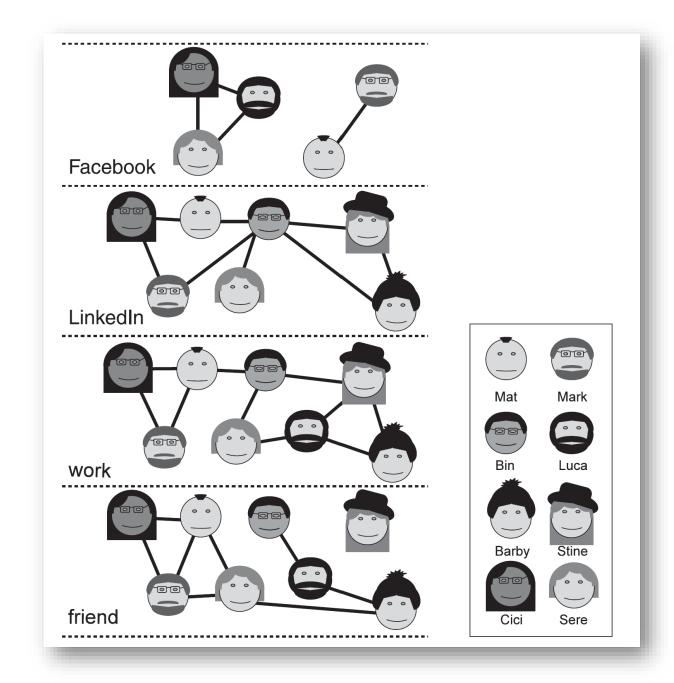
## DATA ANALYSIS II

Multilayer Social Networks I Basics and Degree Based Measures 2021/2022


### References

- Dickison, M. E., Magnani, M., Rossi, L. (2016). *Multilayer social networks*. Cambridge University Press. <a href="http://multilayer.it.uu.se">http://multilayer.it.uu.se</a>.
- Bianconi, G. (2018). *Multilayer networks: structure and function*. Oxford university press. <a href="https://www.maths.nottingham.ac.uk/plp/pmzsc/tnetworks/Threshold\_GBIANCONI.pdf">https://www.maths.nottingham.ac.uk/plp/pmzsc/tnetworks/Threshold\_GBIANCONI.pdf</a>
- Porter, M-A. (2014) *Multilayer Networks* (tutorial). http://www.slideshare.net/masonporter/multilayer-tutorialnetsci2014slightlyupdated.
- Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y., Porter, M. A. (2014). *Multilayer networks*. Journal of complex networks, 2(3), 203-271. <a href="http://people.maths.ox.ac.uk/porterm/papers/multilayer-review-published.pdf">http://people.maths.ox.ac.uk/porterm/papers/multilayer-review-published.pdf</a>.

### Problem...

- Dealing with multiple social network is part of our daily experience...
  - We live in many networks...
- We continuously juggle our networks...
- We bridge them to move valuable information from one network to another...

# Example



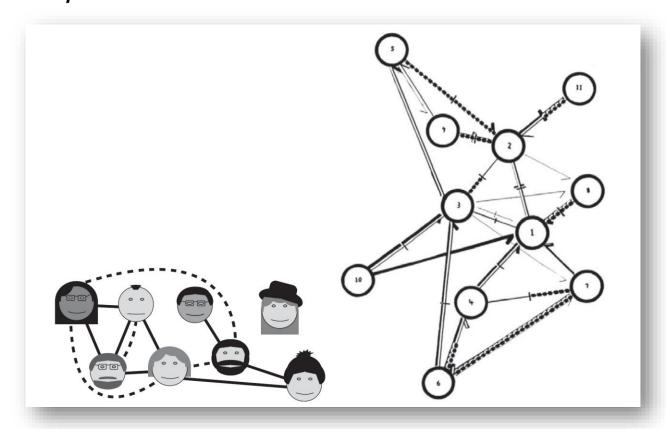
## Definition (1/2)

- Multilayer Network: Given a set of actors A and a set of layers L, a multilayer network is define as a quadruple M = (A, L, V, E) where (V, E) is a graph and  $V \subseteq A \times L$ .
- Actor: An entity that can have relationships with other actors.
- **Layer:** The same actor can be represented in different layers, where each layer represents a type of actors or a type of edge between actors.

## Definition (2/2)

- Node: A specific actor on a specific layer.
- Edge: A relationship between two nodes.
- Multilayer Network: A social network represented as a set of layers, where nodes in different layers refer to a global set of actors and edges can also connect nodes in the same or different layers.
- **Single-layer Network:** A social network represented as a network with only one layer.

