
VSB – Technical University of Ostrava
Faculty of Civil Engineering

Algorithmization of Engineering
Computations

Prof. Ing. Martin Krejsa, Ph.D.

Learning materials

Ostrava, 2024

Learning materials of the Algorithmization of Engineering Computations

Study program: Civil Engineering

Title of the branch: Building Structures

Key Words:

Algorithm, Matlab, matrix, vector, function, polynomial function, algebraic non-
linear equation, linear equations, numerical integration, differential equation, ite-
ration, interpolation, approximation.

c○ Martin Krejsa, VSB – Technical University of Ostrava, 2024.

cbea CC BY-NC-SA 4.0

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Introduction

The study materials for „Algorithmization of Engineering Computations“ presented
in this thesis are designed for Bachelor’s level civil engineering students specializing
in the Building Structures. The aim of these materials is to familiarize students with
basic programming techniques and the creation of algorithms for solving engineering
tasks in the construction industry.

The Matlab interactive computing system is a logical choice of tool for the
purposes of these materials, allowing the application of algorithmic procedures and
creation of simple calculation tools without complicated user interface programming.
Matlab is a user-friendly tool for executing mathematical and numerical procedu-
res and includes a library with a wide range of functions in addition to standard
programming tools. Results can easily be displayed as graphs.

The choice of application environment for the materials took into account compa-
tibility with other programming and advanced calculation algorithm subjects taught
at the Department of Structural Mechanics.

In Ostrava, February 2024 Prof. Ing. Martin Krejsa, Ph.D.

iii

Table of Contents

Introduction iii

1 Matlab 1
1.1 Entering Variables . 2
1.2 Vectors and Matrices . 3

1.2.1 Access to Matrices and Vectors 5
1.2.2 Matrix Operations . 6

1.3 Managing Variables in MATLAB . 7
1.4 Using the Graphics Output . 7

1.4.1 Creating Graphs for Functions 9
1.5 Creating Scripts . 10

1.5.1 Loop Commands . 10
1.5.2 Logical Conditions . 10

2 Fundamentals of Algorithmization 13
2.1 Properties of Algorithms . 13
2.2 Elementary Algorithms . 14

2.2.1 Swapping the Contents of Two Variables 14

3 Calculation of Function Values 16
3.1 Calculating the Value of a Polynomial 16

3.1.1 Tabulated Functions . 22
3.1.2 Drawing the Graph of a Targeted Function 23
Examples to Practice . 24
3.1.3 Determining the Maximum of a Discretized Function 24
Examples to Practice . 26

4 Solving Nonlinear Algebraic Equations 27
4.1 Iteration . 27

4.1.1 Taylor Series . 27
4.1.2 Loop Terminating Condition 29
4.1.3 Recurring Pattern . 30

4.2 Iterative Methods of Solving Non-linear Algebraic Equations 32
4.2.1 Simple Iteration . 32

iv

4.2.2 Bisection Method (Interval Halving) 34
4.2.3 Regula Falsi Method . 40
4.2.4 Secant Method . 43
4.2.5 Newton’s Method (Tangent Method) 46
Examples to Practice . 49

5 Methods for Sorting a Set of Elements 50
5.1 Sorting Algorithms . 50

5.1.1 Bubble Sort . 50
5.1.2 Select Sort . 52
5.1.3 Insert Sort . 53
5.1.4 Quick Sort (Recursive) . 54
5.1.5 Shell Sort . 56

5.2 Working with Text Files . 58

6 Systems of Linear Equations 61
6.1 Direct Methods of Solving Systems of Linear Equations 62

6.1.1 Solving a Triangular System of Linear Equations 62
Examples to Practice . 65
6.1.2 The Gaussian Elimination Method 65
6.1.3 The Gauss-Jordan Method . 75
Examples to Practice . 78
6.1.4 The LU Decomposition . 78
6.1.5 The Cholesky Method (Decomposition) 82

6.2 Iterative Methods of Solving Systems of Linear Equations 85
6.2.1 The Jacobi Iteration . 87
6.2.2 Gauss-Seidel Iteration Method 92
6.2.3 Sparse and Band Matrix . 93
6.2.4 The Conjugate Gradient Method 97

7 Numerical Integration of a Definite Integral 100
7.1 Rectangle Method . 101
7.2 Trapezoid Method . 104
7.3 Simpson’s Method . 107

Examples to Practice . 115
7.4 Romberg’s Method . 116
7.5 Adaptive Integration . 118
7.6 Gaussian Method . 120

8 Numerical Derivation 124
8.1 Finite Difference Method . 124

Examples to Practice . 132
8.2 Numerical Differentiation with a Variable Difference 133
8.3 Partial Derivatives . 135

v

9 Solving Differential Equations 137
9.1 Ordinary Differential Equations of the First Order 137

9.1.1 Euler’s Method . 138
9.1.2 Runge–Kutta Method . 145
9.1.3 Leapfrog Method . 150

9.2 Ordinary Differential Equations of the Second Order 152

10 Interpolation and Approximation 165
10.1 Linear Interpolation . 165
10.2 Lagrange Interpolation . 167
10.3 Newton’s Interpolation . 171
10.4 Approximation by the Method of Least Squ-

ares . 177
10.4.1 Linear Approximation . 178
10.4.2 Approximation by 𝑚-th Degree Polynomial 179

Literature 183

vi

1

Chapter 1

Matlab

Objectives
ó

This chapter introduces:
∙ the Matlab user interface,
∙ definitions for variables and management of these variables in the Matlab

environment,
∙ an example of creating an algorithm using logical decision making.

Matlab [5] (see Fig. 1.1) is a programming environment which uses scripting
language for scientific and technical numerical calculations, modeling and algorithm
design. Simulink is an extension of Matlab for simulating and modelling dynamic
systems. It uses Matlab algorithms for the numerical solution of mainly nonlinear
differential equations.

The name Matlab is an abbreviation of Matrix laboratory, arising from ma-
trices being the key data structures used in Matlab calculations.

For those interested:
Matlab is commercial software, however. A welcome alternative for creating algorithms
using compatible commands and scripts is Octave software. Octave is free to downloaded,
for example from [2, 7]. Octave is open-source and is therefore available in a range of
versions for Unix (Linux), Mac OS or MS Windows. The program’s somewhat bare user
interface contains only a command line in text mode for entering a specific commands and
listing resulting values.

The Matlab system itself contains a number of commands for managing vari-
ables, basic algebraic operations, calculations with vectors and matrices, and com-
mands for higher mathematical operators. Because it has a large number of options,

2 Matlab

Fig. 1.1 The Matlab workspace.

Variable name Description
help lists the help contents
help name displays the help for the functionality specified by name
lookfor keyword lists all help items for the entered keyword
info information about MathWorks

Tab. 1.1 Overview of help commands.

users are encouraged to make use of the extensive help files accessed via respective
commands (Table 1.1).

Matlab remembers the format of the numeric values it works with, but the user
can change the format for displaying values with the format command and relevant
specifications (Table 1.2).

1.1 Entering Variables
The basic variable type in Matlab is a matrix. A simple variable containing one
value is represented as a [1, 1] matrix. Variables are entered with commands defined

1.2 Vectors and Matrices 3

Command Command description The number 𝜋 in the gi-
ven format

format short fixed decimal point, 5 displayed
digits

3.1416

format long fixed decimal point, 15 displayed
digits (double variable type), or 7
(single type)

3.141592653589793

format shorte floating decimal point, 5 displayed
digits

3.1416e+000

format longe floating decimal point, 15 displa-
yed digits (double variable type),
or 7 (single type)

3.141592653589793e+000

format shorteng engineering format, 5 displayed di-
gits and exponent

3.1416e+000

format longeng engineering format, 16 displayed
digits and exponent

3.14159265358979e+000

format rat results are displayed as a fraction
(default setting)

355/113

format hex results are displayed as a hexade-
cimal value

400921fb54442d18

Tab. 1.2 Overview of possible format types for displaying numerical values.

in the program’s command line. If the command ends with a semicolon, the result
of the command is not displayed. If the entry includes a basic arithmetic operation,
certain symbols are used (Table 1.3). A full stop (or period) is used as a decimal
point.

A variable is defined automatically by assigning its value with the equality sign.
For example:

a=5
b=2
c=a+b
d=’Result’

Predefined special variables can be used to assign values to variables (Table 1.4).
Some elementary functions have an input parameter (Table 1.5).

1.2 Vectors and Matrices
Square brackets denote a vector. Spaces or commas separate elements in a line. For
example:

4 Matlab

Operation Symbol Example
Sum + 4+11, a+b
Subtraction - 18-5, a-b
Product * 7.13*5, a*b
Fraction (1

8) / or \ 1/8 = 8\1
Power (28) ^ 2^8

Tab. 1.3 List of symbols of arithmetic operations.

Variable name Description
ans variable containing the result of an arithmetic operation
pi Ludolphine number 𝜋
inf infinity ∞
nargin number of input parameters of the given function
nargout number of output parameters of the given function
eps the smallest usable number in this format
realmin the absolute smallest usable positive real number
realmax the absolute largest usable positive real number

Tab. 1.4 List of predefined variables.

Name of the function Description
abs(x) absolute value of 𝑥
cos(x), sin(x), tan(x) trigonometric function (𝑥 parameter in radians)
acos(x), asin(x), atan(x) inverse trigonometric functions
exp(x) exponential function (𝑒𝑥)
log(x) natural logarithm 𝑥
log10(x) decimal logarithm 𝑥
sqrt(x) square root 𝑥

Tab. 1.5 List of elementary functions.

u=[3 5 7]
v=[1,5,1+2,a,b,a+b]
w=[0,pi,2*pi]

To create vectors, more advanced techniques are applied (Table 1.6).
Matrices are denoted in a similar way to vectors, except that rows are separated

with a semicolon or the <Enter> key. For example:

A=[1 2 3; a b a+b]
B=[1 2 3
a b a+b]

1.2 Vectors and Matrices 5

Command Description Result
x=[1:5] creates row vector x, starting

with 1, ending with 5, adding the
value of 1

x=[1,2,3,4,5]

x=[2:3:11] creates row vector x, starting
with 2, ending with 11, adding the
value of 3

x=[2,5,8,11]

x=linspace(1,25,5) creates row vector x, starting
with 1, ending with 25, the vector
contains 5 elements

x=[1,7,13,19,25]

Tab. 1.6 Commands for constructing vectors.

Comment 1.1. The names of variables in Matlab are case-sensitive. The command

A+a

generates the following output for the matrices A and variables a:

ans =
6 7 8

10 7 12

i.e., to each element of the matrix A the content of variable a, i.e., 5, is added.

