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Random Walk
• In the context of multilayer network, random walks are processes 

describing an item – often called a walker – randomly flowing 
through the available relational ties and also able to switch layers.



Degree Centrality (reminder)

• Degree Centrality: Let 𝑎 ∈ 𝐴 be an actor an 𝐿 ⊆ 𝑳 a set of layers 
and M = (A, L, V, E) a multilayer network. The degree centrality 
of a on L is defined as

𝑑𝑒𝑔𝑟𝑒𝑒 𝑎, 𝐿 = | 𝑎, 𝑙 , 𝑎′, 𝑙′ ∈ 𝐸 𝑠. 𝑡. 𝑙, 𝑙′ ∈ 𝐿 |.



Random Walk-Based Extensions of Degree Centrality

• Random walk-based methods offer a powerful tool to define 
multiple measures on top of a single basic concept.

• Within this approach, a measure related to degree centrality in 
multilayer networks is occupation centrality.

• Occupation centrality: The occupation centrality of an actor a ∈ A
in a multilayer network M = (A, L, V, E) is the probability that a 
random walker on M is found on any node corresponding to a.



Random Walk-Based Extensions of Degree Centrality

• In this case, a walker in node (a, I) might jump to one of its neighbors 
(a', I) within the same layer l with uniform probability or might 
switch to its counterpart (a , I‘) on a different layer l‘.

• This formulation can be easily extended for weighted networks 
assuming a layer-switching probability proportional to the strength 
of the connection.

• In the specific case when interlayer edges have the same strength for 
all nodes, occupation centrality is strongly correlated with degree 
centrality.



Distance Based Measures

• A more general concept of Multilayer Distance that makes a difference 
between edges on different layers.

• The distance between two actors is one of the most complex and 
interesting concepts we need to extend to define new measures on 
multilayer networks.

• A first consideration is that the shortest path might not be the best option
for evaluating the separation between the two actors.

• Under the availability of multiple layers, instead of using a shortest path, 
actors could prefer to switch layers and reach their destination through a 
longer, but maybe more reliable, path.



Three alternative paths from Cici to Luca

• (a) and (b) have the same number of steps but different lengths 
on different layers, whereas (c) is longer than (b).



Paths and Path Lengths

• Paths from Cici to Luca: The first consists of two steps on the 
work layer, a layer switch from work to friend, and one step on 
the friend layer, whereas the second has two friend steps, a layer 
switch from friend to work, and one work step.

• Multilayer path length: The multilayer length of a p on layers L
= {l1, …, lm} is a matrix L where Lij indicates the number of edges 
traversed from a node in layer li to a node in layer lj.



Cici to Luca…

• The lengths of the two paths in (a) and (b) can be represented as

• where the first row/column of each matrix represents the work
layer and the second row/column represents the friend layer.



Different representations

• We can obtain different representations of the lengths, depending on the level of 
detail we want to keep.

• For example, we can omit interlayer switching costs, only keeping the diagonal of 
the length matrix.

• In this case, our two distances can be expressed using the following vectors:

• As an extreme solution, we can sum all values into a single number, reducing our 
multilayer concept to a traditional length – in our example, both paths would
appear having the same length.



Shorter-than…

• While paths (a) and (b) are incomparable, path (b) is shorter 
than path (c), because it involves a shorter path on the friend 
layer and the same number of steps on the work layer.

• Shorter-than relation: Let R and S be two multilayer path 
lengths. R is shorter than S if and only if



Multilayer Shortest Paths

• Multilayer shortest paths maintain on a general level 
the idea that a shorter path is on average better than a 
longer path.

• The distance between two actors is expressed as a set of 
incomparable shortest paths that can traverse multiple 
layers.

• This concept is easily extensible to allow weighted edges by 
replacing the number of steps with the sum of weights along 
the path.



Closeness and Betweenness Centrality in Multilayer Networks

• Random walk closeness: The closeness centrality of an actor a ∈ A is 
defined as the inverse of the average number of steps that a random 
walker, starting from any other actor in the multilayer network, requires to 
hit a for the first time.

• Random walk betweenness: Given an actor a ∈ A, the betweenness 
centrality is defined as the number of random walks between any pair of 
nodes that pass through any node corresponding to a, averaging the value 
over all possible starting layers.



Measures of Relevance

• One of the most intriguing aspects of multilayer network 
analysis is its ability to understand the relation between an actor 
and a specific layer as well as between different layers within 
the same multilayer network.

• If we want to consider multiple layers, we must be able to 
explore how single layers relate to the whole network structure 
and to what extent a single layer is an important part of an 
actor's social network.



