

Statistically Dependent Random Variables

- Theoretical background
- Software HistAn2D and HistAn3D
- Examples

Some of input variables are **statistically dependent** however, e.g., crosssection characteristics, strength properties etc.

2

Statistics Analyze of the Measured Data

Pearson's correlation coefficient

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) \cdot (y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \cdot \sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

where x_i and y_i are elements of the both random quantities and \overline{x} and \overline{y} are mean values of those quantities

Spearman's coefficient of sequential correlation

$$\rho = 1 - \frac{6 \cdot \sum_{i=1}^{n} (p_i - q_i)^2}{n \cdot (n^2 - 1)}$$

can be determined by arranging n values x_i and y_i of the both random quantities by their size and by allocating sequence numbers p_i and q_i .

Statistics Analyze of the Measured Data

Example 1

Perform a statistical analysis of the dependence of both random variables using **Pearson's** and **Spearman's correlation coefficients**.

Statistically independent random variables are entered into probabilistic calculation using **double** or **triple histograms**.

Desktop of HistAn2D: double histogram of statistically independent (left) and dependent (right) random variable

Used double histograms for statistically dependent random cross-section properties of HE300B profile.

 $A_{var}, I_{v,var}$

 $I_{y,var}, W_{y,var}$

 $A_{var}, W_{y,var}$

Theoretical Background: In each standard histogram *A*, one axis includes the a_j class which is limited by a_{\min} and a_{\max} , while the other axis shows typically the probability, p_{a_j} , of occurrence of that class, a_j .

The sum of probabilities for each class a_j in the histogram is $\sum p_{a_j} = 1$.

In the double histogram of two random variables, Z_1 and Z_2 , the quantity z_1 is limited again by $z_{1,\min}$ and $z_{1,\max}$, while z_2 is limited by $z_{2,\min}$ and $z_{2,\max}$.

The values can be divided, using the step $\Delta z_{1,}$ into N_1 intervals for random quantities Z_1 , or, using the step Δz_2 , into N_2 intervals for the random quantities Z_2 . The number of intervals is as follows:

$$N_1 = \frac{z_{1,\max} - z_{1,\min}}{\Delta z_1}$$
 and $N_2 = \frac{z_{2,\max} - z_{2,\min}}{\Delta z_2}$.

Theoretical Background: If the input variable z_1 is in the j^{th} class of $z_{1,j}$ in theory, z_2 could acquire following values: $z_{2,1}, z_{2,2}, \dots, z_{2,j}, \dots, z_{2,N_2}$. This means, it can acquire N_2 values.

The double histogram of the random quantities z_1 and z_2 can contain $N_1 \cdot N_2$ classes. This means, each class is determined by two values, $z_{1,j}$ and $z_{2,j}$, and by the probability of occurrence of that class, $p_{z_{1,j},z_{2,j}}$. Again: $\sum p_{z_{1,j},z_{2,j}} = 1$.

The number of classes with the non-zero probability can reach the product of $N_1 \cdot N_2$. If the random quantities are dependent, the number of classes in the histogram with the non-zero probability can be considerably lower than the product $N_1 \cdot N_2$.

Special software applications HistAn2D (left) and HistAn3D (right) were developed for creation of the double and triple histograms which describe the statistical dependence between two or three random variables.