## **Tasks**

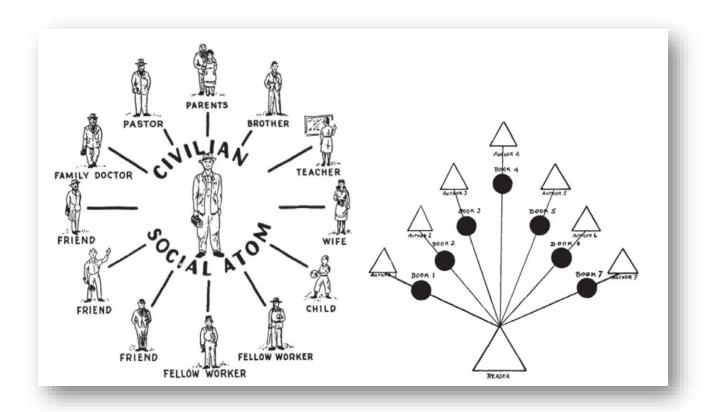

- Models and measures
  - Actor measures
  - Layer measures
- Mining multilayers networks
  - Visualizing multilayer networks
  - Community detection
  - Edge patterns
- Dynamical processes
  - Formation of multilayer networks
  - Information and behavior diffusion

### Related Models

- Multiplex networks
- Multimode and multilevel networks
- Heterogeneous information networks
- Networks of networks
- Temporal networks
- Exponential random graph models

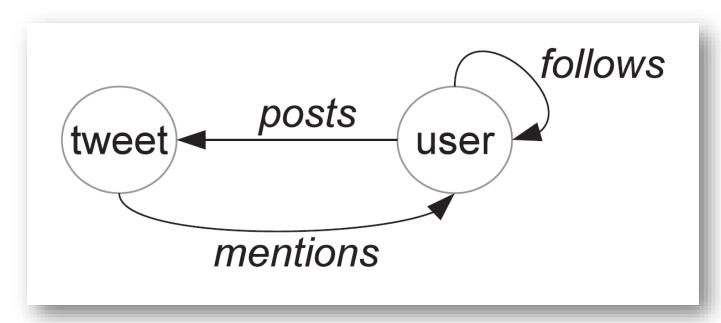
## Multiplex Networks

• A common set of actors is connected through multiple types of edges. These different kinds of relational ties are typically known as *multiplex ties* in the SNA literature.




### Representing Multiplex Social Networks

|             | Cici                                   | Mat      | Mark     | Sere     | Bin      | Luca   | Stine    | Baby                                   |
|-------------|----------------------------------------|----------|----------|----------|----------|--------|----------|----------------------------------------|
| Cici        | $\int 0$                               | 1        | 1        | 0        | 0        | 0      | 0        | 0                                      |
| Mat         | 1                                      | 0        | 1        | 1        | 0        | 0      | 0        | 0                                      |
| Mark        | 1                                      | 1        | 0        | 1        | 0        | 0      | 0        | 0                                      |
| Sere        | 0                                      | 1        | 1        | 0        | 0        | 0      | 0        | 1                                      |
| Bin         | 0                                      | 0        | 0        | 0        | 0        | 1      | 0        | 0                                      |
| Luca        | 0                                      | 0        | 0        | 0        | 1        | 0      | 0        | 1                                      |
| Stine       | 0                                      | 0        | 0        | 0        | 0        | 0      | 0        | 0                                      |
| Baby        | 0                                      | 0        | 0        | 1        | 0        | 1      | 0        | 0 /                                    |
|             | Cici                                   | Mat      | Mark     | Sere     | Bin      | Luca   | Stine    | Baby                                   |
| Cici        | $\int_{0}^{\infty}$                    | 0        | 0        | 1        | 0        | 1      | 0        | 0                                      |
| Mat         | 0                                      | 0        | 1        | 0        | 0        | 0      | 0        | 0                                      |
| Mark        | 0                                      | 1        | 0        | 0        | 0        | 0      | 0        | 0                                      |
| Carra       |                                        |          | _        | _        |          |        |          |                                        |
| Sere        | 1                                      | 0        | 0        | 0        | 0        | 1      | 0        | 0                                      |
| Sere<br>Bin | $\begin{vmatrix} 1 \\ 0 \end{vmatrix}$ | $0 \\ 0$ | $0 \\ 0$ | $0 \\ 0$ | $0 \\ 0$ | 1<br>0 | $0 \\ 0$ | $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ |
|             |                                        | Ü        | Ü        | Ü        |          |        |          |                                        |
| Bin         | 0                                      | 0        | 0        | 0        | 0        | 0      | 0        | 0                                      |


#### Multimode and Multilevel Networks

• Multiple types of actors inside the same network. A network where two types of actors can be identified is a two-mode (also called bipartite, or in some cases *affiliation*) network, where there are two types of nodes and edges connect pairs of nodes of different types.



