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based on the fixed-point reformulation of the original problem. Conditions guaranteeing
the existence and uniqueness of discrete solutions are established. Finally, numerical
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1. Introduction

Contact mechanics is a special branch of solid mechanics analyzing the behavior of loaded deformable bodies which are
in mutual contact. In addition to unilateral boundary conditions expressing non-penetration of the bodies in the structure,
one has to also take into account the influence of friction on the contact zones. There are different models of friction,
but the local Coulomb law is the most classical one. Although this model is seemingly simple, contrary is the case. The
mathematical model involving static Coulomb friction leads to an implicit variational inequality, whose solution remained
open for a long time. The existence analysis was done relatively not long ago. For the mathematical analysis of static, quasi-
static and dynamic contact problems with Coulomb friction we refer to [1] and the references therein. In what follows we
confine ourselves to static contact problems. Suppose first that the coefficient of friction F does not depend on the solution.
Then a typical existence result says that a solution exists provided that F is sufficiently small (with additional technical
assumptions on the regularity of data). As far as the structure of solutions is concerned, no general results are available
at present unless a solution of this problem has some specific properties [2,3]. The situation is completely different for
appropriate finite element discretizations of these problems. Using fixed-point arguments one can show that at least one
solution exists for any F belonging to a large class of coefficients. Moreover, this solution is unique if F is small enough.
Unfortunately, the bound Fmax on F ensuring uniqueness of the solution is mesh dependent. It is known (see [4]) that in
the case of isotropic Coulomb friction, Fmax has to decay at least as

√
h, where h is the norm of a finite element partition.

The same result has been obtained in [5] by using a penalty and regularization of the frictional term. The previous analysis
has been extended to the isotropic Coulomb friction law in which the coefficient of friction F depends on the solution itself.
It was shown that the uniqueness result depends not only on Fmax but also on the Lipschitz modulus L of F . The goal of the
present paper is to generalize these results to the case of orthotropic Coulomb friction in which both coefficients of friction
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Fig. 1. Geometry of the problem.

in the directions of the principal axes of orthotropy depend on the magnitudes of the tangential components of contact
displacements.

The paper is organized as follows: in Section 2, continuous setting of the problem is presented. A weak solution to our
problem is defined in two different ways: (a) as a solution to an implicit variational inequality; (b) as a fixed point of an
auxiliary mapping Ψ acting on the contact part of the boundary. The later is used for defining the discrete form of our
problem. This form is based on an appropriate discretization ofΨ . Section 3 presents the existence and uniqueness analysis.
We show that at least one discrete solution exists for any positive, bounded and continuous coefficients of friction. Assuming
that the coefficients are Lipschitz continuous we prove that the discretization of Ψ is Lipschitz continuous as well. The
estimate of its modulus of Lipschitz continuity will be derived in terms of Fmax, L, the condition number of the friction
coefficient matrix and the mesh norms of the respective finite element spaces used to build the discrete model. If Fmax
and L are sufficiently small (expressed in terms of the mesh norms), then the modulus of Lipschitz continuity is less than
one. Thus, as a by-product we obtain the mathematical justification of the method of successive approximations, one of
the possible approaches for numerical realization of such problems. To illustrate its performance we present in Section 4
numerical results of a simple model example.

For other numerical methods for solving contact problems we refer to the following publications. The overview and
the comparison of the most frequently used strategies can be found in [6]. To overcome the drawbacks of penalty and
Lagrange multiplier techniques, augmented Lagrangian methods have been developed. The application of these methods
in contact mechanics is described in [7]. The survey of algorithms of constrained optimization which are used in contact
computational mechanics can be also found in [8]. Some algorithms are combined with multigrid or domain decomposition
techniques in order to increase their performance for solving large scale problems of the real world; see, e.g., the
primal–dual active set algorithm of Hűeber et al. [9], the non-smooth multiscale method of Krause [10], or the augmented
Lagrangian based algorithm combined with the FETI method of Dostál et al. [11,12]. Our implementation of the method of
successive approximations requires to solve a sequence of contact problems with Tresca friction that are represented by
the minimization of strictly quadratic objective functions subject to ellipsoidal constraints. These minima are computed
by the active set type algorithm of Kučera [13] that generalizes another one of Dostál and Schőberl originally developed
for simple bound constraints. Note that this algorithm combined with the augmented Lagrangians [14] is the heart of the
Matsol library [15] for solving 3D contact problems with friction. Results of numerical experiments presented in the paper
illustrate the robustness of this algorithm for solving the orthotropic Coulomb friction law.

Throughout the paper we shall use the following notation: the Euclidean norm in Rn as well as the matrix norm in Rn×n

generated by the Euclidean vector norm are denoted by ‖.‖, u · v stands for the scalar product of two vectors u, v ∈ Rn.
The symbol W k,p(G),G ⊂ Rn, k ≥ 0 integer, p ∈ [1,+∞], is used for the standard Sobolev space equipped with the
norm ‖.‖k,p,G (W 0,p(G) = Lp(G)). The analogous spaces of functions with values in Rm are denoted by W k,p(G; Rm) (resp.
Lp(G; Rm)). If p = 2, we simply write Hk(G) and Hk(G; Rm); ‖.‖k,G and (., .)k,G stands for the norm and the scalar product,
respectively.

2. Setting of the problem

Let us consider a body made of a linear elastic material whose reference configuration is represented by a bounded
domainΩ ⊂ R3 with the Lipschitz boundary ∂Ω . Let Γu,Γp and Γc be three disjoint, (relatively) open subsets of ∂Ω such
that ∂Ω = Γ u ∪ Γ p ∪ Γ c and meas2(Γu),meas2(Γc) > 0. The body is fixed on Γu, surface tractions of density p act on Γp
while a rigid foundation S unilaterally supports the body along Γc . For the sake of simplicity of our presentation we shall
assume that S is a half-space and there is no gap between Γc and S, i.e. Γc is a part of a hyperplane (see Fig. 1). The effect of
friction betweenΩ and S is described by the local orthotropic Coulomb friction law with coefficients of friction depending
on the solution. In addition, volume forces of density f are applied to Ω . Our aim is to find an equilibrium state of the
body.

By a solution to the pure elastostatic problem without contact (i.e. with Γc = ∅) we mean any displacement vector
u : Ω → R3 satisfying the equilibrium equations, linear Hooke’s law and the kinematic and static boundary conditions on Γu
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and Γp, respectively:

− div σ(u) = f inΩ,
σ (u) = Cε(u) inΩ,
u = 0 on Γu,
σ (u)ν = p on Γp.

 (2.1)

Here σ(u) is a stress tensor, ε(u) = 1/2(∇u + ∇
Tu) is the linearized strain tensor associated with u and C is the fourth

order elasticity tensor. Further, ν is the unit outward normal vector to ∂Ω .
To formulate the contact and friction conditions, let uν := u · ν, σν(u) := (σ (u)ν) · ν be the normal component of a

displacement vector u and the stress vector σ(u)ν onΓc , respectively. Moreover, let t1 and t2 be principal axes of orthotropic
friction on the tangent plane to Γc so that the triplet {ν(x), t1(x), t2(x)} forms a local orthonormal basis in R3 for any
x ∈ Γc . By ut = (ut1 , ut2), σt(u) = (σt1(u), σt2(u)) we denote the tangential displacement and the tangential contact
stress, respectively, with uti := u · ti, σti := (σ (u)ν) · ti, 1 ≤ i ≤ 2. Finally, let F1 and F2 be coefficients of friction in the
directions t1 and t2, respectively, and set

F :=


F1 0
0 F2


.

In what follows we shall suppose that both F1 and F2 may depend on the magnitudes of ut1 and ut2 on Γc , i.e. Fi =

Fi(x, |ut1(x)|, |ut2(x)|), x ∈ Γc, 1 ≤ i ≤ 2. The respective matrix F will be denoted by F (x, |ut1(x)|, |ut2(x)|) or for short
F (|ut1 |, |ut2 |). The non-penetration condition and the orthotropic Coulomb friction law then read as follows:

uν ≤ 0, σν(u) ≤ 0, uνσν(u) = 0 on Γc,

ut(x) = 0 H⇒ ‖F−1(x, 0, 0)σt(u)(x)‖ ≤ −σν(u)(x), x ∈ Γc,

ut(x) ≠ 0 H⇒ F−1(x, |ut1(x)|, |ut2(x)|)σt(u)(x) = σν(u)(x)
F (x, |ut1(x)|, |ut2(x)|)ut(x)

‖F (x, |ut1(x)|, |ut2(x)|)ut(x)‖
, x ∈ Γc .