Matlab standard functions can be used to directly generate matrices or vectors
of specific dimensions, for example:

I=eye(3)
O=zeros(2,3)
e=ones(1,4)

In the first case, a square matrix with values 1 on the diagonal and 0 outside the
diagonal is generated. The latter two generate matrices or vectors containing the
values 0 or 1, respectively, in all of their elements.

1.2.1 Access to Matrices and Vectors

Matrices let us reference individual elements. Table 1.7 lists the possible sample
reference variations for the above matrix A=[1 2 3; a b a+b] (i.e., containing
[1 2 3; 5 2 7]).

6 Matlab

Command Description Result
A(2,1) element on the 2𝑛𝑑 row and 1𝑠𝑡 column of

matrix A
5

A(2,[1 3]) 1𝑠𝑡 and 3𝑟𝑑 elements from the 2𝑛𝑑 row of ma-
trix A

5, 7

A(1,1:3) 1𝑠𝑡, 2𝑛𝑑 and 3𝑟𝑑 elements on the 1𝑠𝑡 row of the
matrix A

1, 2, 3

A(1,1:end) as above 1, 2, 3
A(1,:) as above 1, 2, 3
A(2,1:2:3) 1𝑠𝑡 and 3𝑟𝑑 elements from the 2𝑛𝑑 row of mat-

rix A, a:b:c defines the arithmetic sequence
where the 1𝑠𝑡 element equals a, the last ele-
ment equals c, and b is the difference between
adjacent elements (does not need to be sta-
ted if it equals 1)

5, 7

A(1:end,2:end) 2𝑛𝑑 and 3𝑟𝑑 elements from both rows (sub-
matrix)

2, 3; 2, 7

Tab. 1.7 Commands for access to matrix and vector elements.

1.2.2 Matrix Operations
Matrix operations can be performed on both vectors and matrices. Matrices are
transposed with the ’ (apostrophe) operator. For example, the command A’ trans-
poses the original matrix A:
ans =

1 5
2 2
3 7

To perform operations between individual elements of a matrix or vector, the
. (full stop) sign is placed in front of the operator. For example, for the vector
u=[3 5 7], the result of the u*u’ command is:
ans = 83

whereas entering the u.*u command displays the following vector:
ans =

9 25 49

Similarly, other element-by-element operations can be performed with vectors
and matrices (Table 1.8) for generally defined vectors 𝑎 = 𝑎1, 𝑎2, . . . , 𝑎𝑛; 𝑏 =
= 𝑏1, 𝑏2, . . . , 𝑏𝑛 and scalar 𝑐.

Several other matrix functions can also be performed; Table 1.9 lists the basic
functions.

1.3 Managing Variables in MATLAB 7

Operation Command Result
scalar sum a+c 𝑎1 + 𝑐, 𝑎2 + 𝑐, . . . , 𝑎𝑛 + 𝑐
scalar product a*c=a.*c 𝑎1 · 𝑐, 𝑎2 · 𝑐, . . . , 𝑎𝑛 · 𝑐
vector sum a+b 𝑎1 + 𝑏1, 𝑎2 + 𝑏2, . . . , 𝑎𝑛 + 𝑏𝑛

vector product a.*b 𝑎1 · 𝑏1, 𝑎2 · 𝑏2, . . . , 𝑎𝑛 · 𝑏𝑛

vector division from the left a./b 𝑎1/𝑏1, 𝑎2/𝑏2, . . . , 𝑎𝑛/𝑏𝑛

vector division from the right a.\b 𝑎1∖𝑏1, 𝑎2∖𝑏2, . . . , 𝑎𝑛∖𝑏𝑛

scalar exponentiation a.^c 𝑎𝑐
1, 𝑎𝑐

2, . . . , 𝑎𝑐
𝑛

scalar exponentiation c.^a 𝑐𝑎1 , 𝑐𝑎2 , . . . , 𝑐𝑎𝑛

vector exponentiation a.^b 𝑎𝑏1
1 , 𝑎𝑏2

2 , . . . , 𝑎𝑏𝑛
𝑛

Tab. 1.8 Element-by-element operations with vectors and matrices.

Function name Description
det(A) determinant of matrix A
inv(A) calculation of inverse matrix for A
diag(A) list of elements on the diagonal of matrix A

Tab. 1.9 Basic matrix functions.

1.3 Managing Variables in MATLAB
In Matlab, variables, vectors and matrices are managed with several commands:

∙ the who or whos commands list all the currently defined variables (the latter
includes the size of the variable),

∙ the size(variable) command returns the dimensions of the given variable,

∙ the clear(variable) command deletes the given variable from memory,

∙ the clear command without a parameter deletes all the entered variables from
memory.

1.4 Using the Graphics Output
In MATLAB’s graphics mode, the basic tool is the plot command. Its syntax is
plot(x,y,options), where x and y are the coordinates of the points to be drawn.
The options parameter defines how the graphics output is displayed. It contains
characters for defining the color and drawing style of the points and their connecting
lines:

∙ color of the points and their connecting lines: b (blue), g (green), r (red), c
(blue-green), m (purple), y (yellow), k (black), w (white),

8 Matlab

∙ style of the connecting line: - (points are connected by a solid line), : (points
are connected by a dotted line), -. (points are connected by a dash-dotted
line), -- (points are connected by a broken line),

∙ style of point drawing: * (points are drawn as stars), . (dots), x (crosses), +
(plus signs), o (circles), s (squares), d (diamonds).

+

Example 1.2. To draw connecting lines for five points with coordinates,

𝑥 10 11 12 13 14 15
𝑦 1 5 7 4 6 10

can be used the command:

plot([10:15],[1,5,7,4,6,10],’r-*’)

Fig. 1.2 displays the final graphics output.

Fig. 1.2 Example of a Matlab graphics output.

Another useful command in the graphical environment is hold on. It displays the
graphic outputs of multiple commands in a single window (the hold off command
is used to return to the original state).

1.4 Using the Graphics Output 9

1.4.1 Creating Graphs for Functions
When producing a graph for a function, it is first necessary to discretize 𝑥. The
corresponding function values 𝑓(𝑥) are then determined at the obtained points. The
resulting graph of the discretized function is displayed with the plot command.

+

Example 1.3. A graph of the sine function is plotted with the following sequence
and the plot command:

x=linspace(0,2*pi,30);
y=sin(x);
plot(x,y,’b-’)

A title, perhaps descriptions of the axes, can be added to the graph:

title(’Graph of the function y=sin(x)’);
xlabel(’x’);
ylabel(’sin(x)’)

Fig. 1.3 depicts the final graph of the sine function.

Fig. 1.3 Graph of the sine function.

10 Matlab

1.5 Creating Scripts
In Matlab, a sequence of commands can be entered in the command line and
the system will consecutively process these commands. If the calculation should
be performed iteratively, all the commands must be entered again, which is time-
-consuming and undesirable.

The solution is to save a sequence of Matlab commands in a text file as a script;
these files use the extension *.m (referred to as an “m-file”). Using the commands
stored in the m-file, the calculation is started by specifying the file name (without
the extension) while searching the current directory and the directories listed in the
path system variable.

In this way, a special calculation function (referred to as an “m-function”) is
created in a separate file. The function can be called from the command line by
entering the name of the function or a list of input parameters in parentheses,
separated by commas. The file name should match the function name in its
header.

The m-file can also contain control commands typical for more advanced progra-
mming platforms and include commands for loops and logical conditions.

1.5.1 Loop Commands
Matlab allows the use of two types of programming loop:

∙ for loop, with the syntax

for i=initial value:step:end value
command sequence

end

∙ while loop with the syntax:

while logical condition
command sequence

end

The creation of an algorithms which uses both types of loop is described in
greater detail in the following chapters.

1.5.2 Logical Conditions
The syntax for a sequence of commands divided into three blocks according to the
results of a logical condition is

1.5 Creating Scripts 11

if logical condition 1
command sequence 1

elseif logical condition 2
command sequence 2

else
command sequence 3

end

To define a condition whose result is either “true” or “false”, we use the following
logical operators: & (and), | (or), ˜ (not). The supported relational operators are:
<, <=, >=, > and == (is equal to).

+

Example 1.4. Create an m-function and use logical operators to find the solution
of a quadratic equation:

function quadr_eq(a,b,c)
discrim=b^2-4*a*c
if discrim==0

x1=-b/(2*a)
elseif discrim>0

x1=(-b+sqrt(discrim))/(2*a)
x2=(-b-sqrt(discrim))/(2*a)

else
x1=-b/(2*a)
xi1=sqrt(-discrim)/(2*a)
xi2=-xi1

end

Entering input parameters quadr_eq(5,10,1) and calling the function called
from the Matlab command line returns two real roots of the quadratic equation:

discrim =
80

x1 =
-0.105572809000084

x2 =
-1.894427190999916

Calling the function with the quadr_eq(10,5,1) parameters obtains the result:

discrim =
-15

12 Matlab

x1 =
-0.250000000000000

xi1 =
0.193649167310371

xi2 =
-0.193649167310371

The results can be checked with a special Matlab function named roots(c),
where c is a vector of polynomial coefficients sorted in descending order by powers
of 𝑥. For the general expression of the 𝑛-th degree polynomial:

𝑓(𝑥) = 𝑐𝑛 · 𝑥𝑛 + 𝑐𝑛−1 · 𝑥𝑛−1 + · · ·+ 𝑐1 · 𝑥 + 𝑐0 , (1.1)

where vector c contains elements 𝑐𝑛, 𝑐𝑛−1, . . . , 𝑐1, 𝑐0.
For the first calculation in the example in 1.4, the sequence of commands is

c=[5,10,1]
roots(c)

with the result

ans =
-1.894427190999916
-0.105572809000084

Comment 1.5. A number of publications provide instructions for using Matlab
and Octave. Some of these are freely available in electronic form (e.g., [12]).

13

Chapter 2

Fundamentals of Algorithmization

Objectives
ó

This chapter describes:
∙ the concept of an algorithm,
∙ the foundations for creating simple algorithms.

An algorithm is a precise instruction or procedure for use in solving a given type
of task. Algorithms most often appear in programming and refer to the theoreti-
cal principle of solving a problem (as opposed to the exact notation in a specific
programming language). Algorithms are used in many scientific branches. A kit-
chen recipe, for example, may also be understood as a certain kind of algorithm.
In a narrower sense, the word algorithm refers only to procedures that satisfy the
requirements indicated by the properties of algorithms.