t up Help												
🛛 🔛 🖊	v 🗷 🧵	0CF 😵										
ata Histooram	1-D Histogram	2-D Correl	ation									
risogram	nisogram	2-D Colle	89011									
								Global hist	ogram :			
	Name of	File	2d 1-3 _prun	ez_ipe140.txt		P	Ap	Wp	Frequency	Probability		~
				O Matagana i Tao	-	1	1451.11273	66706.86947	1	0.012987013		
number of interval	s in statistically dep	endent input ra	tuom vahables 2	D histogram . 16	ē	2	1451.11273	67651.95664	0	0.000000000		
		A	real	W real		3	1451.11273	68597.04382	0	0.000000000		
	Min	1440		66234.32588		4	1451.11273	69542.13099	0	0.000000000		
	Max	1768	40500	81355.72067		5	1451.11273	70487.21816	0	0.000000000		
	dx	20.4	7047	945.08717		6	1451.11273	71432.30534	0	0.000000000		
			Raw	data		7	1451.11273	72377.39251	0	0.000000000		
			Area	Weed		8	1451.11273	73322.47969	0	0.000000000		
		P	A real	W real	-	9	1451.11273	74267.56686	0	0.000000000		
		2	1630 53500	74780 43034		10	1451.11273	75212.65404	0	0.000000000		
			1020.32300	74700.42534		11	1451.11273	76157.74121	0	0.000000000		
			1004.01000	75636 59746		12	1451.11273	77102.82839	0	0.000000000		
		-	4500 64750	70000.00710		13	1451.11273	78047.91556	0	0.000000000		
			1000.01700	72240.85040		14	1451.11273	78993.00273	0	0.000000000		
		•	1502.09/50	73322.00763		15	1451.11273	79938.08991	0	0.000000000		
			1010.35500	74720.57074		16	1451.11273	80883.17708	0	0.000000000		
		•	1629.39900	74062.39509		17	1471.58320	66706.88947	0	0.000000000		
		9	1657.48000	76448.80262		18	1471.58320	67651.95664	1	0.012987013		
		10	1623.16500	/5431.43064		19	1471.58320	68597.04382	0	0.000000000		
		11	1049.31000	/0008.18/21		20	1471.58320	69542.13099	0	0.000000000		
		12	1010.25250	73461.21045		21	1471.58320	70487.21816	0	0.000000000		
		13	1040.95500	/009/.91212		22	1471.58320	71432.30534	0	0.000000000		
		14	1680.28000	/8136.30839		23	1471.58320	72377.39251	0	0.000000000		
		15	1584.85500	/2444.90579		24	1471.58320	73322,47969	0	0.000000000		
		16	1589.11500	/4820.37802		25	1471.58320	74267.56686	0	0.000000000		
		17	1698.55000	//899.97664		26	1471.58320	75212.65404	0	0.000000000		
		18	1657.27000	/5650.48228		27	1471.58320	76157.74121	0	0.000000000		
		19	1553.96000	70864.80212		28	1471.58320	77102.82839	0	0.000000000		
		20	1646.45000	74063.94489		29	1471 58320	78047 91556	0	0.00000000		
		21	1627.37500	74611.04704		30	1471 58320	78993 00273	0	0.00000000		
		22	1619.60750	74340.12556		31	1471 58320	79938 08991	0	0.00000000		
		23	1550.71500	69376.00254	-	22	1471 59230	00000 47700	0	0.000000000	-	