 (2.2)

The classical formulation of our problem is represented by (2.1) and (2.2). To give the weak formulation we introduce the
following spaces and sets:

V = {v ∈ H1(Ω; R3) | v = 0 a.e. on Γu}, K = {v ∈ V | vν ≤ 0 a.e. on Γc},

W = {v ∈ H1(Ω) | v = 0 a.e. on Γu}, Xν = {vν |Γc
| v ∈ V },

Xν+ = {ϕ ∈ Xν | ϕ ≥ 0 a.e. on Γc}, Xt+ =

(|vt1 |Γc

|, |vt2 |Γc
|) | v ∈ V


,

Y = W|Γc

and endow Xν with the norm:

‖ϕ‖Xν := inf
v∈V

vν |Γc
=ϕ

‖v‖1,Ω .

By X ′
ν we shall denote the (topological) dual of Xν and ⟨., .⟩ν will be used for the corresponding duality pairing.

Furthermore, we shall assume that f ∈ L2(Ω; R3), p ∈ L2(Γp; R3) and C = {cijkl}3i,j,k,l=1 with cijkl ∈ L∞(Ω), 1 ≤ i, j, k,
l ≤ 3, satisfies the usual symmetry and ellipticity conditions:

cijkl = cjikl = cklij a.e. inΩ, 1 ≤ i, j, k, l ≤ 3,
∃c0 > 0 : Cξ : ξ ≥ c0(ξ : ξ) a.e. inΩ for every symmetric ξ ∈ R3×3.


(2.3)

We shall also suppose that the coefficients of friction F1 and F2 are continuous and bounded:

Fi ∈ C(Γc × R2
+
), 1 ≤ i ≤ 2,

Fmin ≤ Fi(x, ξ) ≤ Fmax ∀x ∈ Γc ∀ξ ∈ R2
+
, 1 ≤ i ≤ 2,


(2.4)

where 0 < Fmin ≤ Fmax are given, and

the mapping x → (t1(x), t2(x)) belongs to W 1,∞(Γc; R6). (2.5)

The weak formulation of (2.1) and (2.2) is given by the following implicit variational inequality:

Find u ∈ K such that
a(u, v − u)− ⟨σν(u), ‖F (|ut1 |, |ut2 |)vt‖⟩ν + ⟨σν(u), ‖F (|ut1 |, |ut2 |)ut‖⟩ν ≥ ℓ(v − u) ∀v ∈ K ,


(P)
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where

a(u, v) :=

∫
Ω

Cε(u) : ε(v) dx, u, v ∈ V ,

ℓ(v) :=

∫
Ω

f · v dx +

∫
Γp

p · v ds, v ∈ V .

Owing to (2.3) and Korn’s inequality, a is a symmetric bilinear form which is V -elliptic and continuous on V × V :

∃α > 0 : a(v, v) ≥ α‖v‖2
1,Ω ∀v ∈ V , (2.6)

∃M > 0 : |a(u, v)| ≤ M‖u‖1,Ω‖v‖1,Ω ∀u, v ∈ V . (2.7)

Remark 2.1. Tomake sense of the duality terms in (P), one needs an additional smoothness of u andF (and of themapping
x → (t1(x), t2(x)), x ∈ Γc) ensuring that ‖F (|ut1 |, |ut2 |)vt‖ ∈ Xν for any v ∈ V (see [1]). To overcome this difficulty, we shall
assume that σν(u) ∈ L2(Γc), in what follows. Then the duality pairing ⟨., .⟩ν can be replaced by the L2(Γc)-scalar product
and (2.4) is sufficient.

Below we introduce a fixed-point formulation of (P), on which the finite element discretization will be based. To start
with, we associate with any (ϕ1, ϕ2) ∈ Xt+, g ∈ L2

+
(Γc) the following auxiliary problem:

Find u := u(ϕ1, ϕ2, g) ∈ K such that
a(u, v − u)+ j(ϕ1, ϕ2, g, vt)− j(ϕ1, ϕ2, g, ut) ≥ ℓ(v − u) ∀v ∈ K ,


(P(ϕ1, ϕ2, g))

where

j(ϕ1, ϕ2, g, vt) := (g, ‖F (ϕ1, ϕ2)vt‖)0,Γc , (ϕ1, ϕ2) ∈ Xt+, g ∈ L2
+
(Γc), v ∈ V .

Problem (P(ϕ1, ϕ2, g)) is a weak formulation of a contact problem with orthotropic friction of Tresca type and the fixed
matrix of friction coefficientsF (ϕ1, ϕ2). The existence of a unique solution is guaranteed for any (ϕ1, ϕ2) ∈ Xt+, g ∈ L2

+
(Γc),

making use of its equivalence to a convexminimization problem (see [16, Chapter II]). This enables us to define themapping
Ψ : Xt+ × L2

+
(Γc) → Xt+ × X ′

ν by

Ψ (ϕ1, ϕ2, g) = (|ut1 |, |ut2 |,−σν(u)), (ϕ1, ϕ2) ∈ Xt+, g ∈ L2
+
(Γc),

where u solves (P(ϕ1, ϕ2, g)) and σν(u) is the corresponding normal contact stress. Comparing problems (P) and
(P(ϕ1, ϕ2, g)), it is readily seen that if (|ut1 |, |ut2 |,−σν(u)) is a fixed point of Ψ in Xt+ × L2

+
(Γc) then u is a solution

to (P).
Let (ϕ1, ϕ2) ∈ Xt+ and g ∈ L2

+
(Γc) be fixed andΛν be the cone of non-negative elements in X ′

ν :

Λν = {µ ∈ X ′

ν | ⟨µ, ϕ⟩ν ≥ 0 ∀ϕ ∈ Xν+}.

To release the unilateral constraint u ∈ K , we introduce the followingmixed formulation of (P(ϕ1, ϕ2, g)):

Find (u, λν) := (u(ϕ1, ϕ2, g), λν(ϕ1, ϕ2, g)) ∈ V ×Λν such that
a(u, v − u)+ j(ϕ1, ϕ2, g, vt)− j(ϕ1, ϕ2, g, ut) ≥ ℓ(v − u)− ⟨λν, vν − uν⟩ν ∀v ∈ V ,
⟨µν − λν, uν⟩ν ≤ 0 ∀µν ∈ Λν .


(M (ϕ1, ϕ2, g))

It is known that (M (ϕ1, ϕ2, g)) has a unique solution for any (ϕ1, ϕ2) ∈ Xt+, g ∈ L2
+
(Γc). Moreover, u solves (P(ϕ1, ϕ2, g))

and λν = −σν(u), as follows from the Green formula [17]. This gives an equivalent expression for the mapping Ψ :

Ψ (ϕ1, ϕ2, g) = (|ut1 |, |ut2 |, λν) ∀(ϕ1, ϕ2) ∈ Xt+ ∀g ∈ L2
+
(Γc) (2.8)

with (u, λν) being the solution to (M (ϕ1, ϕ2, g)).

3. Finite element discretization

This section deals with an approximation of problem (P), which will be based on a fixed-point formulation for an
appropriate discretization of the mapping Ψ . To this end we use (2.8) and a mixed finite element discretization of
(M (ϕ1, ϕ2, g)). We shall establish the existence as well as uniqueness of the solution to the resulting discrete problem.
In addition, we shall investigate, how the uniqueness result depends on the size of the problem.

Let W h, LH be the following Lagrange finite element spaces corresponding to the partitions T h
Ω and T H

Γc
of Ω and Γ c ,

respectively:

W h
= {vh ∈ C(Ω) | vh|T ∈ Pk(T ) ∀ T ∈ T h

Ω and vh = 0 on Γu},

LH = {µH
∈ L2(Γc) | µH

|R
∈ Pl(R) ∀ R∈ T H

Γc
}.
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Here k ≥ 1, l ≥ 0 are integers and h,H stand for the norms of the partitions T h
Ω and T H

Γc
, respectively. Only what we shall

suppose at thismoment is thatT h
Ω is compatiblewith the decomposition of ∂Ω intoΓu,Γp andΓc . In general,T H

Γc
is different

from T h
Ω |

Γ c
, but the case when they equal each other is not excluded. Further, set

V h
= W h

× W h
× W h, Y h

= W h
|
Γ c
,

Y h
+

= {ϕh
∈ Y h

| ϕh
≥ 0 on Γc}, ΛH

ν = {µH
∈ LH | µH

≥ 0 on Γc}.

Clearly, V h andΛH
ν will serve as natural approximations of V andΛν , respectively. In what follows, we shall suppose that

the following condition is satisfied:

(µH
∈ LH and (µH , vhν)0,Γc = 0 ∀vh ∈ V h) H⇒ µH

= 0. (3.1)

This makes it possible to endow the spaces LH and Y h
× Y h

× LH with the following (mesh-dependent) norms:

‖µH
‖∗,h = sup

0≠vh∈Vh

(µH , vhν)0,Γc

‖vh‖1,Ω
,

‖(ϕh
1, ϕ

h
2, µ

H)‖Yh×Yh×LH = ‖(ϕh
1, ϕ

h
2)‖0,Γc + ‖µH

‖∗,h.

