Continuation of the static contact problem with Coulomb friction

V. Janovský, R. Kučera

Charles University, Faculty of Mathematics and Physics, Prague
Department of Mathematics and Descriptive Geometry, VŠB-TU, Ostrava

1 Discrete static contact problems with Coulomb friction

Let \(\Omega \subset \mathbb{R}^2 \) be a linearly elastic body supported by a rigid foundation along the contact boundary \(\Gamma_C \). On \(\Gamma_N \) and \(\Gamma_D \), Neumann and Dirichlet boundary conditions are prescribed. We consider the static contact problems with Coulomb friction, see e.g. [1]. In particular, we will investigate a discrete version of this problem, see e.g. [2, 3]. This may be understood as a \emph{FEM-approximation} of the continuous mechanical problem.

Let integers \(n \) and \(p \) define the degrees of freedom of the body \(\Omega \) and the number of contact nodes on \(\Gamma_C \), \(n \geq 2p \). Let \(f \in \mathbb{R}^n \) and \(F \) be the given distributed volume force and the friction coefficient. We seek for

- nodal displacement field \(u \in \mathbb{R}^n \)
- nodal normal and tangential stress components \(\lambda_\nu \in \mathbb{R}^p \) and \(\lambda_t \in \mathbb{R}^p \)

such that

\[
(Au, v)_n = (f, v)_n + (\lambda_\nu, Nv)_p + (\lambda_t, Tv)_p \quad \forall v \in \mathbb{R}^n,
\]

\[
(\mu_\nu - \lambda_\nu, Nu)_p + (\mu_t - \lambda_t, Tu)_p \geq 0 \quad \forall (\mu_\nu, \mu_t) \in \Lambda_\nu \times \Lambda_t(F, -\lambda_\nu).
\]

Here, \(A \in \mathbb{R}^{n \times n} \) is a positive definite stiffness matrix. The full-rank matrices \(N \in \mathbb{R}^{p \times n} \) and \(T \in \mathbb{R}^{p \times n} \) associate \(u \in \mathbb{R}^n \) with its normal and tangential component at the contact nodes. The convex sets of Lagrange multipliers are

\[
\Lambda_\nu = \mathbb{R}^p_+ \quad \text{and} \quad \Lambda_t(F, -\lambda_\nu) = \{ \mu_t \in \mathbb{R}^p : |\mu_t,i| \leq -F \lambda_\nu,i \quad \forall i = 1, \ldots, p \}.
\]

It is worth noticing that the second set in (3) depends on the solution component \(\lambda_\nu \).

Let \(r > 0 \) be a fixed parameter. The variational inequality (2) is equivalent to the equations

\[
\lambda_\nu = P_{\Lambda_\nu}(\lambda_\nu - rNu), \quad \lambda_t = P_{\Lambda_t(F, -\lambda_\nu)}(\lambda_t - rTu),
\]

see e.g. [4, 5]. Here \(P_{\Lambda_\nu} \) and \(P_{\Lambda_t(F, -\lambda_\nu)} \) are the orthogonal projections of \(\mathbb{R}^p \) onto \(\Lambda_\nu \) and \(\Lambda_t(F, -\lambda_\nu) \), see (3).

Under generic assumptions, there exists a solution of (1)&(2) for any data \(f \in \mathbb{R}^n \) and \(F > 0 \). If \(F \) is sufficiently small, the solution is unique. See e.g. [2, 7].
2 Continuation of the static solutions

Solving (1)&(2) for \((u, \lambda_\nu, \lambda_t) \in \mathbb{R}^n \times \Lambda_\nu \times \Lambda_t(F, -\lambda_\nu)\) is equivalent to finding roots of a nonlinear mapping (1)&(4).