2.1 Properties of Algorithms
The following list of properties of an algorithm is given, for example, in [13]:

∙ Finiteness
Each algorithm must terminate in a finite number of steps. This number of
steps may be arbitrarily large (depending on the range and values of the input
data), but it must be finite for each individual input. Procedures which do
not satisfy this condition are referred to as computational methods. A special
example of an infinite computational method is a reactive process that con-
tinuously responds to the surrounding environment. However, some authors
think of such procedures also as algorithms.

14 Fundamentals of Algorithmization

∙ Generality
Algorithms do not solve individual, specific problems (e.g., “calculate 3 · 7”);
they solve a general class of similar problems (e.g., “calculate the product of
two integers”) which have a wide set of possible inputs.

∙ Definiteness
Each step of the algorithm must be precisely defined. In each situation, the
aim, steps and execution of the algorithm must be clear so that the same
results are always obtained for the same input. Since ordinary language ge-
nerally does not provide absolute precision and unambiguous expression, pro-
gramming languages have been designed so that the commands executed by
algorithms are written with clearly defined meanings. A computation method
expressed in a programming language is referred to as a program. Some al-
gorithms, however, are not deterministic (e.g., probabilistic algorithms with
(pseudo)random selection).

∙ Results
An algorithm has at least one output representing a quantity expressed in the
desired relationship to the specified inputs. It thus provides a solution to the
problem described in the algorithm (the algorithm progresses from processing
values to producing an output).

∙ Simplicity
The algorithm consists of a finite number of simple (elementary) steps.

In practice, the algorithms of interest are those which in some way have a certain
quality. These algorithms meet various criteria which are measured, for example, by
the number of steps required to run the algorithm, simplicity, efficiency or elegance.
The effectiveness of algorithms is studied in the branches of computer science called
algorithmic analysis and complexity theory, using methods for selecting the best
algorithms from several well-known examples that solve specific problems.

2.2 Elementary Algorithms
The following section examines several elementary algorithms which are the basis of
many computing techniques and procedures.

2.2.1 Swapping the Contents of Two Variables
The simplest algorithm may be considered as a procedure which swaps the contents
of two variables. A third, auxiliary variable is needed for this operation. For variables
𝑎 and 𝑏 and auxiliary variable 𝑐, the algorithm takes the form:

2.2 Elementary Algorithms 15

c=a;
a=b;
b=c;

Although this is a truly elementary algorithm, it can be used together with logical
operations (Ch. 1.5.2); for example, to sort the vector 𝑑 in ascending order, using
3 elements (𝑐 is again an auxiliary variable):
function sort_it(d)

if length(d)==3
if d(1)>d(2)

c=d(1);
d(1)=d(2);
d(2)=c;

end
if d(2)>d(3)

c=d(2);
d(2)=d(3);
d(3)=c;

end
if d(1)>d(2)

c=d(1);
d(1)=d(2);
d(2)=c;

end
d

end
end

+
Example 2.1. Sort the vector [8 24 2] in ascending order, using the three-element
vector sorting function created above.
Solution. First, it is necessary to assign input values to vector 𝑑:
d=[8 24 2]

We then call the sort_it function:
sort_it(d)

The result is
d =

2 8 24

N

This method of sorting, however, is very inefficient and certainly cannot be con-
sidered universal, but it is suitable for explaining the basics of algorithmization.
Chapter 5 discusses the quality of algorithms dedicated to sorting vectors.

16

Chapter 3

Calculation of Function Values

Objectives
ó

This chapter demonstrates:
∙ the basic approaches to creating algorithms for calculating function va-

lues,
∙ the differences between algorithms in terms of effectiveness,
∙ the use of for loops in algorithms,
∙ the use of “tabulated functions”.

3.1 Calculating the Value of a Polynomial
The following example of one of the most basic algorithms for calculating a poly-
nomial was taken from [11]. It describes the best way to determine the value of the
polynomial:

𝑓(𝑥) = 2 · 𝑥4 + 3 · 𝑥3 − 3 · 𝑥2 + 5 · 𝑥− 1 (3.1)

for a specific value of 𝑥, e.g., 𝑥 = 1
2 . An algorithm with the least number of mathe-

matical operations is viewed as the best method of calculation.

Method 1:
The first method directly determines the required value:

𝑓(𝑥 = 1
2) = 2 · 12 ·

1
2 ·

1
2 ·

1
2 + 3 · 12 ·

1
2 ·

1
2 − 3 · 12 ·

1
2 + 5 · 12 − 1 = 5

4 . (3.2)

In this calculation, 10 multiplication and 4 sum/difference operations are perfor-
med.

3.1 Calculating the Value of a Polynomial 17

Method 2:
A somewhat more advantageous solution is a procedure in which the powers of the
input parameter 𝑥 are determined in a step-by-step manner:

1
2 ·

1
2 =

(︂
1
2

)︂2

(3.3)

(︂
1
2

)︂2

· 12 =
(︂

1
2

)︂3

(3.4)

(︂
1
2

)︂3

· 12 =
(︂

1
2

)︂4

(3.5)

Now the final calculation of the polynomial is performed:

𝑓(𝑥 = 1
2) = 2 ·

(︂
1
2

)︂4

+ 3 ·
(︂

1
2

)︂3

− 3 ·
(︂

1
2

)︂2

+ 5 ·
(︂

1
2

)︂
− 1 = 5

4 . (3.6)

This algorithm is more efficient than the first, using a total of 7 multiplication
operations and the same number of 4 operations for sum/subtraction.

Method 3:
The third method of calculation, known as Horner’s method, assumes the following
modification to the solved polynomial (3.1):

𝑓(𝑥) = −1 + 𝑥 · (5− 3 · 𝑥 + 3 · 𝑥2 + 2 · 𝑥3) =
= −1 + 𝑥 · (5 + 𝑥 · (−3 + 3 · 𝑥 + 2 · 𝑥2)) =
= −1 + 𝑥 · (5 + 𝑥 · (−3 + 𝑥 · (3 + 2 · 𝑥))) .

(3.7)

Proceeding from the inside out, the sequence of calculation operations for 𝑥 = 1
2

is
1
2 · 2 + 3 = 4 (3.8)

1
2 · 4− 3 = −1 (3.9)

1
2 · (−1) + 5 = 9

2 (3.10)

1
2 ·

9
2 − 1 = 5

4 . (3.11)

In total, only four multiplication and sum/subtraction operations are needed to
determine the value of the polynomial. Algorithm 1 below is the most efficient algori-
thm that can be schematically expressed for a generally expressed polynomial (1.1).

18 Calculation of Function Values

Input : 𝑛, c = {𝑐1, 𝑐2, 𝑐3, . . . , 𝑐𝑛, 𝑐𝑛+1}, 𝑥
Output: 𝑓(𝑥)
𝑦 ← 𝑐𝑛+1
for 𝑖← 𝑛, 𝑛− 1, . . . , 2, 1 do

𝑦 ← 𝑦 · 𝑥 + 𝑐𝑖

end
𝑓(𝑥)← 𝑦

Algorithm 1: Horner’s method.

Algorithm 1 is implemented in Matlab using the following m-file:

function y=horner(d,c,x)
y=c(d+1);
for i=d:-1:1

y=y*x+c(i);
end

where parameter 𝑑 is the degree of the entered polynomial, 𝑐 is a vector with 𝑑 + 1
constant coefficients of the polynomial, and 𝑥 is the value for which the polynomial
is determined. For the polynomial (3.1) and the specified value 𝑥 = 1

2 , the function
is called by the command:

horner(4,[-1 5 -3 3 2],1/2)

The Matlab output is:

ans =
1.2500

+

Example 3.1. Apply the previous procedure to determine the deflection in the
middle of the span of a statically indeterminate beam. Figure 3.1 illustrates the
statics of the beam. To determine the polynomial equations of the deflection curve
and slope, we use the method of direct integration of the differential equation of the
4𝑡ℎ order 𝐸𝐼𝑦𝑤𝑧(𝑥)′′′′ = 𝑞𝑧(𝑥), where 𝐸 is the modulus of elasticity in tension and
compression [MPa], 𝐼𝑦 the relevant moment of inertia [m4], and 𝑞𝑧 is the continuous
force load acting in the vertical direction [kN/m]. Table 3.1 gives the specific input
data.

Solution. The right-hand side of the 4𝑡ℎ-order differential equation

𝐸𝐼𝑦𝑤𝑧(𝑥)′′′′ = 𝑞𝑧(𝑥) (3.12)

has a term corresponding to the continuous force load, i.e., 𝑞(𝑥) = 𝑞 = const.

3.1 Calculating the Value of a Polynomial 19

Fig. 3.1 Statics free body diagram of the statically indeterminate beam.

Continuous force load 𝑞𝑧 : 4 kN/m
Beam span 𝑙 : 6 m
Width of the rectangular cross-section 𝑏 : 0.02 m
Height of the rectangular cross-section ℎ : 0.15 m
Moment of inertia 𝐼𝑦 : 1

12 · 0.02 · 0.153 = 5.625 · 10−6 m4

Modulus of elasticity in tension and
compression 𝐸: 2.1 · 1011 Pa

Tab. 3.1 Input data for exercise 3.1.

The equation (3.12) can then be gradually integrated:

𝐸𝐼𝑦𝑤𝑧(𝑥)′′′′ = 𝑞𝑧 , (3.13)

𝐸𝐼𝑦𝑤𝑧(𝑥)′′′ = −𝑉𝑧(𝑥) = 𝑞𝑧 · 𝑥 + 𝐶1 , (3.14)

𝐸𝐼𝑦𝑤𝑧(𝑥)′′ = −𝑀𝑦(𝑥) = 𝑞𝑧 ·
𝑥2

2 + 𝐶1 · 𝑥 + 𝐶2 , (3.15)

𝐸𝐼𝑦𝑤𝑧(𝑥)′ = 𝑞𝑧 ·
𝑥3

6 + 𝐶1 ·
𝑥2

2 + 𝐶2 · 𝑥 + 𝐶3 , (3.16)

𝐸𝐼𝑦𝑤𝑧(𝑥) = 𝑞𝑧 ·
𝑥4

24 + 𝐶1 ·
𝑥3

6 + 𝐶2 ·
𝑥2

2 + 𝐶3 · 𝑥 + 𝐶4 . (3.17)

The integration constants 𝐶1, . . . , 𝐶4 are determined from the boundary condi-
tions:

20 Calculation of Function Values

a) For 𝑥 = 0, is 𝑀𝑦(𝑥) = 0, and thus

𝑀𝑦(𝑥 = 0) = −𝑞 · 0
2

2 − 𝐶1 · 0− 𝐶2 = 0 , (3.18)

from which it follows that 𝐶2 = 0,

b) For 𝑥 = 0, is 𝑤𝑧(𝑥) = 0 and thus

𝑤𝑧(𝑥 = 0) = 1
𝐸𝐼𝑦

·
(︂

𝑞𝑧 ·
04

24 + 𝐶1 ·
03

6 + 0 · 0
2

2 + 𝐶3 · 0 + 𝐶4

)︂
= 0 , (3.19)

from which it follows that 𝐶4 = 0,

c) For 𝑥 = 𝑙, is 𝑤
′
𝑧(𝑥) = 0, and thus

𝑤
′

𝑧(𝑥 = 𝑙) = 1
𝐸𝐼𝑦

·
(︂

𝑞𝑧 ·
𝑙3

6 + 𝐶1 ·
𝑙2

2 + 0 · 𝑙 + 𝐶3

)︂
= 0 , (3.20)

d) For 𝑥 = 𝑙, is 𝑤𝑧(𝑥) = 0, and thus

𝑤𝑧(𝑥 = 𝑙) = 1
𝐸𝐼𝑦

·
(︂

𝑞𝑧 ·
𝑙4

24 + 𝐶1 ·
𝑙3

6 + 0 · 𝑙
2

2 + 𝐶3 · 𝑙 + 0
)︂

= 0 . (3.21)

The last two equations represent a system of two linear equations with two
unknown integration constants 𝐶1 and 𝐶3. By solving the system, can be obtained:

𝐶1 = −3
8 𝑞𝑧𝑙 , (3.22)

and
𝐶3 = 1

48 𝑞𝑧𝑙3 . (3.23)

By substituting the resulting values of the integration constants 𝐶1, . . . , 𝐶4 into
the relations (3.14) to (3.17), it is possible to obtain the resulting equations for a pair
of static quantities (the shifting force 𝑉𝑧 and bending moment 𝑀𝑦), also for both
deformation quantities (the deflection 𝑤𝑧 and slope 𝑤

′
𝑧 = 𝜙𝑦):

𝑉𝑧(𝑥) = −
(︂

𝑞𝑧𝑥− 3
8 𝑞𝑧𝑙

)︂
= 3

8 𝑞𝑧𝑙 − 𝑞𝑧𝑥 , (3.24)

𝑀𝑦(𝑥) = −
(︂

𝑞𝑧
𝑥2

2 −
3
8 𝑞𝑧𝑙𝑥 + 0

)︂
= 3

8 𝑞𝑧𝑙𝑥− 𝑞𝑧
𝑥2

2 , (3.25)

𝑤𝑧(𝑥)′ = 𝜙𝑦(𝑥) = 1
𝐸𝐼𝑦

·
(︂

𝑞𝑧
𝑥3

6 −
3
8 𝑞𝑧𝑙

𝑥2

2 + 0 · 𝑥 + 1
48 𝑞𝑧𝑙3

)︂
=

= 1
𝐸𝐼𝑦

·
(︂

𝑞𝑧
𝑥3

6 −
3
16 𝑞𝑧𝑙𝑥2 + 1

48 𝑞𝑧𝑙3
)︂

,

(3.26)

3.1 Calculating the Value of a Polynomial 21

𝑤𝑧(𝑥) = 1
𝐸𝐼𝑦

·
(︂

𝑞𝑧
𝑥4

24 −
3
8 𝑞𝑧𝑙

𝑥3

6 + 0 · 𝑥
2

2 + 1
48 𝑞𝑧𝑙3𝑥 + 0

)︂
=

= 1
2𝐸𝐼𝑦

·
(︂

𝑞𝑧
𝑥4

12 −
3
24 𝑞𝑧𝑙𝑥3 + 1

24 𝑞𝑧𝑙3𝑥

)︂
.

(3.27)

Using Matlab and the horner m-function to determine the required deflection,
the sequence of executed commands is
qz=4000;
l=6;
b=0.02;
h=0.15;
Iy=1/12*b*h^3;
E=2.1*10^11;
c=[0 1/(48*E*Iy)*qz*l^3 0 -3/(48*E*Iy)*qz*l qz/(24*E*Iy)];
horner(4,c,l/2)*1000

The resulting deflection in millimeters in the middle of the span is
ans =

22.857142857142865

N

+

Example 3.2. Applying the procedure described above, we determine the deflection
in the middle of the span of the statically indeterminate beam (Fig. 3.2).

Fig. 3.2 Statics free body diagram of the solved statically indeterminate beam.

22 Calculation of Function Values

+

Example 3.3. Determine the deflection in the middle of the span of the statically
determined beam in Figure 3.3. Use the Clebsch method to determine the equation
of the deflection curve across the investigated interval < 0; 2

3 𝑙 >.

Fig. 3.3 Statics free body diagram of a solved statically determined beam.

3.1.1 Tabulated Functions
Listing the values of a function with the 𝑥 parameter is best executed with a for
loop and screen display function in the prescribed formats disp and sprintf.

Comment 3.4. The disp(x) function displays the content of text-type variable 𝑥.

Comment 3.5. The sprintf function converts the data into a text string in the
required format using “conversion specifiers”, which start with the % sign. The %f
specifier is for normal conversion and converts a numerical value into a form with
a fixed decimal point, the %e specifier expresses a numerical value in exponential
form, and the %g specifier automates selection. Between the % character and the f,
e or g specifiers, we can additionally insert the number of characters of the required
format width, or a period and the number of characters after the decimal point. The
\n parameter produces a new line.

+

Example 3.6. Tabulate the deflection curve function of the beam described in
Exercise 3.1. Determine the resulting deflections in cross-sections, with a spacing of
10 cm.

Solution. The sequence of commands to list the resulting deflections at the tracked
points 𝑥 might look like this:

3.1 Calculating the Value of a Polynomial 23

format long
disp(’ x [mm] w(x) [mm]’)
disp(’_____________________’)
for x=0:.1:l
disp(sprintf(’%8.1f %12.4f’,x*1000,horner(4,c,x)*1000))
end

The output will then look like this:
x [mm] w(x) [mm]

0.0 0.0000

100.0 1.5226
200.0 3.0377
300.0 4.5383
400.0 6.0176
... ...

5700.0 0.6297
5800.0 0.2881
5900.0 0.0741
6000.0 0.0000

N

+

Example 3.7. Extend the output from the previous exercise by including the value
of the shear force 𝑉𝑧, the bending moment 𝑀𝑦, and the slope 𝜙𝑦.

3.1.2 Drawing the Graph of a Targeted Function
The graph of the solved function can be plotted using the procedure described
in Ch. 1.4.1.

+
Example 3.8. Draw a graph of the deflection curve of the beam described in Exer-
cise 3.1.
Solution. A possible solution is a sequence of commands that uses a for loop, the
derived vector 𝑐 from Exercise 3.1, and the horner m-function:

x=linspace(0,l,100);
for i=1:100, y(i)=horner(4,c,x(i))*1000; end
plot(x,y,’b-’);
title(’Deflection curve of the beam w(x)’);
xlabel(’x’);
ylabel(’w(x)’);

Figure 3.4 depicts the resulting graph of the deflection curve.
N

24 Calculation of Function Values

Fig. 3.4 The deflection curve of the statically indeterminate beam given in Exer-
cise 3.1.

Examples to Practice!
1. Use an approach similar to the above to create the graph of the deflection curve of the

statically indeterminate beam depicted in Fig. 3.2.

2. Draw a graph of the deflection curve of a statically determined beam depicted in
Fig. 3.3.

3.1.3 Determining the Maximum of a Discretized Function
We can perform a simplified calculation of the largest value of the function in a pre-
defined interval in three steps: first by discretizing the 𝑥 axis, then determining the
values of the function for all 𝑥 in the required range, and finally using algorithm 2
to determine the largest number in the vector.

Examples to Practice 25

Input : 𝑛, b = {𝑏1, 𝑏2, . . . , 𝑏𝑛}𝑇

Output: 𝑚𝑎𝑥𝑖𝑚𝑢𝑚

𝑚𝑎𝑥𝑖𝑚𝑢𝑚← 𝑏1
for 𝑖← 2, 3, . . . , 𝑛− 1, 𝑛 do

if 𝑏𝑖 > 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 then
𝑚𝑎𝑥𝑖𝑚𝑢𝑚← 𝑏𝑖

end
end

Algorithm 2: Algorithm for Determining the Largest Number in a Vector.

Implementing the above algorithm in the Matlab system, we can create the
maximum m-function with the following sequence of commands:

function m=maximum(b)
n=length(b)
m=b(1);
if n>1

for i=2:n
if b(i)>m

m=b(i);
end

end
end

Comment 3.9. The length function returns the dimension of the vector contained
in the input parameter.

+
Example 3.10. Determine the value of the largest deflection of the beam described
in Exercise 3.1 using the tabulated values of the deflection curve given in Exercise 3.6.

Solution. First, it is necessary to create a vector 𝑏 = 𝑏1, 𝑏2, . . . , 𝑏𝑛 with deflection
values in the observed cross-sections (𝑏𝑖 = 𝑤𝑧(𝑥𝑖)) of coordinates 𝑥𝑖 and a spacing
of 10 cm (𝑛 will therefore be equal to 61 when the span is 𝑙 = 6 m):
i=0;
for x=0:.1:l

i=i+1;
b(i)=horner(4,c,x)*1000;

end

26 Calculation of Function Values

At this point, we call the function which finds the largest number in vector 𝑏.
Entering the maximum(b) command, the output of the m-function and the result of
the largest deflection (in mm) are:

n =
61

ans =
23.7654

N

Comment 3.11. This method of calculating the largest value of the function is
approximate only because it is hampered by the error caused by discretization of
the 𝑥 axis. An approach that leads to an exact solution is shown in Chapter 4.

Examples to Practice!
1. Using the maximum m-function, determine the largest deflection on the statically inde-

terminate beam depicted on Fig. 3.2.

2. Determine the largest deflection on the statically determined beam depicted in Fi-
gure 3.3.

27

Chapter 4

Solving Nonlinear Algebraic
Equations

Objectives
ó

This chapter provides a detailed introduction to:
∙ the principle of iterative methods,
∙ basic algorithms for determining the roots of non-linear algebraic equati-

ons,
∙ using the while loop in an algorithm.

4.1 Iteration

The word iteration carries the same sense as repetition (iteretur in Latin – to repeat).
In mathematics, iteration refers to the solution of a problem through successive
repetitions that approach and lead to the desired result.

4.1.1 Taylor Series

A simple iterative calculation can be demonstrated with the Taylor series, which is
a special power series named after the English mathematician Brook Taylor, who
published it in 1712 (the method of approximating a function by a power series was
discovered as early as 1671 by James Gregory).