Remark 3.1. Let us briefly mention two examples of the discretizations posited above.

(FE1) T H
Γc

= T h
Ω |

Γ c
, l = k, LH = Y h.

Then condition (3.1) is always satisfied.
(FE2) k = 1, l = 0.

In this case, (3.1) is fulfilled provided that the ratio H/h is sufficiently large, i.e. the partition T H
Γc

is coarser than T h
Ω |

Γ c
(see [18]).

For (ϕh
1, ϕ

h
2, g

H) ∈ Y h
+

× Y h
+

×ΛH
ν given, we introduce the following discrete form of problem (M (ϕ1, ϕ2, g)):

Find (uh, λHν ) := (uh(ϕh
1, ϕ

h
2, g

H), λHν (ϕ
h
1, ϕ

h
2, g

H)) ∈ V h
×ΛH

ν such that
a(uh, vh − uh)+ j(ϕh

1, ϕ
h
2, g

H , vht )− j(ϕh
1, ϕ

h
2, g

H , uh
t )

≥ ℓ(vh − uh)− (λHν , v
h
ν − uh

ν)0,Γc ∀vh ∈ V h,

(µH
ν − λHν , u

h
ν)0,Γc ≤ 0 ∀µH

ν ∈ ΛH
ν .

 (MhH(ϕ
h
1, ϕ

h
2, g

H))

Reformulating (MhH(ϕ
h
1, ϕ

h
2, g

H)) as a saddle-point problem, condition (3.1) ensures that (MhH(ϕ
h
1, ϕ

h
2, g

H)) has a unique
solution (uh, λHν ) for any (ϕ

h
1, ϕ

h
2, g

H) ∈ Y h
+

× Y h
+

×ΛH
ν (see [16, Chapter VI]). Furthermore, its first component uh solves:

Find uh
:= uh(ϕh

1, ϕ
h
2, g

H) ∈ K hH such that
a(uh, vh − uh)+ j(ϕh

1, ϕ
h
2, g

H , vht )− j(ϕh
1, ϕ

h
2, g

H , uh
t ) ≥ ℓ(vh − uh) ∀vh ∈ K hH ,


(PhH(ϕ

h
1, ϕ

h
2, g

H))

where

K hH
:= {vh ∈ V h

| (µH , vhν)0,Γc ≤ 0 ∀µH
∈ ΛH

ν }.

Remark 3.2. Notice that K hH is an external approximation of K , i.e. K hH
⊄ K . On the other hand, ΛH

ν is an internal
approximation ofΛν .

To define a discretization of Ψ , let rh : H1(Γc) → Y h be a linear interpolation operator preserving positivity:

(ϕ ∈ H1(Γc) and ϕ ≥ 0 a.e. on Γc) H⇒ rhϕ ∈ Y h
+

(3.2)

and possessing the following approximation property:

∃cr > 0 : ‖ϕ − rhϕ‖0,Γc ≤ crhΓc‖ϕ‖1,Γc ∀ϕ ∈ H1(Γc) ∩ Y , (3.3)

where hΓc := maxF∈T h
Ω |
Γ c

diam(F). With such rh at hand we introduce the mappingΨhH : Y h
+

× Y h
+

×ΛH
ν → Y h

+
× Y h

+
×ΛH

ν

by

ΨhH(ϕ
h
1, ϕ

h
2, g

H) = (rh|uh
t1 |, rh|u

h
t2 |, λ

H
ν ),

where (uh, λHν ) solves (MhH(ϕ
h
1, ϕ

h
2, g

H)).

Definition 3.1. Any couple (uh, λHν ) ∈ V h
×ΛH

ν is called a solution of the discrete contact problemwith orthotropic Coulomb
friction and solution-dependent coefficients of friction if (rh|uh

t1 |, rh|u
h
t2 |, λ

H
ν ) is a fixed point of ΨhH , i.e. (uh, λHν ) solves

(MhH(rh|uh
t1 |, rh|u

h
t2 |, λ

H
ν )).
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3.1. Existence result

The existence of a discrete solution will be done by using the fixed-point arguments. First we introduce two auxiliary
results, the first one is a minor modification of Lemma 3.3 in [19]. Recall that ti(x) = (ti,j(x))3j=1, 1 ≤ i ≤ 2, are the principal
axes of orthotropic friction and ϕt = (ϕt1 , ϕt2)with ϕti = ϕ · ti, 1 ≤ i ≤ 2.

Lemma 3.1. If ϕ ∈ H1(Γc) then |ϕ| ∈ H1(Γc) and

‖ |ϕ| ‖1,Γc ≤ ‖ϕ‖1,Γc .

Lemma 3.2. Let (2.5) be satisfied. Then ϕt ∈ H1(Γc; R2) for any ϕ ∈ H1(Γc; R3) and there exists a constant ct > 0 such that

‖ϕt‖1,Γc ≤ ct‖ϕ‖1,Γc ∀ϕ ∈ H1(Γc; R3).

Proof. SinceΓc is supposed to be a flat part of ∂Ω , wemay assumewithout loss of generality thatΓc ⊂ R2
×{0} (otherwise,

one can introduce an appropriate orthonormal transformation of coordinates). The proof is then straightforward. �

With these results at our disposal we shall show by using the Brouwer fixed-point theorem that ΨhH has at least one
fixed point in the set

C (R1, R2) :=

(ϕh

1, ϕ
h
2, µ

H) ∈ Y h
+

× Y h
+

×ΛH
ν | ‖(ϕh

1, ϕ
h
2)‖0,Γc ≤ R1 and ‖µH

‖∗,h ≤ R2


for appropriate R1, R2 > 0.

Lemma 3.3. Let F satisfy (2.4). Then there exist R1, R2 > 0 such that ΨhH maps Y h
+

× Y h
+

×ΛH
ν into C (R1, R2).

Proof. Let (ϕh
1, ϕ

h
2, g

H) ∈ Y h
+

×Y h
+

×ΛH
ν be given and (uh, λHν ) be the solution to (MhH(ϕ

h
1, ϕ

h
2, g

H)). Inserting vh := 0, 2uh
∈

K hH into (PhH(ϕ
h
1, ϕ

h
2, g

H)) we get

a(uh, uh)+ j(ϕh
1, ϕ

h
2, g

H , uh
t ) = ℓ(uh), (3.4)

which together with the non-negativeness of j imply that

‖uh
‖1,Ω ≤

‖ℓ‖∗,Ω

α
. (3.5)

Here ‖.‖∗,Ω stands for the norm in the dual toH1(Ω; R3) andα is the constant from (2.6). Invoking (3.3), Lemmas 3.1 and 3.2,

‖(rh|uh
t1 |, rh|u

h
t2 |)‖0,Γc ≤ ‖(rh|uh

t1 | − |uh
t1 |, rh|u

h
t2 | − |uh

t2 |)‖0,Γc + ‖(|uh
t1 |, |u

h
t2 |)‖0,Γc

(3.3)
≤ crhΓc‖(|u

h
t1 |, |u

h
t2 |)‖1,Γc + ‖uh

t ‖0,Γc ≤ crhΓc‖u
h
t ‖1,Γc + ‖uh

t ‖0,Γc

≤ crcthΓc‖u
h
‖1,Γc + ‖uh

‖0,Γc ≤ (c(1,0)inv crct + 1)‖uh
‖0,Γc

≤ c(2)tr (c
(1,0)
inv crct + 1)‖uh

‖1,Ω , (3.6)

where c(2)tr is the norm of the trace mapping from H1(Ω; R3) into L2(∂Ω; R3) and c(1,0)inv is the constant from the inverse in-
equality between theH1(Γc; R3) and L2(Γc; R3)-norms for functions belonging to the finite-dimensional space Y h

×Y h
×Y h:

‖ψh
‖1,Γc ≤

c(1,0)inv

hΓc
‖ψh

‖0,Γc ∀ψh
∈ Y h

× Y h
× Y h. (3.7)

In view of (3.5) and (3.6), the radius R1 is of the form

R1 := R1(c
(1,0)
inv , cr , c

(2)
tr , ct , α, ℓ) :=

c(2)tr (c
(1,0)
inv crct + 1)
α

‖ℓ‖∗,Ω .

Furthermore, introducing the subspace

V h
0 := {vh ∈ V h

| vht = 0 on Γc},

one can see from (MhH(ϕ
h
1, ϕ

h
2, g

H)) and (3.4) that

a(uh, vh)+ j(ϕh
1, ϕ

h
2, g

H , vht ) ≥ ℓ(vh)− (λHν , v
h
ν)0,Γc ∀vh ∈ V h.