The static Coulomb friction model depends on parameters. For example, we may prescribe a smooth loading path \(\alpha \in \mathbb{R} \mapsto f(\alpha) \in \mathbb{R}^n\) and ask for a continuous response of the body. Then the above mentioned roots depend on the parameter \(\alpha\). We will define

\[
\begin{pmatrix}
u \\
\lambda_\nu \\
\lambda_t \\
\alpha
\end{pmatrix} \in \mathbb{R}^{n+2p+1} \mapsto H(\mathbf{z}) = \begin{pmatrix} A u - f(\alpha) - N^T \lambda_\nu - T^T \lambda_t \\ \lambda_\nu - P_{\lambda_a}(\lambda_\nu - rN^T u) \\ \lambda_t - P_{\lambda_{\lambda_t}}(\lambda_t - rT u) \end{pmatrix} \in \mathbb{R}^{n+2p}.
\] (5)

The mapping \(H : \mathbb{R}^{n+2p+1} \to \mathbb{R}^{n+2p}\) is continuous, piecewise smooth, see [7]. Hence, the set \(H(u, \lambda_\nu, \lambda_t, \alpha) = 0 \in \mathbb{R}^{n+2p}\) defines generically a continuous, piecewise smooth curve in \(\mathbb{R}^{n+2p+1}\). The objective is to trace the curves (5) numerically using path-following (i.e. continuation) techniques. Note that the standard continuation techniques require the curve to be smooth. The idea is:

1. Continue the smooth pieces by a classical path-following software, see e.g. [6].
2. Join the smooth pieces continuously, preserving the orientation.

For details, see [7, 8].

3 Case study: \(n = 1320, p = 30\)

For the geometry of the example, see Figure 1: It is understood that each nodal mesh point has two degrees of freedom for the vertical and horizontal displacement. The indicated surface traction depend on a scalar parameter \(\alpha\); we omit the particular formulae. The contact boundary \(\Gamma_C\) is approximated by \(p = 30\) points. The contact data \(\lambda_\nu, \lambda_t, u_\nu, u_t\) are changed with \(\alpha\). A snapshot as \(\alpha = 3.6\) is shown in Figure 2.

We consider continuation of the curve (5) in the parameter range \(-0.5 \leq \alpha \leq 1.5\), starting at \(\alpha = -0.5\). The curve is continuous, piecewise smooth. Hence, the curve is smooth up to transition points. There were detected 14 transition points on the path: E.g., at the six-th transition point which is related to \(\alpha = 0.28019791259766\), the contact nodal point \(i = 13\) changes its classification from no contact to contact, slip. At the seven-th transition point which is related to \(\alpha = 0.42934036865234\), the contact nodal point \(i = 3\) changes its classification from contact, slip to contact, stick. At the eight-th transition point which is related to \(\alpha = 0.60403706054688\), the contact nodal point \(i = 14\) changes its classification from no contact to contact, slip.

In fact, if we know transition points, we can cheaply compute the solution for any given \(\alpha\), see Figure 3.

Acknowledgement:
The research of V. Janovský was supported by the Grant Agency of the Czech Republic (grant No. 201/07/0294) and also by the research project MSM 0021620839 of The Ministry of Education, Youth and Sports, Czech Republic. The research of R. Kučera was supported by the Grant Agency of the Czech Republic (grant No. 101/08/0574).
Figure 1: FEM approximation: Case Study \(n = 1320, \ p = 30; \) the mesh on the rectangular domain \(\Omega. \) The loading is due to the surface traction.

Figure 2: Contact data \(\lambda_\nu, \lambda_t, u_\nu, u_t \) at the contact points \(i = 1, 2, \ldots, 30 \) for \(\alpha = 3.6. \) Contact classification: circle ... no contact, diamond ... contact-stick, square ... contact-slip. Here, \(u_\nu \) and \(u_t \) are the normal and tangential displacement components at particular contact points.
Figure 3: Profiles of the normal stress components: Contact points \(i = 1, 2, \ldots, 30\) vs \(\lambda_n\) for selected parameter values \(\alpha = -0.5, 0, 0.5, 1, 1.5\). Contact classification: circle ... no contact, diamond ... contact-stick, square ... contact-slip.

References

