4

7 x=0.1;

8 x0=x;

9 for n=1:itermax

10 xn=mu*x0*(1-x0);

11 x=[x xn];

12 x0=xn;

13 end

14

15 LExp=sum(log(abs(mu*(1-2*x))))/itermax;

16 LE=[LE, LExp];

17 end

Listing 6.6: Bifurcation diagram for the Logistic family

1 itermax=250;

2 finlits=75;

3 finits=itermax-(finlits-1);

4

5 for mu=0:0.001:4

6 x=0.4;

7 x0=x;

8 for n=2:itermax

9 xn=mu*x0*(1-x0);

10 x=[x xn];

11 x0=xn;

12 end

13 plot(mu*ones(finlits),x(finits:itermax))

14 hold on

15 end
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Listing 6.7: Koch curve

1 function []=koch(n)

2

3 %%

4 % KOCH: Plots ’Koch Curve’ Fractal koch(n) plots the ’Koch Curve’ Frac-

5 % tal after n iterations e.g koch(4) plots the Koch Curve after 4 ite-

6 % rations. (be patient for n>8, depending on Computer speed) The ’kline’

7 % local function generates the Koch Curve co-ordinates using recursive

8 % calls, while the ’plotline’ local fnc is used to plot the Koch Curve.

9 % Copyright (c) 2000 by Salman Durrani (dsalman@wol.net.pk)

10 %%

11

12 if (n==0)

13 x=[0;1];

14 y=[0;0];

15 line(x,y,’Color’,’b’);

16 axis equal

17 set(gca,’Visible’,’off’)

18 else

19 levelcontrol=10^n;

20 L=levelcontrol/(3^n);

21 l=ceil(L);

22 kline(0,0,levelcontrol,0,l);

23 axis equal

24 set(gca,’Visible’,’off’)

25 set(gcf,’Name’,’Koch Curve’)

26 end

27 %----------------------------------------------------------

28 function kline(x1,y1,x5,y5,limit)

29 length=sqrt((x5-x1)^2+(y5-y1)^2);

30 if(length>limit)

31 x2=(2*x1+x5)/3;

32 y2=(2*y1+y5)/3;

33 x3=(x1+x5)/2-(y5-y1)/(2.0*sqrt(3.0));

34 y3=(y1+y5)/2+(x5-x1)/(2.0*sqrt(3.0));

35 x4=(2*x5+x1)/3;

36 y4=(2*y5+y1)/3;

37 % recursive calls

38 kline(x1,y1,x2,y2,limit);

39 kline(x2,y2,x3,y3,limit);

40 kline(x3,y3,x4,y4,limit);

41 kline(x4,y4,x5,y5,limit);

42 else

43 plotline(x1,y1,x5,y5);

44 end

45 %----------------------------------------------------------

46 function plotline(a1,b1,a2,b2)

47 x=[a1;a2];

48 y=[b1;b2];

49 line(x,y);

50 %----------------------------------------------------------
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Listing 6.8: Koch snowflake

1 function z = snowflake(n,a)

2

3 %%

4 %SNOWFLAKE Koch Snowflake Curve

5 %Z = SNOWFLAKE(N,A) is a closed curve in the complex plane

6 %with 3*2^N+1 points. N is a nonnegative integer and A is a

7 %complex number with |A| < 1 and |1-A| < 1.

8 %Default is A = 1/2 + i*sqrt(3)/6.

9 % % Examples

10 %plot(snowflake(10)), axis equal

11 %plot(snowflake(10,0.45+0.35i)), axis equal

12 %Author: Jonas Lundgren <splinefit@gmail.com> 2010

13 %%

14

15 if nargin < 1, n = 0; end

16 if nargin < 2, a = 1/2 + sqrt(-3)/6; end

17 % Constants

18 b = 1 - a;

19 c = 1/2 + sqrt(-3)/2;

20 d = 1 - c;

21 % Generate point sequence

22 z = 1;

23 for k = 1:n

24 z = conj(z);

25 z = [a*z; b*z+a];

26 end

27 % Close snowflake

28 z = [0; z; 1-c*z; 1-c-d*z];
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Figure 6.3: Bifurcation diagram of the Logistic family.

6.4 Exercises

1. Implement algorithms given in this section using programming tools
(programming languages) you wish, e.g. Maple, Python or Lisp.

2. Implement the Sierpinski gasket. Use the Pascal triangle analogy to
assemble the structure.
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