tup Hel	p									
N 🛛	i ii	%,∎								
ata Histog	ram 1-D Histogram	n 2-D Histogra	am 3-D							
							Glob	al histogram :		
Name of F	ie	3d_prure	z_jpe140.txt			Ap	Ip	Wp	Frequency	Probability
					-	1457.25387	4765807.36670	66990.39562	1	0.012987013
number of inter	rvais N statistically dep	endent input rand	om vanables 30 l	histogram : 10	÷ :	1457.25387	4765807.36670	68502.53510	0	0.000000000
	A real	l rea	1	W real		1457.25387	4765807.36670	70014.67458	0	0.000000000
lin	1440.87750	47105	89.28500	66234.32588		1457.25387	4765807.36670	71526.81406	0	0.000000000
lax	1768.40500	58149	50.91900	81355.72067		1457.25387	4765807.36670	73038.95354	0	0.000000000
1	32.75275	11043	6.16340	1512.13948		1457.25387	4765807.36670	74551.09301	0	0.000000000
			Raw Data			1457.25387	4765807.36670	76063.23249	0	0.000000000
	D	A real	Ireal	Wreat		1457.25387	4765807.36670	77575.37197	0	0.000000000
	1	1715 86000	5610894 2540	78814 54501		1457.25387	4765807.36670	79087.51145	0	0.000000000
	2	1620 52500	5288421 8140	74780 42934	10	1457.25387	4765807.36670	80599.65093	0	0.000000000
	3	1664 91500	5399517 3160	0 76335 51062	11	1457.25387	4876243.53010	66990.39562	0	0.000000000
	4	1659 94000	5363845 6260	75636 58716	12	1457.25387	4876243.53010	68502.53510	0	0.000000000
	5	1580 61750	5042163 3380	72248 95040	13	1457.25387	4876243.53010	70014.67458	0	0.000000000
	6	1582 09750	5120712 1460	73322 86763	14	1457.25387	4876243.53010	71526.81406	0	0.000000000
	7	1616 35500	5327557 8510	74728 57074	15	1457.25387	4876243.53010	73038.95354	0	0.000000000
		1629 39500	5360316 2270	74862 39589	16	1457.25387	4876243.53010	74551.09301	0	0.000000000
	9	1657 48000	5482743 8500	76448 80262	17	1457.25387	4876243.53010	76063.23249	0	0.000000000
	10	1623 16500	5376478 1420	75431 43064	18	1457.25387	4876243.53010	77575.37197	0	0.000000000
	11	1649 31000	5460514 0840	76558 18721	19	1457.25387	4876243.53010	79087.51145	0	0.000000000
	12	1610.25250	5306520 5650	73461.21045	20	1457.25387	4876243.53010	80599.65093	0	0.000000000
	13	1646 95500	5464666 0420	0 76697 91212	21	1457.25387	4986679.69350	66990.39562	0	0.000000000
	14	1680 28000	5589614 5180	78136 30839	22	1457.25387	4986679.69350	68502.53510	0	0.000000000
	15	1584 85500	5049477 3630	72444 90579	23	1457.25387	4986679.69350	70014.67458	0	0.000000000
	16	1589 11500	5320222 1010	74820 37802	24	1457.25387	4986679.69350	71526.81406	0	0.000000000
	17	1698.55000	5556089,8260	77899.97664	25	1457.25387	4986679.69350	73038.95354	0	0.000000000
	18	1657 27000	5364412 2640	0 75650 48228	26	1457.25387	4986679.69350	74551.09301	0	0.000000000
	10	1553 96000	4981443 3770	70864 80212	27	1457.25387	4986679.69350	76063.23249	0	0.000000000
	20	1646 45000	5225165 3380	74063 94499	28	1457.25387	4986679.69350	77575.37197	0	0.000000000
	20	1627 37500	5256208 4290	74611 04704	25	1457.25387	4986679.69350	79087.51145	0	0.000000000
	22	1619 60750	5232504 7920	74340 12556	30	1457.25387	4986679.69350	80599.65093	0	0.000000000
	22	1550 71500	4975457 7470	69376 00254	31	1457.25387	5097115.85690	66990.39562	0	0.000000000
	2.5	1000.1000	1010101.1410	00010.00204	* *	1457 25387	5097115 85690	68502 53510	0	0.00000000

Desktop of HistAn2D (left) and HistAn3D (right):

raw data of rolled shape IPE 140 cross-section properties under analyses

Using the software, it is possible to view for each random variable a simple histogram with non-parametric (empirical) distribution of probability as well as a multidimensional histogram which describes the statistical dependence between the quantities.

Histograms with **non-parametric** (empirical) **distribution of probability**: Histogram of the IPE140 cross-section area A (left) and cross-section modulus W_y (right)

Double histogram for two statistically dependent random quantities – crosssection area A and cross-section modulus W_{v} Double histogram for two **statistically independent** random quantities – crosssection area *A* and cross-section modulus *W*_y

Statistically independent random variables are entered into probabilistic calculation using ProbCalc software

bulk density vs. compressive strength the correlation 60.8% to 62.2%

cube vs. cylinder compressive strength the correlation 99.8% to 100.0%

compressive strength of concrete vs. floor in the building the correlation -21.1% to -25.8%

Correlation coefficients of a **double histogram of the statistically dependent quantities** with different numbers of intervals (Pearson's correlation coefficient for raw data is 0.9645; Spearman correlation coefficient for raw data is 0.9499)

Number of intervals in a double histogram	Pearson's correlation coefficient	Spearman's rank correlation coefficient	Number of intervals in a double histogram	Pearson's correlation coefficient	Spearman's rank correlation coefficient
4 ² = 16	0.79985097	0.79507798	18 ² = 324	0.95267109	0.94023800
6 ² = 36	0.86661900	0.86360377	20 ² = 400	0.96046634	0.94378886
8 ² = 64	0.91530000	0.91194405	22² = 484	0.95940904	0.94355084
10² = 100	0.93984931	0.92352904	24 ² = 576	0.95903334	0.94989866
12 ² = 144	0.94381175	0.93613068	26² = 676	0.96464064	0.95260826
14 ² = 196	0.95443331	0.93939308	28² = 784	0.96017017	0.94660574
16² = 256	0.94876401	0.93694950	30² = 900	0.95938019	0.94245225