Thus

a(uh, vh) = ℓ(vh)− (λHν , v
h
ν)0,Γc ∀vh ∈ V h

0 ,
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from which, (2.7) and (3.5),

(λHν , v
h
ν)0,Γc

‖vh‖1,Ω
=
ℓ(vh)− a(uh, vh)

‖vh‖1,Ω
≤


1 +

M
α


‖ℓ‖∗,Ω ∀vh ∈ V h

0 . (3.8)

To complete the proof, we may assume without loss of generality that Γc ⊂ R2
× {0} (otherwise, one can introduce an

orthonormal transformation A : R3
→ R3 such that A(Γc) ⊂ R2

× {0} and proceed with Avh). Let

V h
00 := {vh = (vh1, v

h
2, v

h
3) ∈ V h

| vh1 = vh2 = 0 inΩ} ⊂ V h
0 .

Then one has

‖λHν ‖∗,h = sup
0≠vh∈Vh

(λHν , v
h
ν)0,Γc

‖vh‖1,Ω
≤ sup

0≠vh∈Vh

(λHν , v
h
3)0,Γc

‖vh3‖1,Ω
= sup

0≠vh∈Vh
00

(λHν , v
h
ν)0,Γc

‖vh‖1,Ω
≤ sup

0≠vh∈Vh
0

(λHν , v
h
ν)0,Γc

‖vh‖1,Ω
.

From this and (3.8), we see that one can take

R2 := R2(M, α, ℓ) :=


1 +

M
α


‖ℓ‖∗,Ω . �

Remark 3.3. Let us notice that at this moment the partitionsT h
Ω andT H

Γc
are fixed and the constants cr and c(1,0)inv in (3.3) and

(3.7), respectively, may depend on h. Later onwe shall considerT h
Ω andT H

Γc
as elements of systems {T h

Ω}, {T H
Γc

}, h,H → 0+,
and we shall formulate conditions on these systems under which the constants do not depend on h.

Lemma 3.4. The mapping ΨhH is continuous in Y h
+

× Y h
+

×ΛH
ν provided that (2.4) is satisfied.

Proof. Let (ϕh,k
1 , ϕ

h,k
2 , gH,k), (ϕh

1, ϕ
h
2, g

H) ∈ Y h
+

× Y h
+

×ΛH
ν , k ∈ N, be such that

(ϕ
h,k
1 , ϕ

h,k
2 , gH,k) → (ϕh

1, ϕ
h
2, g

H) in Y h
× Y h

× LH , k → +∞,

and (uh,k, λH,kν ) be the respective solutions to (MhH(ϕ
h,k
1 , ϕ

h,k
2 , gH,k)):

a(uh,k, vh − uh,k)+ j(ϕh,k
1 , ϕ

h,k
2 , gH,k, vht )− j(ϕh,k

1 , ϕ
h,k
2 , gH,k, uh,k

t )

≥ ℓ(vh − uh,k)− (λH,kν , vhν − uh,k
ν )0,Γc ∀vh ∈ V h,

(µH
ν − λH,kν , uh,k

ν )0,Γc ≤ 0 ∀µH
ν ∈ ΛH

ν .


As we know, both sequences {uh,k

} and {λH,kν } are bounded. Thus one can find {uh,kl} ⊂ {uh,k
}, {λ

H,kl
ν } ⊂ {λH,kν } and uh

∈ V h,

λHν ∈ ΛH
ν such that

uh,kl → uh in V h, λH,klν → λHν in LH , l → +∞.

Let vh ∈ V h and µH
ν ∈ ΛH

ν be arbitrarily chosen. Taking into account the equivalences of all norms in the finite-
dimensional spaces involved, one can easily verify that

a(uh,kl , vh − uh,kl)− ℓ(vh − uh,kl)+ (λH,klν , vhν − uh,kl
ν )0,Γc

l→+∞
−→ a(uh, vh − uh)− ℓ(vh − uh)+ (λHν , v

h
ν − uh

ν)0,Γc ,

j(ϕh,kl
1 , ϕ

h,kl
2 , gH,kl , vht )− j(ϕh,kl

1 , ϕ
h,kl
2 , gH,kl , uh,kl

t )
l→+∞
−→ j(ϕh

1, ϕ
h
2, g

H , vht )− j(ϕh
1, ϕ

h
2, g

H , uh
t ),

(µH
ν − λH,klν , uh,kl

ν )0,Γc
l→+∞
−→ (µH

ν − λHν , u
h
ν)0,Γc ,

which shows that (uh, λHν ) solves (MhH(ϕ
h
1, ϕ

h
2, g

H)). Since this problem admits a unique solution, the original sequences
{uh,k

}, {λH,kν } tend to uh and λHν .
Furthermore, from the positivity preserving assumption (3.2) and the linearity of rh it is readily seen that

|rh(|u
h,k
ti | − |uh

ti |)| ≤ rh|u
h,k
ti − uh

ti | on Γc, 1 ≤ i ≤ 2, k ∈ N.

Therefore, arguing as in (3.6) one gets

‖(rh|u
h,k
t1 |, rh|u

h,k
t2 |)− (rh|uh

t1 |, rh|u
h
t2 |)‖0,Γc ≤ ‖(rh|u

h,k
t1 − uh

t1 |, rh|u
h,k
t2 − uh

t2 |)‖0,Γc

≤ c(2)tr (c
(1,0)
inv crct + 1)‖uh,k

− uh
‖1,Ω , k ∈ N, (3.9)

and the limit passage k → +∞ completes the proof. �

We have arrived at the following existence result.

Theorem 3.1. If (2.4) is fulfilled then the discrete problem given by Definition 3.1 has at least one solution.
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3.2. Uniqueness result

Applying the Banach fixed-point theorem, even uniqueness of the discrete solution can be ensured. Nevertheless, to
establish the Lipschitz continuity of ΨhH , we shall need an additional assumption on F , namely:

∃L > 0 : |Fi(x, ξ)− Fi(x, ξ̄ )| ≤ L‖ξ − ξ̄‖ ∀x ∈ Γc ∀ξ, ξ̄ ∈ R2
+
, 1 ≤ i ≤ 2. (3.10)

We start with a useful technical result.

Lemma 3.5. If F satisfies (2.4) and (3.10) then it holds for any uh, ūh
∈ V h and any (ϕh

1, ϕ
h
2), (ϕ̄

h
1, ϕ̄

h
2) ∈ Y h

+
× Y h

+
that‖F (ϕh

1, ϕ
h
2)ū

h
t ‖ − ‖F (ϕh

1, ϕ
h
2)u

h
t ‖ − (‖F (ϕ̄h

1, ϕ̄
h
2)ū

h
t ‖ − ‖F (ϕ̄h

1, ϕ̄
h
2)u

h
t ‖)


≤ L(2 + κ(F ))‖(ϕh
1, ϕ

h
2)− (ϕ̄h

1, ϕ̄
h
2)‖ ‖uh

t − ūh
t ‖ on Γc, (3.11)

where

κ(F ) := sup
x∈Γc
ξ∈R2

+

‖F (x, ξ)‖ ‖F−1(x, ξ)‖ = sup
x∈Γc
ξ∈R2

+

max{F1(x, ξ),F2(x, ξ)}
min{F1(x, ξ),F2(x, ξ)}

.

Proof. For x ∈ Γc, uh, ūh
∈ V h and (ϕh

1, ϕ
h
2), (ϕ̄

h
1, ϕ̄

h
2) ∈ Y h

+
× Y h

+
given, set

u := uh
t (x), ū := ūh

t (x),

φ = (φ1, φ2) := (ϕh
1(x), ϕ

h
2(x)), φ̄ = (φ̄1, φ̄2) := (ϕ̄h

1(x), ϕ̄
h
2(x))

and define the function h := G ◦ F ◦ H : R → R with H : R → R2, F : R2
→ R2,G : R2

→ R introduced as follows:

H(r) = φ̄ + r(φ − φ̄), r ∈ R,

F(ξ1, ξ2) := (F1(ξ1, ξ2), F2(ξ1, ξ2)) =


(F1(x, ξ1, ξ2),F2(x, ξ1, ξ2)) if ξ1, ξ2 ≥ 0,
(F1(x, ξ1, 0),F2(x, ξ1, 0)) if ξ1 ≥ 0 > ξ2,
(F1(x, 0, ξ2),F2(x, 0, ξ2)) if ξ2 ≥ 0 > ξ1,
(F1(x, 0, 0),F2(x, 0, 0)) if 0 > ξ1, ξ2,

G(ξ1, ξ2) = ‖Diag{ξ1, ξ2}ū‖ − ‖Diag{ξ1, ξ2}u‖, (ξ1, ξ2) ∈ R2.