Neighborhood Based Measures (reminder)
• Neighbors: Let 𝑎 ∈ 𝐴 be an actor an 𝐿 ⊆ 𝑳 a set of layers and M = (A, L, V, E) a multilayer network. The 

neighbors of a on layers L are defined as

𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑎, 𝐿 = 𝑎′ ∈ 𝐴| 𝑎, 𝑙 , 𝑎′, 𝑙′ ∈ 𝐸 𝑎𝑛𝑑 𝑙, 𝑙′ ∈ 𝐿 .

• Neighborhood Centrality: The neighborhood of a on layers L is defined as

𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 𝑎, 𝐿 = |𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑎, 𝐿 |.

• Connective Redundancy: The connective redundancy of a on layers L is defined as

𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑒 𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦 𝑎, 𝐿 = 1 −
𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 𝑎, 𝐿

𝑑𝑒𝑔𝑟𝑒𝑒 𝑎, 𝐿
.

• Exclusive Neighborhood: The exclusive neighborhood of a on layers L is defined as

𝑥𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 𝑎, 𝐿 = 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑎, 𝐿 \𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑎, 𝑳\𝐿 .



Relevance

• Relevance: Let a ∈ A be an actor, 𝐿 ⊆ 𝑳 a set of layers and M = (A, L, 
V, E) a multilayer network. Relevance is defined as follows:

• Relevance computes the ratio between the neighbors of an actor connected by 
edges belonging to a specific set of layers and the total number of her 
neighbors.

• The set L might also contain only a single layer, of which we might want to 
study the specific role within the multilayer network.



Exclusive Version of Relevance

• Exclusive layer relevance: Let a ∈ A be an actor, 𝐿 ⊆ 𝑳 a set of 
layers and M = (A, L, V, E) a multilayer network. Exclusive 
relevance is defined as follows:

• Exclusive relevance computes the fraction of neighbors directly 
connected with actor a through edges belonging only to layers in L.





Relevance for the actors in the example



Exclusive relevance for the actors



Flattening and Projection

• A basic approach to dealing with multilayer networks is to 
reconstruct a (weighted) single-layer social network so that 
existing methods, such as community detection, can be directly 
applied.

• If nodes on the different layers correspond to a common set of actors, 
we normally talk of flattening, that is, the process of merging all nodes 
corresponding to the same actor into a single node.

• When we have multiple types of nodes, a common operation consists 
in projecting the network only on one type of node, discarding the 
others.



Flattening

• A basic flattening process consists in creating a layer with one 
node for each actor and an edge between two nodes if an edge 
among two nodes corresponding to those actors exists somewhere in 
the multilayer network.

• Basic flattening: A basic (unweighted) flattening of a multilayer 
network M = (A, L, V, E) is a graph (Vf , Ef), where Vf =
𝑎| 𝑎, 𝑙 ∈ 𝑉 and Ef = (𝑎𝑖, 𝑎𝑗)|{ 𝑎𝑖, 𝑙𝑞 , 𝑎𝑗, 𝑙𝑟 } ∈ 𝐸 .



Weighted Version of Flattening

• A simple variation of basic flattening consists in adding a 
weight to each edge in the flattened network proportional to the 
number or edges between the actors corresponding to those 
nodes.

• A more general approach consists in assigning a weight Θqr to 
each pair of layers (lq, lr), so that the resulting single-layer 
network can be expressed as a linear combination of the original 
multilayer network.



Weighted Flattening

• Weighted flattening: Let M = (A, L, V, E) be a multilayer network. 
Given a |L| x |L| matrix Θ, where Θqr indicates the weight to be 
assigned to edges from layer lq to layer lr, a weighted flattening of M
is a weighted graph (Vf , Ef, ω), where (Vf , Ef) is a basic flattening of 
M and

• This definition generalizes the simple weighted flattening strategy, 
which can be expressed by setting Θqr = 1 and can also be used to 
remove some of the layers by setting their weights to 0.



Example

• Weighted flattening of two layers, with varying weights 
depending on the starting and ending layers of edges in the 
original multilayer network.



Projection

• Network projection is a traditional approach used to simplify 
two-mode networks, which can be modeled as multilayer 
networks where each node type (say, A or B) is represented by a 
layer.

• The most straightforward approach to network projection 
consists in removing type B nodes and adding an edge between 
any pair of type A nodes originally connected to the same type 
B node.



Example

• L1: Type A nodes get connected by a weighted edge with weight w defined as                             

• where p indicates the type B nodes connected to both i and j.

• L2: A different weight assignment based on                                  where Np is the number 
of nodes of type A connected through the p-th type B node.



Seminar Assignment 

• Select one multi-layer network from the source below and 
compute, for each network actor/node, relevance measures 
given in the presentation.

• Implement random walk processes in the selected multi-layer 
network and, based on it, compute occupation centrality for 
each network node.

• Implement unweighted flattening and apply it to the selected 
network.
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