Pearson's correlation coefficient (up) and Spearman's rank correlation coefficient (bottom) of a double histogram vs. number of intervals

	Number of zero-p	robability intervals		Number of zero-probability intervals			
Number of intervals in a double histogram	Statistically dependent quantitiesStatistically independent quantities		Number of intervals in a double histogram	Statistically dependent quantities	Statistically independent quantities		
4 ² = 16	6	0	18 ² = 324	288	69		
6 ² = 36	24	0	20 ² = 400	361	112		
8 ² = 64	48	0	22 ² = 484	443	160		
10 ² = 100	80	0	24 ² = 576	531	216		
12² = 144	119	0	26² = 676	627	258		
14 ² = 196	166	14	28 ² = 784	735	322		
16² = 256	222	46	30 ² = 900	847	372		

The **number of classes** for double histograms **with zero probability** vs. the number of intervals chosen during creation of the histograms from the primary data

Number of intervals for the zero-probability in double histogram

Numerical correlation index – can characterize the dependence between random variables not only for the linear relationship between two variables, but also for nonlinear dependence, or even for more than two random

variables:

where T_M is the number of all classes in double or triple $I_k = \frac{T_M - T_C}{T_M}$ histogram (for optimal number of intevals and raw data), T_c is the number of non-zero probability classes in double or triple histogram.

For statistically dependent variables:

Correction for insufficient number of data:

where $n_1, n_2, n_3, \cdots, n_t$ are the numbers of intervals in histograms,

 $p_1, p_2, p_3, \cdots, p_t$ are the numbers of intervals without raw data.

2 dependent variables: $T_M = (n_1 - p_1) \cdot (n_2 - p_2)$

t dependent variables: $T_M = (n_1 - p_1) \cdot (n_2 - p_2) \cdot (n_3 - p_3) \cdot \dots \cdot (n_t - p_t)$

The calculation of **numerical correlation index** in HistAn2D software for variable number of intervals in double histogram

The **numerical correlation index** for two random variables - cross-sectional area A and cross-section modulus W_y

Example 2, Reliability Assessment

Scheme of the structure under assessment

Reliability assessment of the column

```
l \dots 6 m
profile HEB 300, steel S235, E \dots 2.1 \cdot 10^{11} Pa
imperfections: a \dots \pm 30 mm
```

Load	Туре	Extremal value [kN]
D	Dead	350
L	Long Lasting	75
S	Short Lasting	75
W	Wind	40
EQ	Earthquake	$\frac{1}{20} \cdot (D + L + S) = \frac{500}{20} = 25$

Example 2, Reliability Assessment

Ultimate limit state

$$RF = R - E$$

$$R \dots \text{ structural resistance - yield stress } f_y$$

$$E \dots \text{ load effect - stress in outer fibres } \sigma$$

Serviceability limit state

 $\begin{array}{l} RF = \delta_{tol} - |\delta| \\ \delta \\ \end{array} \begin{array}{l} \delta_{tol} \\ \ldots \end{array} \text{ structural resistance - allowed deformation (35 mm)} \\ \delta \\ \ldots \end{array} \begin{array}{l} \text{load effect - maximal horizontal deformations} \end{array}$

Random input variables:

- 5 load components,
- cross-section variability,
- initial imperfection in column,
- yield stress f_y .

Histograms of reliability function RF, ultimate limit state

Statistically dependent cross-section parameters Failure probability $P_f = 5.247 \cdot 10^{-5}$ (RC2/CC2) Time of calculation 9 sec.

Statistically independent cross-section parameters Failure probability $P_f = 5.133 \cdot 10^{-5}$ (RC2/CC2) Time of calculation 3:20 min.

Example 3

Static scheme of the elemental structure of a **parabolic arch** fixed in both ends and loaded with combination of three single loads

The reliability assessment has been made using the interaction formula:

ity $P_f = P(RF < 0) = P\left(1 - \left[\left(\frac{N_{Ed}}{N_{Rd}}\right)^2 + \frac{M_{Ed}}{M_{Rd}}\right] < 0\right)$

$$\left(\frac{N_{Ed}}{N_{Rd}}\right)^2 + \frac{M_{Ed}}{M_{Rd}} \le 1$$

The failure probability P_f was determined using the reliability function RF:

Example 3

Histogram of reliability function RF, for the probabilistic calculation with **statistically independent cross-section parameters** of the cross-section area Aand cross-section modulus W_{γ} , failure probability $P_f =$

Histogram of reliability function RF, for the probabilistic calculation with statistically dependent cross-section parameters of the cross-section area A and cross-section modulus W_y , failure probability $1.647 \cdot 10^{-5}$.