Obviously, h is Lipschitz continuous inR and the left-hand side of (3.11) at the point x equals |h(1)−h(0)|. From the Lebourg
mean-value theorem it follows that there exists r̄ ∈ (0, 1) such that

h(1)− h(0) ∈ ∂h(r̄),

where ∂h denotes the Clarke subdifferential of h (see [20]). So it suffices to estimate |θ | for any θ ∈ ∂h(r) and any r ∈ (0, 1)
fixed.

Due to the continuous differentiability of H at r and G at F(H(r)), Chain Rule II for the Clarke subdifferential ∂h and the
chain rule for ∂(G ◦ F) viewed as the generalized Jacobian imply that

∂h(r) ⊂ (∇H(r))T∂(G ◦ F)(H(r)),
∂(G ◦ F)(H(r)) = (∂F(H(r)))T∇G(F(H(r)))

so that θ ∈ ∂h(r) is of the form

θ = (∇H(r))TZT
∇G(F(H(r)))

for some Z =
z11 z12
z21 z22


∈ ∂F(H(r)).

Suppose first that u, ū ≠ 0. If it is so then

(∇H(r))TZT
=

(φ1 − φ̄1)z11 + (φ2 − φ̄2)z12, (φ1 − φ̄1)z21 + (φ2 − φ̄2)z22


,

(ζ1, ζ2)∇G(ξ1, ξ2) =
Diag{ξ1, ξ2}ū · Diag{ζ1, ζ2}ū

‖Diag{ξ1, ξ2}ū‖
−

Diag{ξ1, ξ2}u · Diag{ζ1, ζ2}u
‖Diag{ξ1, ξ2}u‖

and consequently,

θ =
Fū · Sū
‖Fū‖

−
Fu · Su
‖Fu‖

with

F := Diag{F1(φ̄ + r(φ − φ̄)), F2(φ̄ + r(φ − φ̄))},

S := Diag{(φ1 − φ̄1)z11 + (φ2 − φ̄2)z12, (φ1 − φ̄1)z21 + (φ2 − φ̄2)z22}.
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Clearly,

|θ | ≤

Fū · S(ū − u)
‖Fū‖

+
Fū · Su

‖Fū‖
−

Fū · Su
‖Fu‖

+
F(ū − u) · Su

‖Fu‖

 =: s1 + s2 + s3.

In virtue of the inequality ‖u‖ ≤ ‖F−1
‖‖Fu‖ and the fact that both F and S are diagonal matrices, one has

s1 ≤
‖Fū‖ ‖S(ū − u)‖

‖Fū‖
≤ ‖S‖ ‖ū − u‖,

s2 =

 (Fū · Su)(‖Fu‖ − ‖Fū‖)

‖Fū‖ ‖Fu‖

 ≤
‖Fū‖ ‖S‖ ‖u‖ ‖Fu − Fū‖ ‖F−1

‖

‖Fū‖ ‖u‖
≤ κ(F )‖S‖ ‖u − ū‖,

s3 =

S(ū − u) · Fu
‖Fu‖

 ≤ ‖S‖ ‖ū − u‖.

Furthermore, let zi denote the ith row vector of Z . Then ‖zi‖ ≤ L because zi ∈ ∂Fi(H(r)) and the Lipschitz modulus of Fi is
less than or equal to L by (3.10). Thus,

‖S‖ = max
1≤i≤2

{|(φ1 − φ̄1)zi1 + (φ2 − φ̄2)zi2|} ≤ max
1≤i≤2

‖zi‖ ‖φ − φ̄‖ ≤ L‖φ − φ̄‖.

Combining the previous estimates we get:

|θ | ≤ L(2 + κ(F ))‖φ − φ̄‖ ‖u − ū‖. (3.12)

To complete the assertion, let u = 0 ≠ ū. In this case,

|θ | =

Fū · Sū
‖Fū‖

 ≤ ‖S‖ ‖ū − 0‖ ≤ L‖φ − φ̄‖ ‖ū − u‖,

i.e. (3.12) holds as well and so it is for ū = 0. �

Proposition 3.1. Let (2.4) and (3.10) be satisfied. For any R1, R2 > 0,ΨhH is Lipschitz continuous in C (R1, R2):

∃C1, C2 > 0 : ‖ΨhH(ϕ
h
1, ϕ

h
2, g

H)− ΨhH(ϕ̄
h
1, ϕ̄

h
2, ḡ

H)‖Yh×Yh×LH

≤ max


Fmax
√
H

C1,
L(2 + κ(F ))

hΓcH
C2R2


‖(ϕh

1, ϕ
h
2, g

H)− (ϕ̄h
1, ϕ̄

h
2, ḡ

H)‖Yh×Yh×LH

∀(ϕh
1, ϕ

h
2, g

H), (ϕ̄h
1, ϕ̄

h
2, ḡ

H) ∈ C (R1, R2). (3.13)

Proof. For (ϕh
1, ϕ

h
2, g

H), (ϕ̄h
1, ϕ̄

h
2, ḡ

H) ∈ C (R1, R2) denote by (uh, λHν ), (ū
h, λ̄Hν ) the solutions to (MhH(ϕ

h
1, ϕ

h
2, g

H)) and
(MhH(ϕ̄

h
1, ϕ̄

h
2, ḡ

H)), respectively. Inserting vh := ūh
∈ K hH and vh := uh

∈ K hH into (PhH(ϕ
h
1, ϕ

h
2, g

H)) and (PhH(ϕ̄
h
1, ϕ̄

h
2, ḡ

H)),
respectively, we have:

a(uh, ūh
− uh)+ j(ϕh

1, ϕ
h
2, g

H , ūh
t )− j(ϕh

1, ϕ
h
2, g

H , uh
t ) ≥ ℓ(ūh

− uh),

a(ūh, uh
− ūh)+ j(ϕ̄h

1, ϕ̄
h
2, ḡ

H , uh
t )− j(ϕ̄h

1, ϕ̄
h
2, ḡ

H , ūh
t ) ≥ ℓ(uh

− ūh).

Summing both inequalities and using (2.6) we arrive at

α‖uh
− ūh

‖
2
1,Ω ≤ a(uh

− ūh, uh
− ūh)

≤ j(ϕh
1, ϕ

h
2, g

H , ūh
t )− j(ϕh

1, ϕ
h
2, g

H , uh
t )+ j(ϕ̄h

1, ϕ̄
h
2, ḡ

H , uh
t )− j(ϕ̄h

1, ϕ̄
h
2, ḡ

H , ūh
t )

=

gH , ‖F (ϕh

1, ϕ
h
2)ū

h
t ‖ − ‖F (ϕh

1, ϕ
h
2)u

h
t ‖

0,Γc

−

ḡH , ‖F (ϕ̄h

1, ϕ̄
h
2)ū

h
t ‖ − ‖F (ϕ̄h

1, ϕ̄
h
2)u

h
t ‖

0,Γc

=

gH

− ḡH , ‖F (ϕh
1, ϕ

h
2)ū

h
t ‖ − ‖F (ϕh

1, ϕ
h
2)u

h
t ‖

0,Γc

+

ḡH , ‖F (ϕh

1, ϕ
h
2)ū

h
t ‖ − ‖F (ϕh

1, ϕ
h
2)u

h
t ‖ − (‖F (ϕ̄h

1, ϕ̄
h
2)ū

h
t ‖ − ‖F (ϕ̄h

1, ϕ̄
h
2)u

h
t ‖)

0,Γc

=: s1 + s2. (3.14)

The first term can be estimated as follows:

s1 ≤ ‖gH
− ḡH

‖0,Γc

 ‖F (ϕh
1, ϕ

h
2)ū

h
t − F (ϕh

1, ϕ
h
2)u

h
t ‖

0,Γc

= ‖gH
− ḡH

‖0,Γc‖F (ϕh
1, ϕ

h
2)(ū

h
t − uh

t )‖0,Γc

≤ Fmax‖gH
− ḡH

‖0,Γc‖ū
h
− uh

‖0,Γc ≤
Fmax
√
H

c(0,−1/2)
inv c(2)tr ‖gH

− ḡH
‖∗,h‖ūh

− uh
‖1,Ω , (3.15)
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where c(2)tr is the norm of the trace mapping from H1(Ω; R3) into L2(∂Ω; R3) and c(0,−1/2)
inv is the constant from the

equivalence of the corresponding norms in the finite-dimensional space LH :

‖µH
‖0,Γc ≤

c(0,−1/2)
inv
√
H

‖µH
‖∗,h ∀µH

∈ LH . (3.16)

Further, from the previous lemma,

s2 ≤ L(2 + κ(F ))‖ḡH
‖0,Γc

 ‖(ϕh
1, ϕ

h
2)− (ϕ̄h

1, ϕ̄
h
2)‖ ‖uh

t − ūh
t ‖

0,Γc

≤ L(2 + κ(F ))‖ḡH
‖0,Γc‖u

h
− ūh

‖0,∞,Γc‖(ϕ
h
1, ϕ

h
2)− (ϕ̄h

1, ϕ̄
h
2)‖0,Γc .