Under certain assumptions of the 𝑓(𝑥) function around the point 𝑎, this function
can be expressed (expanded) as a power series. This type of expression of a function
using the Taylor series is referred to as a Taylor expansion:

28 Solving Nonlinear Algebraic Equations

𝑓(𝑥) = 𝑓(𝑎) + 𝑓(𝑎)′

1! · (𝑥− 𝑎) + 𝑓(𝑎)′′

2! · (𝑥− 𝑎)2 + 𝑓(𝑎)(3)

3! · (𝑥− 𝑎)3 + · · · =

=
∞∑︁

𝑘=0

𝑓(𝑎)(𝑘)

𝑘! · (𝑥− 𝑎)𝑘 .
(4.1)

For an approximate expression of the function values, it is not necessary to
express every term of the Taylor series; terms with higher derivatives can be ignored.
In this way, a Taylor polynomial is obtained and can be used to approximate the
values of a function that has a derivative at a given point, using a polynomial whose
coefficients depend on the derivatives of the function at that point.

+

Example 4.1. Using the first ten terms of the Taylor expansion, determine the
value of the 𝑒𝑥 function for 𝑥 = 1.

Solution. The relation for the Taylor expansion for determining the value of the 𝑒𝑥

function takes the following form:

𝑓(𝑥) = 1 + 𝑥 + 𝑥2

2! + 𝑥3

3! + · · · =
∞∑︁

𝑛=0

𝑥(𝑛)

𝑛! . (4.2)

The relation (4.2) is valid for 𝑥 ∈< −∞,∞ >. The given calculation can be
executed with Algorithm 3.

Input : 𝑛, 𝑥
Output: 𝑓(𝑥)
𝑦 ← 1
for 𝑖← 1, 2, 3, . . . , 𝑛− 1 do

𝑦 ← 𝑦 + 𝑥𝑖

𝑖!
end
𝑓(𝑥)← 𝑦

Algorithm 3: Determining the value of the 𝑒𝑥 function using a Taylor expansion.

The corresponding Matlab script contains the following instructions:

function y=e_on_x(n,x)
if n<2

error(’The number of terms n must be 2 at least!’)
end
y=1;
for i=1:n-1

y=y+(x^i)/factorial(i);
end

4.1 Iteration 29

After calling the m-function

e_on_x(10,1)

we obtain the result:

ans =
2.718281525573192

The progress of the gradually refined result and increasing number of terms in
the Taylor expansion is demonstrated in the table below:

i f(xi) f(xi)-e^x

1 1.00000000 -1.71828183e+000
2 2.00000000 -7.18281828e-001
3 2.50000000 -2.18281828e-001
4 2.66666667 -5.16151618e-002
5 2.70833333 -9.94849513e-003
6 2.71666667 -1.61516179e-003
7 2.71805556 -2.26272903e-004
8 2.71825397 -2.78602051e-005
9 2.71827877 -3.05861778e-006

10 2.71828153 -3.02885853e-007

The table’s third column indicates the difference between the partial result and the
exact value of 𝑒𝑥, which is called with Matlab’s exp(x) function.

N

Comment 4.2. The e_on_x m-file also applies the error function, which displays
an error message and terminates the function.

Comment 4.3. To calculate the value of 𝑛!, Matlab uses the factorial function.

4.1.2 Loop Terminating Condition
In the exercise in Section 4.1, was entered the exact number of the required terms
of the expansion and used the Taylor expansion to calculate the approximate value
of the function (i.e., the for loop was used). In practice, it is generally applied the
“loop terminating condition”, which takes the form

|𝑥𝑘 − 𝑥𝑘−1| < 𝜀 , (4.3)

where 𝑥𝑘−1, 𝑥𝑘 are the terms of the Taylor expansion in the (𝑘 − 1)th and 𝑘th
positions, and 𝜀, referred to as the tolerance in the error of a result, is a sufficiently
small number.

30 Solving Nonlinear Algebraic Equations

4.1.3 Recurring Pattern
Using knowledge of one or more preceding elements, a recurring pattern determines
the terms of a sequence. Each recurring pattern must include the entry of the first
or several first terms of the sequence. The disadvantage of using a recurring pat-
tern is that any element of the sequence can be determined only if the preceding
terms are known. The first element of a given sequence, referred to as the “zero
approximation”, must always be estimated.

+

Example 4.4. Using “Heron’s formula” determine the value of the 𝑓(𝑥) =
√

𝑥
function for 𝑥 = 2, with a tolerance in the error of the result 𝜀 = 0.001.

Solution. Heron’s formula for determining the value of the 𝑓(𝑥) =
√

𝑥 function is
recurrent and takes the form

𝑓(𝑥) = 𝑦𝑘 = 1
2

(︂
𝑦𝑘−1 + 𝑥

𝑦𝑘−1

)︂
, (4.4)

where 𝑦𝑘−1, 𝑦𝑘 are again the (𝑘 − 1)th and 𝑘th terms of the sequence.
The relation (4.4) is valid for 𝑥 > 0. The calculation procedure for a given task

can be expressed with Algorithm 4.

Input : 𝑥, 𝜀
Output: 𝑓(𝑥)
𝑦1 ← 𝑥

𝑦2 ← 1
2 ·
(︁

𝑦1 + 𝑥
𝑦1

)︁
while |𝑦1 − 𝑦2| = 𝜀 do

𝑦1 ← 𝑦2

𝑦2 ← 1
2 ·
(︁

𝑦1 + 𝑥
𝑦1

)︁
end
𝑓(𝑥)← 𝑦2

Algorithm 4: Determining the value of the 𝑓(𝑥) =
√

𝑥 function with Heron’s
formula.

The Matlab script contains the following instructions:

function y=sq_root(x,tol)
if x<=0

error(’The condition x>0 is not met!’)
end
y1=x; y2=1/2*(y1+x/y1);
while abs(y1-y2)>tol

y1=y2;

4.1 Iteration 31

y2=1/2*(y1+x/y1);
end
y=y2;

After calling the m-function

sq_root(2,0.001)

a corresponding result can be obtained:

ans =
1.414213562374690

The process of the gradually refined result is shown in the table below:

i f(xi) f(xi)-x^0.5

1 2.00000000 5.85786438e-001
2 1.50000000 8.57864376e-002
3 1.41666667 2.45310429e-003
4 1.41421569 2.12390141e-006
5 1.41421356 1.59472435e-012

The table’s third column indicates the difference between the partial result and the
exact value of

√
𝑥, which is called with Matlab’s sqrt(x) function.

We can also display the deviation from the exact solution with the command:

sq_root(2,0.001)^2

to display:

ans =
2.000000000004511

N

+

Example 4.5. Verify the validity of the following Taylor expansion for calculating
the value of sin(𝑥):

sin(𝑥) = 𝑥− 𝑥3

3! + 𝑥5

5! −
𝑥7

7! + · · · =
∞∑︁

𝑛=0

(−1)𝑛 · 𝑥(2𝑛+1)

(2𝑛 + 1)! , (4.5)

where the desired tolerance of the error in the result 𝜀 = 0.001. The (4.5) relation
is valid for 𝑥 ∈< −∞,∞ >.

32 Solving Nonlinear Algebraic Equations

+

Example 4.6. Verify the validity of the following Taylor expansion for calculating
the value of the cos(𝑥) function:

cos(𝑥) = 1− 𝑥2

2! + 𝑥4

4! −
𝑥6

6! + · · · =
∞∑︁

𝑛=0

(−1)𝑛 · 𝑥2𝑛

(2𝑛)! . (4.6)

where the desired tolerance of the error in the result 𝜀 = 0.001. The (4.6) relation
is valid for 𝑥 ∈< −∞,∞ >.

4.2 Iterative Methods of Solving Non-linear Al-
gebraic Equations

The principles described in Chapter 4.1 can be used to solve non-linear algebraic
equations. The individual methods described in the text below differ mainly in speed
of convergence and universality in use.

Convergence is a term which denotes convergence or developments that lead to
convergence. Properties that converge are said to be convergent. Objects, proces-
ses and properties which participate in convergence are referred to as convergent,
for example, a convergent series in mathematics. In mathematics, convergence is
closely related to the concept of limit. The opposite of convergence is divergence.

4.2.1 Simple Iteration
The solved equation

𝑓(𝑥) = 0 , (4.7)
must first be modified into the form

𝑥 = 𝑔(𝑥) . (4.8)

This procedure can be done in several ways. A prerequisite of the calculation
is the condition that an interval < 𝑎0, 𝑏0 > falls into the domain of the definition
and the domain of continuity of the functions 𝑓(𝑥) and 𝑔(𝑥), which also contains
a common root of both equations. It is also necessary to choose the value of the zero
approximation from this interval.

Comment 4.7. The disadvantage of this method is the convergence of the solution
to the root that does not lie in the < 𝑎0, 𝑏0 > interval in the case of an inappropriately
selected function 𝑔(𝑥). The solved root is not common to both equations; it is the
root of equation 𝑔(𝑥) only.

The calculation for 𝑘 iteration steps can be executed with Algorithm 5.

4.2 Iterative Methods of Solving Non-linear Algebraic Equations 33

Input : 𝑥0, 𝑘
Output: 𝑓(𝑥)
for 𝑖← 1, 2, 3, . . . , 𝑘 do

𝑥𝑖 ← 𝑔(𝑥𝑖−1)
end
𝑓(𝑥)← 𝑥𝑘

Algorithm 5: Determining the root of the equation 𝑓(𝑥) using the simple ite-
ration method.

The notation in the form of an m-function then looks as follows:

function xc=simple_it(g,x0,k)
x(1)=x0;
for i=1:k

x(i+1)=g(x(i));
end
x’
xc=x(k+1);

The list of parameters of the simple_it m-function includes the solved function
𝑔. This can be defined via a variable using the inline Matlab function.

+

Example 4.8. Use the simple iteration method to approximate the root of the
equation

𝑓(𝑥) =
(︁𝑥

2

)︁2
− sin(𝑥) = 0 . (4.9)

Use the following input parameters: number of iteration loops 𝑘 = 10, zero
approximation 𝑥0 = 1.5.