 $1.637 \cdot 10^{-5}$.

Structure of Supercomputer Centre

http://www.it4i.cz/

- 5-storey building,
- foundation slab with ribs,
- reinforced concrete structure with walls and columns.

Structure of Supercomputer Centre htt

http://www.it4i.cz/

Structure of Supercomputer Centre

http://www.it4i.cz/

The National Supercomputing Center **IT4 Innovations**, March 2014

Foundation Structure of Supercomputer Centre

- Piles foundation under columns,
- Foundation slab with ribs upwards,
- Sliding joint at the bottom surface for volume change,
- Shrink bands elimination.

Foundation Structure of Supercomputer Centre

Goal of the measurements:

- Development of the hydration heat during foundation slab concreting,
- Change of the stresses in the concrete,
- Comparison the tensile stresses with the numerical calculation.

Technology of Measurement

- optical fiber temperature
- string gauges temperature/stress
- foil strain gauges strain (stress)
- digital thermometer temperature

Setting of Measuring Column

Measuring column mounted to a reinforced concrete slab

- 7x string gauges (3 in transverse and 4 in longitudinal direction)
- 6x bundles of optical fibers

Ground Plan of Foundation Slab

Schematic chart of the foundation slab and location of the sensors

Installation of a Measuring Pillar in the Structure

Installation of a Measuring Pillar in the Structure

Installation of a Measuring Pillar in the Structure

Data Transfer on Construction Site

Time records of the temperature in the concrete foundation slab made for 9 different

Changes in time of the normal stress in the concrete slab in a longitudinal direction for

Changes in time of the normal stress in the concrete slab in a transversal direction for

Changes in time of the normal stress in the reinforcing steel in the foundation slab

Analyzing the Temperature in the Foundation Slab

[mm]	325	281	237	192	148	104	59	0	-1000
325	1	0.999179	0.996923	0.995500	0.983759	0.971624	0.930670	0.785600	-0,034170
281		1	0.998172	0.997997	0.988557	0.978113	0.941768	0.793464	-0,129316
237			1	0.997222	0.988365	0.978245	0.942759	0.798301	-0.007715
192				1	0.995390	0.988138	0.957607	0.809621	0.028066
148					1	0.997432	0.978363	0.839512	0.106057
104						1	0.988934	0.859433	0.148671
59							1	0.899881	0.252198
0		sym.						1	0.298942
-1000									1

The correlation matrix which uses the **Pearson's correlation coefficients** to describe the statistics dependence of the temperature at different heights of the foundation slab and ambient temperature

[mm]	325	281	237	192	148	104	59	0	-1000
325	1	0.997100	0.994693	0.992175	0.974777	0.955080	0.907967	0.744175	-0.093153
281		1	0.998468	0.996990	0.981617	0.963234	0.919626	0.749822	-0.725701
237			1	0.998523	0.985556	0.969800	0.928818	0.762627	-0.051773
192				1	0.989439	0.975540	0.938054	0.769048	-0.024796
148					1	0.993216	0.967774	0.800925	0.068958
104						1	0.985939	0.836969	0.115915
59							1	0.881010	0.207761
0		sym.						1	0.244649
-1000									1

The correlation matrix which uses the **Spearman's correlation coefficients** to describe the statistics dependence of the temperature at different heights of the foundation slab and ambient temperature

Analyzing the Temperature in the Foundation Slab

Desktop of HistAn2D: The double histogram which describes the statistic dependence of the random variable temperature at +325 mm and +281 mm using DOProC method

The **Pearson's** and **Spearman's correlation coefficients** between the temperatures measured at +325 mm and temperatures in other measuring points

Analyzing Changes in Normal Stress in a Slab

	59	148	237	325
59	1	0.671255	0.548708	0.379817
148		1	0.906740	0.894987
237			1	0.906740
325	sym.			1

	59	148	237	325		
59	1	0.711119	0.535419	0.307283		
148		1	0.860507	0.784488		
237			1	0.860507		
325	sym.			1		