Due to the equivalence of norms in Y h
× Y h

× Y h, namely:

‖ψh
‖0,∞,Γc ≤

c(∞)
inv
hΓc

‖ψh
‖0,4,Γc ∀ψh

∈ Y h
× Y h

× Y h (3.17)

with an appropriate c(∞)
inv > 0, and the continuity of the trace mapping from H1(Ω; R3) into L4(∂Ω; R3), whose norm is

denoted by c(4)tr , one obtains:

‖uh
− ūh

‖0,∞,Γc ≤
c(∞)
inv c(4)tr

hΓc
‖uh

− ūh
‖1,Ω .

Using (3.16) once again, we get:

‖ḡH
‖0,Γc ≤

c(0,−1/2)
inv
√
H

‖ḡH
‖∗,h ≤

c(0,−1/2)
inv
√
H

R2,

making use of the definition of C (R1, R2). Therefore

s2 ≤
L(2 + κ(F ))

hΓcH
c(0,−1/2)
inv c(∞)

inv c(4)tr R2‖(ϕ
h
1, ϕ

h
2)− (ϕ̄h

1, ϕ̄
h
2)‖0,Γc‖u

h
− ūh

‖1,Ω . (3.18)

The inequality (3.14) together with (3.15) and (3.18) implies that

‖uh
− ūh

‖1,Ω ≤
Fmax
√
H

C̃1‖gH
− ḡH

‖∗,h +
L(2 + κ(F ))

hΓcH
C̃2R2‖(ϕ

h
1, ϕ

h
2)− (ϕ̄h

1, ϕ̄
h
2)‖0,Γc

≤ max


Fmax
√
H

C̃1,
L(2 + κ(F ))

hΓcH
C̃2R2


‖(ϕh

1, ϕ
h
2, g

H)− (ϕ̄h
1, ϕ̄

h
2, ḡ

H)‖Yh×Yh×LH

with

C̃1 := C̃1(c
(0,−1/2)
inv , c(2)tr , α) :=

c(0,−1/2)
inv c(2)tr

α
,

C̃2 := C̃2(c
(0,−1/2)
inv , c(∞)

inv , c
(4)
tr , α) :=

c(0,−1/2)
inv c(∞)

inv c(4)tr

α
.

Following the steps in (3.9) one can see that

‖(rh|uh
t1 |, rh|u

h
t2 |)− (rh|ūh

t1 |, rh|ū
h
t2 |)‖0,Γc ≤ c(2)tr (c

(1,0)
inv crct + 1)‖uh

− ūh
‖1,Ω .

Finally, the Lagrange multipliers are treated similarly as in the proof of Lemma 3.3. The relations

a(uh, vh) = ℓ(vh)− (λHν , v
h
ν)0,Γc ∀vh ∈ V h

0 ,

a(ūh, vh) = ℓ(vh)− (λ̄Hν , v
h
ν)0,Γc ∀vh ∈ V h

0

give

(λHν − λ̄Hν , v
h
ν)0,Γc = a(ūh

− uh, vh) ∀vh ∈ V h
0 ,

‖λHν − λ̄Hν ‖∗,h = sup
0≠vh∈Vh

(λHν − λ̄Hν , v
h
ν)0,Γc

‖vh‖1,Ω
≤ sup

0≠vh∈Vh
0

(λHν − λ̄Hν , v
h
ν)0,Γc

‖vh‖1,Ω

= sup
0≠vh∈Vh

0

a(ūh
− uh, vh)

‖vh‖1,Ω
≤ M‖uh

− ūh
‖1,Ω .
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Thus, setting

C1 := C1(c
(0,−1/2)
inv , c(1,0)inv , cr , c

(2)
tr , ct ,M, α) := (c(2)tr (c

(1,0)
inv crct + 1)+ M)C̃1,

C2 := C2(c
(0,−1/2)
inv , c(1,0)inv , c(∞)

inv , cr , c
(2)
tr , c

(4)
tr , ct ,M, α) := (c(2)tr (c

(1,0)
inv crct + 1)+ M)C̃2,

we have:

‖ΨhH(ϕ
h
1, ϕ

h
2, g

H)− ΨhH(ϕ̄
h
1, ϕ̄

h
2, ḡ

H)‖Yh×Yh×LH

= ‖(rh|uh
t1 |, rh|u

h
t2 |)− (rh|ūh

t1 |, rh|ū
h
t2 |)‖0,Γc + ‖λHν − λ̄Hν ‖∗,h

≤ (c(2)tr (c
(1,0)
inv crct + 1)+ M)‖uh

− ūh
‖1,Ω

≤ max


Fmax
√
H

C1,
L(2 + κ(F ))

hΓcH
C2R2


‖(ϕh

1, ϕ
h
2, g

H)− (ϕ̄h
1, ϕ̄

h
2, ḡ

H)‖Yh×Yh×LH . �

Choosing R1 and R2 from Lemma 3.3, we obtain the following uniqueness result.

Theorem 3.2. Let (2.4) and (3.10) be satisfied and Fmax and L be sufficiently small. Then the solution of our problem in the sense
of Definition 3.1 is unique. In addition, it is the limit of the sequence generated by the method of successive approximations:

Let (ϕh,0
1 , ϕ

h,0
2 , gH,0) ∈ Y h

+
× Y h

+
×ΛH

ν be given;
for k = 0, 1, . . . set
(ϕ

h,k+1
1 , ϕ

h,k+1
2 , gH,k+1) := ΨhH(ϕ

h,k
1 , ϕ

h,k
2 , gH,k);


for any choice of (ϕh,0

1 , ϕ
h,0
2 , gH,0) ∈ Y h

+
× Y h

+
×ΛH

ν .

Proof. Consider R1 and R2 given by Lemma 3.3. In view of (3.13), ΨhH is contractive in C (R1, R2) for Fmax and L sufficiently
small. The assertion now follows from the Banach fixed-point theorem. �

So far, we have assumed that the partitions T h
Ω and T H

Γc
are fixed and the constants c(0,−1/2)

inv , c(1,0)inv , c(∞)
inv and cr may

eventually depend on h andH . In what follows, we present sufficient conditions under which these constants do not depend
on the mesh norms. To this end we shall consider systems of partitions {T h

Ω} and {T H
Γc

} for h,H → 0+. We shall suppose
that:

(i) {T h
Ω |

Γ c
} and {T H

Γc
}, h,H → 0+, are regular systems of partitions of Γ c which satisfy the so-called inverse

assumption [21, (3.2.28)];
(ii) the Babuška–Brezzi condition is satisfied for (V h, LH):

∃β > 0 : sup
0≠vh∈Vh

(µH , vhν)0,Γc

‖vh‖1,Ω
≥ β‖µH

‖∗,Γc ∀µH
∈ LH ∀h,H → 0+,

where ‖.‖∗,Γc is the dual norm in X ′
ν (recall that the duality pairing between Xν and X ′

ν is realized by the L2(Γc)-scalar
product in our case):

‖µH
‖∗,Γc = sup

0≠ϕ∈Xν

(µH , ϕ)0,Γc

‖ϕ‖Xν
, µH

∈ LH ∀H → 0+;

(iii) the interpolation operator rh is such that cr in (3.3) does not depend on hΓc .

From (ii) it is readily seen that

β‖µH
‖∗,Γc ≤ ‖µH

‖∗,h ≤ ‖µH
‖∗,Γc ∀µH

∈ LH ∀h,H → 0+,

which means that the mesh-dependent norm ‖.‖∗,h can be replaced by the dual norm ‖.‖∗,Γc in all the previous estimates.
In addition, taking (i) into account, the constants from the inverse inequalities (3.7), (3.16) and (3.17) are independent of
hΓc ,H (see [21]). For this reason, neither R1, R2 from Lemma 3.3, nor C1, C2 from Proposition 3.1 depend on hΓc ,H .

Remark 3.4. Let (i)–(iii) hold and κ(F ) be bounded. To guarantee the uniqueness of the discrete solutions for h,H → 0+,
the parameters Fmax and L have to decay at least as fast as

√
H and


hΓcH , respectively.

Notice that if F1 coincides with F2, i.e. κ(F ) = 1, orthotropic friction reduces to isotropic one. The latter model has
been studied already in [22], where a stronger condition on the decay of L was derived, namely L ∼ hΓc

√
H . On the other

hand if F does not depend on u, i.e. L = 0, the classical result from [4] is recovered.
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Fig. 2. Geometry.