Solution. Equation (4.9) can be simplified into the form

𝑥 = 2
√︀

sin(𝑥) . (4.10)

Equation (4.10) can then be input into Matlab with the command

g=inline(’2*sqrt(sin(x))’)

Now you can start the calculation by:

xc=simple_it(g,1.5,10)

The list of the first ten iterations is shown below (the tenth, final iteration may
be considered the solved root of the nonlinear equation):

34 Solving Nonlinear Algebraic Equations

1.500000000000000
1.997493415863046
1.908232350897023
1.942788324690179
1.930393907098011
1.934981663979237
1.933302091730397
1.933919512286077
1.933692884811449
1.933776115524553
1.933745554580009

Substituting the calculated root 1.933745554580009 into the original equation
(4.9) yields the following:

ans =
-1.085057641792009e-005

This value sufficiently demonstrates the inaccuracy of the solution. N

+

Example 4.9. Calculate the root of the nonlinear equation given in Exercise 4.8
using the simple iteration method with zero approximation 𝑥0 = 2.0 and 𝑘 = 20
iteration loops. Indicate the accuracy achieved by the solution.

+

Example 4.10. Modify the algorithm for the simple iteration method so that the
loop is terminated by the (4.3) condition. Then solve Exercise 4.8 using 𝜀 = 0.05,
indicating the tolerance of the error of the result.

4.2.2 Bisection Method (Interval Halving)
The root of the real nonlinear equation 𝑓(𝑥) = 0, which is continuous for each value
of 𝑥 ∈ < 𝑎0; 𝑏0 >, can be solved with this method approximately (with a speci-
fied tolerance of 𝜀). It is also assumed following condition: 𝑓(𝑎0) · 𝑓(𝑏0) < 0, i.e.,
sign 𝑓(𝑎0) = − sign 𝑓(𝑏0).

The procedure for calculating the root of the nonlinear equation 𝑓(𝑥) = 0 using
the bisection method is executed by Algorithm 6.

After 𝑛 computational steps, the examined interval with the sought root of the
equation 𝑓(𝑥) = 0 will have a width of

𝑏𝑛 − 𝑎𝑛 = 1
2 (𝑏𝑛−1 − 𝑎𝑛−1) = 1

22 (𝑏𝑛−2 − 𝑎𝑛−2) = . . . = 1
2𝑛

(𝑏0 − 𝑎0) . (4.11)

4.2 Iterative Methods of Solving Non-linear Algebraic Equations 35

Input : 𝜀 > 0, 𝑎0, 𝑏0
Output: 𝑥𝑐

𝑎← 𝑎0
𝑏← 𝑏0

while |𝑎− 𝑏| = 𝜀 do

𝑐← 𝑎 + 𝑏
2

if 𝑓(𝑐) = 0 then
𝑥𝑐 ← 𝑐 /* 𝑐 is the final equation root */
end of the calculation;

end
if sign(𝑓𝑐) · sign(𝑓𝑎) < 0 then

𝑏← 𝑐 /* the new interval boundaries are < 𝑎, 𝑐 > */

else
𝑎← 𝑐 /* the new interval boundaries are < 𝑐, 𝑏 > */

end
end
𝑥𝑐 ← 𝑎 + 𝑏

2
Algorithm 6: Algorithm of the bisection method (interval halving).

To estimate the error (inaccuracy) of the result, it holds that

|𝑎𝑛 − 𝛼| 5 𝑏0 − 𝑎0

2𝑛
, (4.12)

or
|𝑏𝑛 − 𝛼| 5 𝑏0 − 𝑎0

2𝑛
, (4.13)

where 𝛼 is the exact value of the root of the equation 𝑓(𝑥) = 0.

Comment 4.11. The bisection method converges very slowly. The authors of [6]
report that accuracy improves by one decimal place after 3.3 computational steps,
where 10−1 ≈ 2−3.3. However, the function 𝑓(𝑥) does not affect the speed of conver-
gence. The advantage is the simplicity of the application and the ability to accurately
estimate the number of steps needed to achieve the required accuracy.

+

Example 4.12. Determine the approximation of the root of the equation using the
bisection method:

𝑓(𝑥) = 𝑥3 + 𝑥− 1 . (4.14)
Use the following input parameters: 𝜀 = 0.001, 𝑎0 = 0 and 𝑏0 = 1.

36 Solving Nonlinear Algebraic Equations

Solution. We can program a function to calculate the root of a nonlinear equation
using the bisection method and an m-file as follows:

function xc=bisect(f,a,b,tol)
if sign(f(a))*sign(f(b))>=0

error(’The condition f(a)*f(b)<0 is not met!’)
end
fa=f(a);
fb=f(b);
while(b-a)>tol

c=(a+b)/2;
fc=f(c);
if fc==0

xc=c %c is the solution
break

end
if sign(fc)*sign(fa)<0 %The new interval boundaries are <a,c>

b=c;
fb=fc;

else %The new interval boundaries are <c,b>
a=c;
fa=fc;

end
end
xc=(a+b)/2;

The list of parameters also includes the solved function 𝑓 . This can be defined
with a variable which uses the inline Matlab function:

f=inline(’x^3+x-1’)

The calculation can now be started by entering the command

xc=bisect(f,0,1,0.001)

The result is

xc =
0.6821

To demonstrate the bisect function, it is possible to see how the contents of the
variables 𝑎, 𝑏 and 𝑐 change during iterations of the algorithm. The columns indicated
𝑓(𝑎), 𝑓(𝑏) and 𝑓(𝑐) contain the value −1 or +1 depending on whether the respective
value of the function 𝑓(𝑎), 𝑓(𝑏) and 𝑓(𝑐) is negative or positive.

4.2 Iterative Methods of Solving Non-linear Algebraic Equations 37

i a f(a) c f(c) b f(b)

0 0.0000 -1 0.5000 -1 1.0000 1
1 0.5000 -1 0.7500 1 1.0000 1
2 0.5000 -1 0.6250 -1 0.7500 1
3 0.6250 -1 0.6875 1 0.7500 1
4 0.6250 -1 0.6563 -1 0.6875 1
5 0.6563 -1 0.6719 -1 0.6875 1
6 0.6719 -1 0.6797 -1 0.6875 1
7 0.6797 -1 0.6836 1 0.6875 1
8 0.6797 -1 0.6816 -1 0.6836 1
9 0.6816 -1 0.6826 1 0.6836 1

10 0.6816 -1 0.6821 -1 0.6826 1

N

+

Example 4.13. Applying the bisection method, determine the approximation of
the root of the equation (4.9) given in Exercise 4.8. Use input parameters: 𝜀 = 0.05,
𝑎0 = 1.5 and 𝑏0 = 2.0.

+

Example 4.14. Using the bisection method, determine the largest deflection on the
beam described in Exercise 3.1.

Solution. In the cross-section with the largest deflection, we have 𝑤𝑧(𝑥)′ = 𝜙𝑦(𝑥) =
= 0. To determine this, it is necessary to solve the roots of the 3rd-degree polynomial.
If the derived equation for slope (3.26) is applied to (1.1) with the general expression
of the 𝑛-th degree polynomial, the vector c with elements [𝑐𝑛, 𝑐𝑛−1, . . . , 𝑐1, 𝑐0] takes
the form

c =
[︁

𝑞𝑧
6 , − 3

16 𝑞𝑧𝑙 , 0 , 1
48 𝑞𝑧𝑙3

]︁
. (4.15)

The root of a polynomial using the bisection method can be calculated using
a slightly modified version of the m-function from Exercise 4.12:

function xc=bisection(a,b,d,tol)
if sign(horner(3,d,a))*sign(horner(3,d,b))>=0

error(’The condition f(a)*f(b)<0 is not met!’)
end
fa=horner(3,d,a);
fb=horner(3,d,b);
while b-a>tol

c=(a+b)/2;
fc=horner(3,d,c);
if fc==0

38 Solving Nonlinear Algebraic Equations

xc=c %c is the solution
break

end
if sign(fc)*sign(fa)<0 %The new interval boundaries are <a,c>

b=c;
fb=fc;

else %The new interval boundaries are <c,b>
a=c;
fa=fc;

end
end
xc=(a+b)/2

The largest deflection is obtained by substituting the resulting root of the slope
polynomial from the interval (0; 𝑙) into the equation of the deflection curve (3.27).

The entire sequence of commands for determining the zero-slope cross-section
and the largest deflection on the beam is

format long
qz=4000;
l=6;
b=0.02;
h=0.15;
Iy=1/12*b*h^3;
E=2.1*10^11;
c=[0 1/(48*E*Iy)*qz*l^3 0 -3/(48*E*Iy)*qz*l qz/(24*E*Iy)];
fi=[1/(48*E*Iy)*qz*l^3 0 -3/(16*E*Iy)*qz*l qz/(6*E*Iy)];
xmax=bisection(0,l-0.00001,fi,0.00000000000001)
slope=horner(3,fi,xmax)
wmax=horner(4,c,xmax)*1000

In the given task, the largest deflection in the cross-section has the coordinate
xmax =

2.529210992451759

Slope in this cross-section is
slope =

1.734723475976807e-017

The maximum deflection in millimetres is
wmax =

23.769036533008371

N

4.2 Iterative Methods of Solving Non-linear Algebraic Equations 39

Comment 4.15. Figure 4.1 illustrates a beam slope graph from the previous exam-
ple of command sequences and the working principle of the bisection method algo-
rithm:

x=linspace(0,l,100);
plot([0,l],[0,0],’r-’)
for i=1:100, y(i)=horner(3,fi,x(i)); end
plot(x,y,’b-’);
title(’Graph of the slope fi(x)’);
xlabel(’x’);
ylabel(’fi(x)’);

The graph shows the path of the iterative calculation from the center of the
interval towards the solved root of the slope equation.

Fig. 4.1 Graph of the slope of the statically indeterminate beam from Example 3.1
and iteration of the cross-section with the largest deflection using the bisection
method.

Comment 4.16. The graph in Figure 4.1 shows that the limit value of the slope at
point 𝑏 is zero. If the limits 𝑎0 = 0 and 𝑏0 = 𝑙 were selected when calling the bisection

40 Solving Nonlinear Algebraic Equations

function, the required condition for solution by this method would therefore not be
met: 𝑓(𝑎0) · 𝑓(𝑏0) <0. For this reason, we adjust the value of the input parameter
𝑏0 = 𝑙 to 𝑏0 = 𝑙 − 0.00001:

xmax=bisection(0,l-0.00001,fi,0.00000000000001,1000)

4.2.3 Regula Falsi Method
Using the regula falsi method, the root of the real nonlinear equation 𝑓(𝑥) = 0, which
is continuous for 𝑥 ∈ < 𝑎; 𝑏 >, can also be solved approximately (with the specified
tolerance 𝜀). Let us assume that 𝑓(𝑎0) · 𝑓(𝑏0) < 0, i.e., sign 𝑓(𝑎0) = − sign 𝑓(𝑏0)
remains valid since it corresponds to the existence of a real root of the given equation
in the interval < 𝑎; 𝑏 >.