The correlation matrix which describes the statistic dependence of changes in the **normal stress** in a concrete slab in a **longitudinal direction** in four heights using the **Pearson's** (left) and **Spearman's** (right) **correlation coefficient**

The Pearson's and Spearman's correlation coefficient for the randomly variable change in the **normal stress** of the foundation slab in a **longitudinal direction** measured at +59 mm combined with the values at other heights

Analyzing Changes in Normal Stress in a Slab

	104	192	281
104	1	0.443257	0.092120
192		1	0.874841
281			1

	104	192	281
104	1	0.393268	0.094875
192		1	0.918306
281			1

The correlation matrix which describes the statistic dependence of changes in the **normal stress** in a concrete slab in a **transversal direction** in three heights using the **Pearson's** (left) and **Spearman's** (right) **correlation coefficient**

The **Pearson's** and **Spearman's correlation coefficient** for the randomly variable change in the **normal stress** of the concrete foundation slab in a **transversal direction** measured at +104 mm combined with the values measured at other heights

Analyzing Changes in Normal Stress in Reinforcement

sensor	1	3	4	5	6	sensor	1		3	4	5	6
1	1	-0.326076	0.020921	0.438671	-0.013040	1	1	-	-0.340521	-0.244565	0.300965	-0.067029
3		1	0.659559	-0.267758	0.357575	3			1	0.369197	-0.254437	-0.172053
4			1	-0.426226	0.861452	4				1	-0.541736	0.632246
5				1	-0.401796	5					1	-0.290020
6					1	6						1

The correlation matrix which describes the statistic dependence of changes in the **normal stress** in **reinforcing steel** in the concrete slab using five sensors and the **Pearson's correlation coefficient** (left) and the **Spearman's correlation coefficient** (right)

The **Pearson's** and **Spearman's correlation coefficient** for the randomly variable change in the **normal stress** in **reinforcing steel** in the foundation slab measured by the sensor #1 combined with the values measured by the sensors #3 through #6

Analyzing the statistic dependence of the **dynamic modulus of elasticity of the concrete** and **compressive cube strength of the concrete**:

- **Dynamic modulus of elasticity** of the concrete and **compressive cube strength** of the concrete analyze using the **non-destructive tests**.
- The statistic dependence between the two randomly variable quantities can be described again using a pair of correlation coefficients (the Pearson's and Spearman's correlation coefficient equal to 0.541351 and 0.524191, respective) or using a double histogram.

Desktop of HistAn2D: A **double histogram** which describes the statistic dependence of the **dynamic modulus of elasticity** of the concrete and **compressive cube strength** of the concrete

Statistical analysis of concrete in the frame structure:

- Destructive testing detected physical and mechanical parameters of concrete in supporting structure and the floors during the construction and technical survey of the building of the Faculty of Mechanical Engineering in Brno.
- The aim of this survey was the need to assess the **quality of concrete** in selected parts of the **horizontal and vertical load-bearing structures**.

View on the structure with old cladding during inspection

Statistical analysis of concrete in the frame structure

Detail of the concrete frame under cladding before reconstruction

Statistical analysis of concrete in the frame structure:

- 32 cores 45 mm in diameter on the peripheral columns over the entire height of the 17 storied building was done.
- In the internal load-bearing columns between 1st and 10th over ground floors of building were performed 25 cores.
- In the horizontal supporting structures were done 6 cores in total on floors 2, 4 and 6.
- From all of the cores were created 166 test specimens to determine strength parameters of concrete.

Statistical analysis of concrete in the frame structure:

Using the statistical and sensitivity analysis was subsequently found a statistical dependence between the **bulk density of concrete** and **concrete compressive strength** with the correlation in range 60.8% to 62.2% and between the **cube** and **cylinder compressive strength of concrete** with the correlation of 99.8% to

100.0%.

bulk density vs. compressive strength the correlation 60.8% to 62.2%

cube vs. cylinder compressive strength the correlation 99.8% to 100.0%

Statistical analysis of concrete in the frame structure:

- A study based on strength properties of concrete depending on the floor of sample was also performed.
- The study pointed to a slight statistical correlation between the compressive strength of concrete and the ground floor, where the drill core sample was executed.
- The floor decreases with increasing compressive strength of concrete.

compressive strength of concrete vs. floor in the building the correlation -21.1% to -25.8%.