Let us briefly comment on the satisfaction of the Babuška–Brezzi condition in (ii). It is shown in [23] that it is satisfied
for (FE1) if k = l = 1. In the case of (FE2), (ii) is satisfied provided that the ratio H/h is sufficiently large and the auxiliary
linear elasticity problem:

Findwµ ∈ V such that
a(wµ, v) = ⟨µ, vν⟩ν ∀v ∈ V


is regular in the following sense: there exists ε > 0 such that for every µ ∈ X ′

ν ∩ H−1/2+ε(Γc), the solutionwµ ∈ V belongs
to H1+ε(Ω; R3) and

‖wµ‖1+ε,Ω ≤ c(ε)‖µ‖−1/2+ε,Γc

holds with a constant c(ε) depending solely on ε (see [18]).
Finally, let us refer to an example of the interpolation operator rh satisfying (3.2) and (3.3) with the constant cr

independent of hΓc . To this end, let Γc be polygonal and Γ c ∩ Γ u be either empty or a union of non-degenerate segments,
i.e. containing no isolated points. Moreover, let {T h

Ω |
Γ c

}, h → 0+, be a regular system of triangulations of Γ c such that

any two triangles from T h
Ω |

Γ c
are either disjoint, or have a vertex or a whole side in common. If we still suppose that

{T h
Ω} is compatible with the decomposition of ∂Ω into Γu,Γp and Γc then we can take the following Clément interpolation

operator [24] (with k = 1)1:
Let {xi}i∈Ic be the set of all contact nodes of T h

Ω , i.e. the nodes of T h
Ω lying on Γ c \ Γ u, and {ϕi}i∈Ic be the corresponding

Courant basis of Y h. For each i ∈ Ic , denote the support of ϕi by∆i and define πi : L2(∆i) → P0(∆i) by

(πiϕ)(x) =
1

meas2(∆i)

∫
∆i
ϕ ds, x ∈ ∆i, ϕ ∈ L2(∆i). (3.19)

Then rh is defined as follows:

rhϕ =

−
i∈Ic

(πiϕ)(xi)ϕi, ϕ ∈ L2(Γc).

4. Numerical experiments

In our numerical experimentswe shall consider an elastic, isotropic and homogeneousmaterial characterized by Young’s
modulus E = 21.19e10 (Pa) and Poisson’s ratio σ = 0.277 (steel). The initial configuration is represented by Ω =

(0, 3)× (0, 1)× (0, 1) (in (m)) with Γu = {0} × (0, 1)× (0, 1),Γc = (0, 3)× (0, 1)× {0}, and Γp = Γ 1
p ∪ Γ 2

p ∪ Γ 3
p , where

Γ 1
p = {3} × (0, 1)× (0, 1), Γ 2

p = (0, 3)× (0, 1)× {1} and Γ 3
p = (0, 3)× {0, 1} × (0, 1). The density of surface tractions is

described as follows:

p = (p1x , 0, p
1
z ) on Γ 1

p , p = (0, 0, p2z ) on Γ 2
p , p = (0, 0, 0) on Γ 3

p ,

where p1x = 1e7 (Pa), p1z = 2e7 (Pa) and p2z = −3e7 (Pa) (see Fig. 2).
The volume forces are neglected. The diagonal matrix F representing the coefficients of friction is independent of the

spatial variable, F (x, ξ) := F (ξ), ξ = (ξ1, ξ2). We consider the following form of its diagonal elements F1,F2:

F1(ξ) = φpar1(ξ1) and F2(ξ) = φpar2(ξ2),

1 In fact, the approximation property (3.3) is shown in [24] assuming that either Γ c ∩ Γ u = ∅ or the whole relative boundary of Γc belongs to Γ u .
However, the same argumentation is valid also for the case considered here.
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Fig. 3. Coefficients of friction.

Fig. 4. (a) Partition T H
Γc
; (b) Numbering of nodes.

where

φparj(ζ ) =



0.3 if ζ ≤ 10−5
;

0.3 −
0.1parj

2
(ζ − 10−5) if ζ ∈


10−5, 10−5

+
2

parj


;

0.2 if ζ ≥ 10−5
+

2
parj

for j = 1, 2, i.e., each coefficient depends only on one component of the tangential displacement. We will consider two
different values of parj, namely 2e4 and 6e4 (see Fig. 3). Finally, the principal axes of orthotropic friction t1 and t2 in (2.2)
are t1 = (1, 0, 0) and t2 = (0, 1, 0), respectively.

The partition T h
Ω is constructed in two steps: Firstly, Ω is cut into 3ndiv × ndiv × ndiv cubes, ndiv even. Secondly, each

of these cubes is divided into five tetrahedra. With such T h
Ω we associate the dual partition T H

Γc
as shown in Fig. 4(a). The

fine lines and the black dots represent the triangulation T h
Ω |

Γ c
and its nodes, respectively, while the ‘‘chessboard’’ with the

panes Ri comprised of eight triangles belonging to T h
Ω |

Γ c
constitutes the dual partition T H

Γc
. The finite element spaces V h, LH

consist of piecewise linear (vector) functions on T h
Ω and piecewise constant functions over T H

Γc
, respectively.

Our computations are based on the method of successive approximations mentioned in Theorem 3.2. To evaluate the
mapping ΨhH at (ϕh

1, ϕ
h
2, g

H) ∈ Y h
+

× Y h
+

× ΛH
ν one has to solve problem (MhH(ϕ

h
1, ϕ

h
2, g

H)). This is a non-smooth problem
due to the presence of the non-differentiable frictional term j. To regularize it, we introduce another Lagrange multiplier.
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Instead of (MhH(ϕ
h
1, ϕ

h
2, g

H)) we shall use in our computations the following three-field formulation:

Find (uh, λHν , λ
H
t ) ∈ V h

×ΛH
ν ×ΛH

t (ϕ
h
1, ϕ

h
2, g

H) such that
a(uh, vh) = ℓ(vh)− (λHν , v

h
ν)0,Γc − (λHt , v

h
t )0,Γc ∀vh ∈ V h,

(µH
ν − λHν , u

h
ν)0,Γc + (µH

t − λHt , u
h
t )0,Γc ≤ 0 ∀(µH

ν , µ
H
t ) ∈ ΛH

ν ×ΛH
t (ϕ

h
1, ϕ

h
2, g

H)

 (4.1)

with

ΛH
t (ϕ

h
1, ϕ

h
2, g

H) =


µH

∈

LH
2 1

meas2(Ri)

∫
Ri

F−1(ϕh
1, ϕ

h
2)µ

H ds
 ≤ gH

|Ri
∀ Ri

∈ T H
Γc


,

where F−1(ϕh
1, ϕ

h
2) stands for the inverse of F (ϕh

1, ϕ
h
2). For the approximation of the integrals in the definition of

ΛH
t (ϕ

h
1, ϕ

h
2, g

H) we use the quadrature formula which is exact for continuous, piecewise-linear functions over T h
Ω |Ri

(for
numbering of nodes see Fig. 4(b)):∫

Ri
F−1(ϕh

1, ϕ
h
2)µ

H ds ≈
meas2(Ri)

12


4F−1(ϕh

1(x
i1), ϕh

2(x
i1))+

9−
j=2

F−1ϕh
1(x

ij), ϕh
2(x

ij)

µH(xi1) (4.2)

for any Ri
∈ T H

Γc
.

Denote n = dimW h,m = dim LH and p = the number of the contact nodes of T h
Ω . Then the algebraic counterpart of

(4.1) reads as follows:

Find (u,λν,λt) ∈ R3n
× Rm

+
× Λt(ϕ1,ϕ2, g) such that

Au = l − N⊤λν − T⊤λt ,
(µν − λν,Nu)m + (µt − λt , Tu)2m ≤ 0 ∀(µν,µt) ∈ Rm

+
× Λt(ϕ1,ϕ2, g),

 (4.3)

where ϕ1,ϕ2 ∈ Rp
+, g ∈ Rm

+
are given and

Λt(ϕ1,ϕ2, g) = {µt ∈ R2m
| ‖F −1

i (ϕ1,ϕ2)(µt,2i−1, µt,2i)
⊤
‖
2

≤ g2
i , i = 1, . . . ,m} (4.4)

with F −1
i denoting a (2 × 2)-diagonal matrix whose elements can be computed using the quadrature formula (4.2) on Ri.

Further (·, ·)q stands for the inner product in Rq,A ∈ R3n×3n is the symmetric, positive definite stiffness matrix, l ∈ R3n is
the load vector, and N ∈ Rm×3n, T ∈ R2m×3n are the matrix representations of the linear mappings vh → vhν , v

h
→ vht ,

vh ∈ V h, coupling u with the dual variables λν,λt , respectively. Eliminating u from (4.3), we obtain the so-called reciprocal
variational formulation of the problem:

(λν,λt) := argmin S(µν,µt) s.t. (µν,µt) ∈ Rm
+

× Λt(ϕ1,ϕ2, g), (4.5)

where

S(µν,µt) =
1
2
(µ⊤

ν ,µ
⊤

t )S(µ
⊤

ν ,µ
⊤

t )
⊤

− (µ⊤

ν ,µ
⊤

t )h

and S = BA−1B⊤, h = BA−1l, B := (N⊤, T⊤)⊤. We arrive at the following implementation of the method of successive
approximations:

Algorithm 4.1. Let ϕ
(0)
1 ,ϕ

(0)
2 ∈ Rp

+, g (0) ∈ Rm
+
and ε > 0 be given. Set k := 0.