### Heterogeneous Information Networks

- Graph-based model allowing different types of nodes and edges (data mining purpose). This schema can be used to formulate patterns.
- For example, the pattern *user1 user2 tweet* indicates a user following another user who posted a tweet. These patterns can be used to express information extraction queries, for example, retrieve all the followers of users who posted a specific tweet.



### Other Models

- Multilayer(ed) Models
- Network of Networks
- Temporal Networks
- Exponential Random Graph Models
- The common aspects of all these models are as follows:
  - the fact that actors are organized into different layers and
  - the fact that nodes in different layers can correspond to the same actor.

## Temporal Networks

- Time is a kind of continuous attribute, making it quite distinct from discrete layers even if some methods for temporal networks are defined on discretized versions of the data.
- As different points in time can be considered as different layers, in theory a social network observed at different times can be analyzed using multilayer methods.

# Measuring (four approaches)

- Flattening
  - Projection to non-layered network
- Single layer SNA
  - Layers analyzed separately
- Intralayer = interlayer
  - Cross-layers
- Intralayer ⇔ interlayer
  - Common usage

# Flattening and Projection

- A *Basic (Unweighted) Flattening* process consists in a layer with one node for each actor and an edge between two nodes if an edge among two nodes corresponding to those actors exists somewhere in the multilayer network.
- A Weighted Flattening process consists in adding a weight to each edge proportional to the number of edges between the actors corresponding to those nodes.

## Degree Based Measures

• **Degree Centrality:** Let  $a \in A$  be an actor an  $L \subseteq L$  a set of layers and M = (A, L, V, E) a multilayer network. The degree centrality of a on L is defined as

$$degree(a, L) = |\{\{(a, l), (a', l')\} \in E \text{ s.t. } l, l' \in L\}|.$$

• **Degree deviation** is defined as the standard deviation of degrees of *a* over the layers.

$$\sqrt{\frac{\sum_{l \in L} \left( \text{degree}(a, \{l\}) - \frac{\text{degree}(a, L)}{|L|} \right)^2}{|L|}}$$

## Neighborhood Based Measures

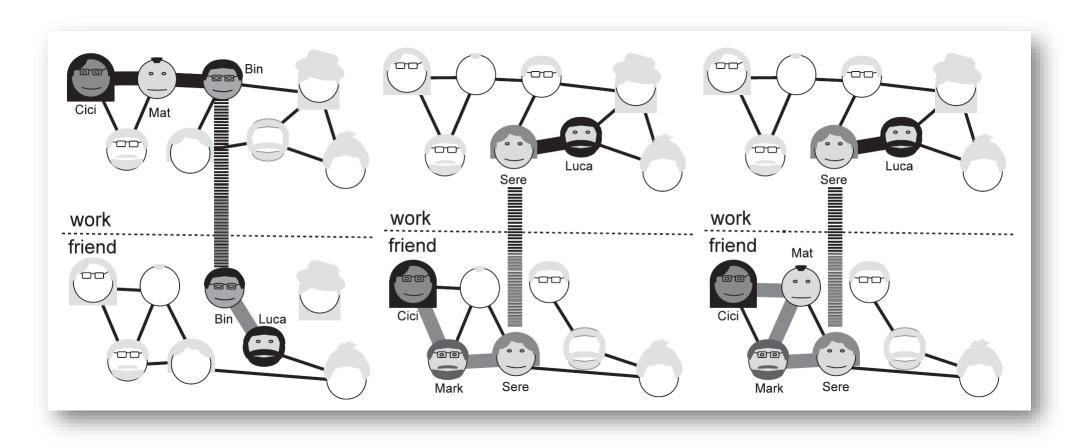
• **Neighbors:** Let  $a \in A$  be an actor an  $L \subseteq L$  a set of layers and M = (A, L, V, E) a multilayer network. The neighbors of a on layers L are defined as

$$neighbors(a, L) = \{a' \in A | \{(a, l), (a', l')\} \in E \text{ and } l, l' \in L\}$$

• **Neighborhood Centrality:** The neighborhood of *a* on layers *L* is defined as

$$neighborhood(a, L) = |neighbors(a, L)|$$

• **Connective Redundancy:** The connective redundancy of *a* on layers *L* is defined as


$$connective\ redundancy(a, L) = 1 - \frac{neighborhood(a, L)}{degree(a, L)}$$

• **Exclusive Neighborhood:** The exclusive neighborhood of *a* on layers *L* is defined as

$$xneighborhood(a, L) = |neighbors(a, L) \setminus neighbors(a, L \setminus L)|$$

### Distance Based Measures

• A more general concept of *Multilayer Distance* that makes a difference between edges on different layers.



# Seminar Assignment

• Select one multi-layer network from the source below and compute all the measures given in the presentation for each network actor/node.

- http://multilayer.it.uu.se/datasets.html
- https://manliodedomenico.com/data.php