The regula falsi method first determines the intersection of the secant of the
curve 𝑓(𝑥) constructed at the points [𝑎, 𝑓(𝑎)] and [𝑏, 𝑓(𝑏)] according to the relation

𝑠 = 𝑎− 𝑓(𝑎)
𝑓(𝑏)− 𝑓(𝑎) · (𝑏− 𝑎) . (4.16)

If sign(𝑓(𝑠)) = sign(𝑓(𝑎)), the examined interval changes to < 𝑠, 𝑏 >, otherwise
to < 𝑎, 𝑠 > and the calculation intersection of the secant of the curve 𝑓(𝑥) continues
using the recurrent formula (4.16) until the terminating condition is met.

The procedure for calculating the root of the nonlinear equation 𝑓(𝑥) = 0 by the
regula falsi method is executed by Algorithm 7.

Input : 𝜀 > 0, 𝑎, 𝑏
Output: 𝑥𝑐

𝑠← 𝑎− 𝑓(𝑎)
𝑓(𝑏)− 𝑓(𝑎) · (𝑏− 𝑎)

while |𝑓(𝑠)| = 𝜀 do
if sign(𝑓(𝑠)) = sign(𝑓(𝑎)) then

𝑎← 𝑠 /* The new interval boundaries are < 𝑠, 𝑏 > */
else

𝑏← 𝑠 /* The new interval boundaries are < 𝑎, 𝑠 > */
end

𝑠← 𝑎− 𝑓(𝑎)
𝑓(𝑏)− 𝑓(𝑎) · (𝑏− 𝑎)

end
𝑥𝑐 ← 𝑠

Algorithm 7: Regula falsi method algorithm.

4.2 Iterative Methods of Solving Non-linear Algebraic Equations 41

+

Example 4.17. Using the regula falsi method, determine the approximation of the
root of the equation (4.14) from Example 4.12. Select input parameters similar to
𝜀 = 0.001, 𝑎0 = 0 and 𝑏0 = 1.

Solution. The function for calculating the root of a nonlinear equation using the
regula falsi method as a Matlab script can be written as

function xc=regula(f,a,b,tol)
if sign(f(a))*sign(f(b))>=0

error(’The condition f(a)*f(b)<0 is not met!’)
end
fa=f(a);
fb=f(b);
s=a-fa/(fb-fa)*(b-a);
fs=f(s);
while abs(fs)>=tol

if sign(fs)==sign(fa) %The new interval boundaries are <s,b>
a=s;
fa=fs;

else %The new interval boundaries are <a,s>
b=s;
fb=fs;

end
s=a-fa/(fb-fa)*(b-a);
fs=f(s);

end
xc=s;

The list of parameters includes the solved function 𝑓 , which can be defined by
the already known function inline. The calculation is started with the command:

xc=regula(f,0,1,0.001)

The result is:

xc =
0.682175815962540

The operation of the regula function is shown in the table below, indicating the
changing content of variables 𝑎, 𝑏 and 𝑠 during iteration and whether the correspon-
ding value of 𝑓(𝑎), 𝑓(𝑠) and 𝑓(𝑠) is negative or positive.

42 Solving Nonlinear Algebraic Equations

i a f(a) s f(s) b f(b)

0 0.0000 -1 0.5000 -1 1.0000 1
1 0.5000 -1 0.6364 -1 1.0000 1
2 0.6364 -1 0.6712 -1 1.0000 1
3 0.6712 -1 0.6797 -1 1.0000 1
4 0.6797 -1 0.6817 -1 1.0000 1
5 0.6817 -1 0.6822 -1 1.0000 1

N

Comment 4.18. The regula falsi method always converges to the resulting root if
its existence is guaranteed by the input parameters. Convergence using the regula
falsi method is quicker than with the bisection method, which corresponds to the
course of calculations in Examples 4.12 and 4.17. Although the bisection method
achieved a solution after ten steps with the required tolerance of the error in the
result 𝜀 = 0.001, the regula falsi method found the sought root after only five
iterations.

+

Example 4.19. Using the example of the beam described in Exercise 3.1, determine
the largest deflection on the structure in a manner similar to Exercise 4.14, but this
time using the regula falsi method.

Solution. Using the regula falsi method with the input data 𝑎 = 0, 𝑏 = 𝑙 − 0.001
and 𝜀 = 0.0001, the largest deflection in the cross-section has the coordinate:
xmax =

2.529471870690230

Slope in this cross-section is:
slope =

-2.201632719885452e-006

and the maximum deflection itself in millimetres is:
wmax =

23.769036245827937

N

Comment 4.20. To illustrate how the regula falsi method algorithm works, let us
examine the beam slope graph created from the previous example (Fig. 4.2). The
graph indicates the path of the iterative calculation from the initial approximation
towards the solved root of the slope equation.

4.2 Iterative Methods of Solving Non-linear Algebraic Equations 43

Fig. 4.2 Graph of the slope of the statically indeterminate beam in Example 3.1
and iteration of the cross-section with the largest deflection using the regula falsi
method.

4.2.4 Secant Method
By applying the secant calculation method, the solved function 𝑓(𝑥) is instead a li-
near function:

𝑔(𝑥) = 𝑓(𝑥𝑘 − 𝑓(𝑥𝑘−1))
𝑥𝑘 − 𝑥𝑘−1

· (𝑥− 𝑥𝑘) + 𝑓(𝑥𝑘) . (4.17)

Determining the root of the equation 𝑔(𝑥) in (4.17) then requires application of
the recurrence formula:

𝑥𝑘+1 = 𝑥𝑘 − 𝑓(𝑥𝑘) · 𝑥𝑘 − 𝑥𝑘−1

𝑓(𝑥𝑘)− 𝑓(𝑥𝑘−1)
. (4.18)

The root 𝑥𝑘+1 may be considered an approximation of the root of the equation
𝑓(𝑥) = 0. The relation (4.18) represents a two-step iterative formula since two initial
approximations 𝑥0 and 𝑥1 must be determined to start the calculation.

44 Solving Nonlinear Algebraic Equations

Comment 4.21. If the two initial approximations 𝑥0 and 𝑥1 are not appropriately
selected, the secant method may not converge. It is therefore necessary to perform
a convergence check for the calculation algorithm or determine the initial approxi-
mations using another method.

+

Example 4.22. Solve the root of the equation from Example 4.17 using the secant
method. Choose the input parameters 𝑥0 = 0, 𝑥1 = 1 and 𝜀 = 0.001.

Solution. When we define the algorithm and the instructions of the m-file, we can
start with the regula falsi calculation method, which must be adjusted according to
the secant method’s different recurrence formula (4.18).

The m-function, named m_secant, can be called with the command:

xc=m_secant(f,0,1,0.001)

For the given input parameters, the result is:

xc =
0.682020419648186

The secant method’s calculation procedure is best followed by successively listing
the values of 𝑥𝑘−1, 𝑥𝑘 and 𝑥𝑘+1 and its functional values:

i x(k-1) f(x(k-1)) x(k) f(x(k)) x(k+1) f(x(k+1))

0 0.0000 -1.000000 1.0000 1.000000 0.5000 -0.375000
1 1.0000 1.000000 0.5000 -0.375000 0.6364 -0.105935
2 0.5000 -0.375000 0.6364 -0.105935 0.6901 0.018636
3 0.6364 -0.105935 0.6901 0.018636 0.6820 -0.000737

Three iteration loops are sufficient to achieve a result with a tolerance of 𝜀 =
= 0.001. N

+

Example 4.23. For the beam described in Exercise 3.1, determine the largest de-
flection on the structure in a manner similar to the procedure in Exercise 4.14 or 4.19,
but instead use the bisection method.

Solution. Using the secant method with the input data 𝑎 = 0, 𝑏 = 𝑙/2 and 𝜀 =
= 0.0001, the largest deflection in the cross-section has the coordinate:

xmax =
2.534161490683230

The slope in this cross-section is:

4.2 Iterative Methods of Solving Non-linear Algebraic Equations 45

slope =
-4.176775334049400e-005

The maximum deflection in millimetres is:
wmax =

23.768933137770031

N

Comment 4.24. To illustrate how the secant method algorithm works, let us exa-
mine the beam slope graphs created from the previous example (Fig. 4.3 and 4.4).
The graphs show the path of the iterative calculation from the initial approximation
𝑥𝑘 to the solved root of the slope equation. The graphs differ in the values of the
input parameter 𝑏, entered as 𝑏 = 𝑙 − 0.85 and 𝑏 = 𝑙 − 1.0, respectively. As menti-
oned above in the note, the method is very sensitive to the values of the first two
approximations 𝑥0 and 𝑥1.

Fig. 4.3 Graph of the slope of the beam from Example 3.1 and iteration of the
cross-section with the largest deflection using the secant method with the input
parameters 𝑎 = 0, 𝑏 = 𝑙 − 0.85 and 𝜀 = 0.0001.

46 Solving Nonlinear Algebraic Equations

Fig. 4.4 Graph of the slope of the beam from Example 3.1 and iteration of the cross-
-section with the largest deflection using the secant method with input parameters
𝑎 = 0, 𝑏 = 𝑙 − 1.0 and 𝜀 = 0.0001.

4.2.5 Newton’s Method (Tangent Method)
If the simple real root of the equation 𝑓(𝑥) = 0 lies in the interval < 𝑎, 𝑏 >, in which
the derivatives 𝑓

′(𝑥), 𝑓
′′(𝑥) also exist, the function 𝑓 can be expressed in the form

of a Taylor expansion at the point 𝑥0:

𝑓(𝑥) = 𝑓(𝑥0) + 𝑓
′(𝑥0) · (𝑥− 𝑥0) + 1

2 · 𝑓
′′(𝜉0) · (𝑥− 𝑥0)2 . (4.19)

The equation 𝑓(𝑥) = 0 can be approximated by a linear equation consisting of
the first two terms of this expansion (4.19):

𝑓(𝑥0) + 𝑓
′(𝑥0) · (𝑥− 𝑥0) = 0 . (4.20)

The root of the linear equation (4.20) is determined as follows:

𝑥1 = 𝑥0 −
𝑓(𝑥0)
𝑓

′(𝑥0)
. (4.21)

4.2 Iterative Methods of Solving Non-linear Algebraic Equations 47

If Equation (4.20) is expressed generally for 𝑥𝑘:

𝑓(𝑥𝑘) + 𝑓
′(𝑥𝑘) · (𝑥− 𝑥𝑘) = 0 , (4.22)

in finding a solution, we obtain a sequence defined by a recurrence formula:

𝑥𝑘+1 = 𝑥𝑘 −
𝑓(𝑥𝑘)
𝑓

′(𝑥𝑘)
. (4.23)

This describes the idea behind Newton’s method.