(i) Solve (λ(k+1)
ν ,λ

(k+1)
t ) := argmin S(µν,µt) s.t. (µν,µt) ∈ Rm

+
× Λt(ϕ

(k)
1 ,ϕ

(k)
2 , g

(k)).
(ii) Solve Au(k+1)

= l − N⊤λ(k+1)
ν − T⊤λ

(k+1)
t .

(iii) Set err (k) := ‖(λ(k+1)
ν ,λ

(k+1)
t ) − (λ(k)ν ,λ

(k)
t )‖/‖(λ

(k+1)
ν ,λ

(k+1)
t )‖. If err (k) ≤ ε, return u := u(k+1),λν := λ(k+1)

ν ,λt :=

λ
(k+1)
t .

(iv) Set k := k + 1, assemble u(k)t1 , u
(k)
t2 ∈ Rp (the contact tangential displacements in the directions of t1 and t2), ϕ

(k)
1 :=

|u(k)t1 |,ϕ
(k)
2 := |u(k)t2 |, g (k) := λ(k)ν , where the absolute values are understood componentwisely, and go to step (i).

Let us mention that rh is chosen to be the Lagrange interpolation operator for simplicity here. Nevertheless, it can be also
seen as the Clément operator described at the end of the previous section when the integrals in (3.19) are approximated by
an appropriate quadrature formula.

The total efficiency of our numerical approach depends on the algorithm used in step (i). As (4.5) is a strictly
convex problem with the quadratic objective S subject to separable constraints (simple bounds and quadratic inequality
constraints), we can solve it by the KPRGP-algorithm proposed and analyzed in [13,14]. Note that this algorithm is a
direct generalization of the one in [25] for simple bound constraints. Its idea is based on combining conjugate gradient
iterationswith gradient projections in an active set strategy. Unlike the isotropic case investigated in [22] one has to compute
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Table 1
F1 = φ6e4 and F2 = φ2e4 .

ndiv 3n 3m iter nA

4 900 36 6 11 779 66
6 2646 81 8 18 1091 319
8 5832 144 8 24 1131 477

10 10890 225 8 20 1134 323
12 18252 324 8 25 1127 629
14 28350 441 9 24 1077 461
16 41616 576 9 29 1088 672

Table 2
F1 = φ2e4 and F2 = φ6e4 .

ndiv 3n 3m iter nA

4 900 36 7 19 720 413
6 2646 81 8 21 849 366
8 5832 144 8 23 860 429

10 10890 225 8 27 911 479
12 18252 324 8 23 974 575
14 28350 441 8 18 977 293
16 41616 576 10 20 1044 332

projections onto the feasible set Rm
+

× Λt(ϕ1,ϕ2, g). Due to the separable structure of this set, each projection splits into
independent projections onto R1

+
and onto ellipses in R2. The second case requires to solve non-linear equations (by the

Newton method, e.g.). As the projected point on the ellipse is uniquely determined by its angle coordinate in the polar
representation, the respective equation contains this coordinate as the only unknown [26]. Consequently, the increase of
computational costs due to the Newton method is negligible.

Remark 4.1. To increase the efficiency of Algorithm 4.1, we initialize the KPRGP-algorithm in the kth iteration by the result
of step (i) obtained in the previous iteration (and by the zero vectors, if k = 0). Moreover, we choose the terminating toler-
ance ϵλ := ϵ

(k)
λ of the KPRGP-algorithm sufficiently accurate in order to achieve the terminating tolerance ε for the method

of successive approximations. We use two strategies: (a) the fixed precision control ϵ(k)λ := (rtol × ε)‖h‖ with 0 < rtol < 1;
(b) the adaptive precision control ϵ(k)λ := min(rtol × err (k−1), cfact × ϵ

(k−1)
λ )‖h‖ with 0 < rtol < 1, 0 < cfact < 1, err (−1)

= 1
and ϵ(−1)

λ = rtol/cfact . While (a) makes it possible to obtain the solution in a small number of outer fixed-point iterations,
(b) leads to a considerably more efficient procedure with a small number of matrix–vector multiplications. Note that the
KPRGP-algorithm is terminated, if the reduced gradient [13,14] of the current (inner) iterate is less than or equal to ϵ(k)λ .

The tables above show how our algorithm behaves for different meshes and different coefficients of friction. Table 1
summarizes experiments with F1 and F2 given by par1 = 6e4 and par2 = 2e4, i.e., F1 = φ6e4 and F2 = φ2e4, respectively.
In Table 2 the role ofF1 andF2 is interchanged, i.e.,F1 = φ2e4 andF2 = φ6e4. Recall that 3n, 3m stands for the total number
of the primal and the dual variables, respectively. Further iter denotes the total number of the fixed-point iterations and nA
stands for the number of actions of A−1 (via the backward substitutions based on the pre-computed Cholesky factor). Since
this step is the most expensive part of the KPRGP-algorithm, nA expresses the total cost of computations. The first integer
in the iter and nA columns characterizes the fixed precision control (with rtol = 0.1) while the second integer characterizes
the adaptive one (with rtol = 0.1 and cfact = 0.99). The initial approximation and the terminating tolerance for the method
of successive approximations were chosen to be ϕ

(0)
1 = ϕ

(0)
2 = g (0) = 0 and ε = 1e − 4, respectively.

From the tables one can conclude that the total complexity as well as the behavior of Algorithm 4.1 depend on the way
how the (inner) KPRGP-algorithm is terminated. If the inner terminating tolerance ϵ(k)λ is fixed and proportional to the final
precision ε in all fixed-point iterations (strategy (a) of Remark 4.1) then the numbers iter and nA are similar for all ndiv. On
the other hand, the inexact solving of the inner subproblems (strategy (b) of Remark 4.1) exhibits some oscillations in the
values of iter and nA with respect to ndiv. In this case ϵ(k)λ is adaptive and proportional only to the current precision err (k−1)

or, if the progress is not sufficient, to the improved inner tolerance ϵ(k−1)
λ from the previous step. This strategy ensures that

the KPRGP-algorithm performs as few steps as possible, but the number of outer fixed-point iterations increases. A heuristic
explanation for this increase is simple. One can interpret several (usually three) outer iterations of the strategy (b) as one
iteration of the strategy (a).

The results of our computations for ndiv = 16 with F1 = φ6e4 and F2 = φ2e4 are seen in Fig. 5. The distribution of the
normal contact stress (σν(u) ≈ −λHν ) and the weighted norm of the tangential contact stress (‖F−1(|ut1 |, |ut2 |)σt(u)‖ ≈

‖F−1
h λHt ‖, where F−1

h = F−1(|uh
t1 |, |u

h
t2 |)) are depicted in Fig. 5(a) and (b), respectively. All contact and friction phenomena

appear on Γc in our model problem, i.e., the slipping and sticking contact zones as well as the zone of non-contact. Fig. 5(c)
shows the deformed body while Fig. 5(d) enables us to check the satisfaction of the friction conditions (2.2). The lengths of
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Fig. 5. (a) Normal contact stress; (b) weighted norm of the tangential contact stresses; (c) deformed body; (d) contact zone Γc ; (e) distribution of F1; (f)
distribution of F2 .

the semi-axes of the ellipses in this figure are determined by the values of F1 and F2 at the solution. The small lines inside
represent the tangential contact stress. Finally, Fig. 5(e) and (f) depict the distribution of F1 and F2 on Γc , respectively.

5. Conclusions and comments

The first, theoretical part is the main contribution of this paper. It is devoted to the existence and uniqueness analysis
of solutions to discrete contact problems with orthotropic friction and coefficients of friction depending on the magnitude
of the tangential contact displacements. Solutions are defined as fixed points of a mapping acting on the contact parts of
the boundary. It was shown that at least one solution exists for the coefficients of friction represented by positive, bounded
and continuous functions. If, in addition, these functions are Lipschitz continuous and sufficiently small together with the
respective modulus of Lipschitz continuity then the solution is unique. The mesh-dependent bounds guaranteeing this
property are derived. Such results are important not only from the theoretical but also from the practical point of view. As
a consequence we obtain the justification of the method of successive approximations in which each iterative step is given
by a contact problem with orthotropic Tresca friction. In the last section we used this approach for numerically solving of a
model problem.
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