Comment 4.25. According to [8], the zero approximation 𝑥0 should be selected so
that it falls between the extreme points 𝑎, 𝑏 such that sign(𝑓(𝑥0)) = sign(𝑓 ′′(𝑥0)).
If an inflection point lies between the real root of the initial approximation, the
sequence can converge diverge or oscillate to one of the other roots of the function
being solved.

Comment 4.26. The algorithm for Newton’s method corresponds to the calculation
procedure of the simple iteration method for the function:

𝜙(𝑥) = 𝑥− 𝑓(𝑥)
𝑓

′(𝑥)
. (4.24)

Comment 4.27. Compared to the previous procedures, the recurrent sequence
formula contains the derivative of the function 𝑓(𝑥). Numerical differentiation is
explained in Chapter 8. The following example focuses only on the task where the
derivative of the solved function 𝑓

′(𝑥) is known.
+

Example 4.28. For the beam described in Exercise 3.1, determine the largest de-
flection on the structure in a manner similar to Exercises 4.14, 4.19 or 4.23. Use
Newton’s method to determine the cross-section with the greatest deflection.

Solution. As we have already determined in Exercise 3.1, the derivative of the slope
according to (3.15) is given by:

𝑤𝑧(𝑥)′′ = 𝜙
′

𝑦(𝑥) = − 1
𝐸𝐼𝑦

·𝑀𝑦(𝑥) , (4.25)

and specifically, according to (3.25):

𝜙
′

𝑦(𝑥) = 1
𝐸𝐼𝑦

·
(︂

𝑞𝑧
𝑥2

2 −
3
8 𝑞𝑧𝑙𝑥

)︂
. (4.26)

48 Solving Nonlinear Algebraic Equations

If the derived equation for the slope (3.26) is related to (1.1) by the general
expression of the 𝑛-th degree polynomial, the vector c with elements [𝑐𝑛, 𝑐𝑛−1 až
𝑐1, 𝑐0] take the following form:

c =
[︁

𝑞𝑧

2𝐸𝐼𝑦
, − 3𝑞𝑧𝑙

8𝐸𝐼𝑦
, 0

]︁
. (4.27)

The sequence of commands for a given calculation may look like this:

format long
qz=4000;
l=6;
b=0.02;
h=0.15;
Iy=1/12*b*h^3;
E=2.1*10^11;
c=[0 1/(48*E*Iy)*qz*l^3 0 -3/(48*E*Iy)*qz*l qz/(24*E*Iy)];
fi=[1/(48*E*Iy)*qz*l^3 0 -3/(16*E*Iy)*qz*l qz/(6*E*Iy)];
m=[0 -3*qz*l/(8*E*Iy) qz/(2*E*Iy)];
xmax=newton_it(3,fi,m,0.0001)
horner(3,fi,xmax)
horner(4,c,xmax)*1000

where newton_it is an m-function that is called with the input parameter of the
zero approximation (𝑥0 = 3 metres) and the tolerance of the error of the result
(𝜀 = 0.0001), containing the commands:

function xc=newton_it(a,fi,m,tol)
f1=horner(2,m,a);
f2=horner(3,fi,a);
s=a-f2/f1;
fs=horner(3,fi,s);
while abs(fs)>=tol

a=s;
f1=horner(2,m,a);
f2=horner(3,fi,a);
s=a-f2/f1;
fs=horner(3,fi,s);

end
xc=s;

The solution for the specified input data:

xmax =
2.529166666666667

Examples to Practice 49

Slope in this cross-section:
slope =

3.740855052600245e-007

The maximum deflection in millimetres was then determined:
wmax =

23.769036524717556

If we list the values 𝑥𝑖, 𝑓(𝑥𝑖), 𝑓
′(𝑥𝑖), 𝑥𝑖+1 and 𝑓(𝑥𝑖+1):

i x(i) f(x(i)) df(x(i)) x(i+1) f(x(i+1))
__

0 3.0000 -0.007619 -0.003810 2.5000 0.000247
1 2.5000 -0.008466 0.000247 2.5292 0.000000

we discover that this method produces a sufficiently accurate solution after the first
iteration step. N

Examples to Practice !
1. Using the calculation procedures explained above, determine the largest deflection on

the statically indeterminate beam depicted in Figure 3.2.

2. Calculate the largest deflection on the statically determined beam depicted in Fi-
gure 3.3.

50

Chapter 5

Methods for Sorting a Set of
Elements

Objectives
ó

The section introduces:
∙ the foundations of a sorting algorithm which has numerous engineering

applications,
∙ double for loops,
∙ procedures for reading data to and from a text file.

5.1 Sorting Algorithms
Sorting algorithms can be applied to a wide range of engineering tasks, for example
processing experimentally obtained data or measurements. Numerous examples are
summarized in [1].

5.1.1 Bubble Sort
Bubble sort is a simple, easily implemented sorting algorithm named after the pro-
cedure it is based on. Imagine that the sorted numbers are bubbles rising to the
surface of water at different speeds according to their sizes. The elements with larger
“bubble” are sorted towards the end of the ascending list. The algorithm iteratively
sorts a sequence of 𝑛 elements, comparing every two adjacent elements and swapping
them if they are not in the correct order. Elements are compared until the whole
list is sorted.

5.1 Sorting Algorithms 51

The algorithm is universal (it compares pairs of elements), functions locally (au-
xiliary memory is not required), and is stable (elements with the same key do not
change their relative position). It is also a natural sorting algorithm (it processes
a partially sorted list more quickly than an unsorted one).

Input : x = {𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛−1, 𝑥𝑛}
Output: x
for 𝑗 ← 1, 2, 3, . . . , 𝑛− 1 do

for 𝑖← 𝑛− 1, 𝑛− 2, . . . , 𝑗 + 1, 𝑗 do
if 𝑥𝑖 > 𝑥𝑖+1 then

𝑐← 𝑥𝑖

𝑥𝑖 ← 𝑥𝑖+1
𝑥𝑖+1 ← 𝑐

end
end

end
Algorithm 8: The bubble sort algorithm.

The Matlab code for the calculation performed by Algorithm 8 is given below:

function y=bubblesort(x);
n=length(x);
for j=1:n-1

for i=n-1:-1:j
if x(i)>x(i+1);

c=x(i);
x(i)=x(i+1);
x(i+1)=c;

end
end

end
y=x;

This procedure is too inefficient for use in larger applications, however and is
mainly useful for teaching purposes or simple applications. This type of sorting al-
gorithm is one of the slowest and requires a large number of memory writes compared
to other algorithms of the same complexity.

Comment 5.1. From the point of view of using for loops, we note that the algo-
rithm contains a double loop with control variables 𝑖 and 𝑗. Sorting an array of 𝑛
elements requires 𝑛−1 executions of the outer loop, while the inner loop sequentially
executes (𝑛−1), (𝑛−2), (𝑛−3), . . . , 2, 1 times. The final value of the control variable
𝑗 is therefore not constant but depends on the value of the control variable 𝑖. The

52 Methods for Sorting a Set of Elements

total number of operations for this type of sorting is 𝑛2 − 𝑛
2 , which corresponds to

the task’s complexity with an approximate number of calculation operations 𝑛2.

5.1.2 Select Sort
Select sort (often abbreviated selectsort) is a simple sorting algorithm based on the
direct selection of a minimum. Because of its simple execution, it is often used to
organize small amounts of data. Algorithms with less time complexity are used for
larger volumes of data.

The algorithm sequentially processes the sorted vector and searches for the mi-
nimum of the remaining elements for a given element of the vector. The algorithm’s
procedure is described below:

1. the algorithm finds the element with the smallest value in the sequence of 𝑛
values,

2. this element is swapped with the element in the first position to place the
element with the smallest value at this point in the sequence,

3. the rest of the sequence is sorted by repeating these steps for the remaining
𝑛− 1 elements.

The selectsort algorithm is therefore based on the idea that if an array is ordered
from the smallest to the largest element, then the element with the smallest value
will occupy the first position of the sequence, followed by the element with the
smallest value from the rest of the array, and so on. The smallest elements from the
unsorted section of the array must be selected and placed at the end of the sorted
section.

Input : x = {𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛−1, 𝑥𝑛}
Output: x
for 𝑖← 1, 2, 3, . . . , 𝑛− 1 do

for 𝑗 ← 𝑖 + 1, 𝑖 + 2, 𝑖 + 3, . . . , 𝑛 do
if 𝑥𝑖 > 𝑥𝑗 then

𝑐← 𝑥𝑖

𝑥𝑖 ← 𝑥𝑗

𝑥𝑗 ← 𝑐
end

end
end

Algorithm 9: The select sort algorithm.

5.1 Sorting Algorithms 53

The Matlab code for the sorting calculation performed by Algorithm 9 is given
below:

function y=selectsort(x);
n=length(x);
for i=1:n-1

for j=i+1:n
if x(i)>x(j);

c=x(i);
x(i)=x(j);
x(j)=c;

end
end

end
y=x;

Comment 5.2. From the point of view of using the for loop, we again note that the
algorithm contains a double loop with control variables 𝑖 and 𝑗, and that the comple-
xity of the task (in terms of number of operations required) remains approximately
𝑛2.

5.1.3 Insert Sort
Insert sort (abbreviated insertsort) is another simple sorting algorithm. The algori-
thm runs by consecutively processing elements and placing each additional unsorted
element into the correct position within the sorted sequence. It is one of the quicker
sorting algorithms yet still slower than advanced algorithms such as quicksort or
shellsort (see below). However, it has other advantages:

∙ simple execution,
∙ efficient with small sets,
∙ efficient with partially sorted sets,
∙ more efficient than other algorithms (select sort, bubble sort),
∙ stable sorting (does not change the relative order of elements with the same

keys),
∙ an online algorithm, which means it allows data sorting as data arrives.

The algorithm sorts elements from the right hand side of the sequence directly
into the left hand side, where an ascending list of values is formed. The only diffe-
rence to the selectsort algorithm is in that this method directly manipulates the
individual elements during sorting, not just their indices, therefore the calculation
procedure may be used, for example, while loading data from a file.

54 Methods for Sorting a Set of Elements

Input : x = {𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛−1, 𝑥𝑛}
Output: x
for 𝑖← 2, 3, . . . , 𝑛− 1, 𝑛 do

𝑐← 𝑥𝑖

for 𝑗 ← 𝑖− 1, 𝑖− 2, 𝑖− 3, . . . , 1 do
if 𝑥𝑗 > 𝑥𝑗+1 then

𝑥𝑗+1 ← 𝑥𝑗

𝑥𝑗 ← 𝑐
end

end
end

Algorithm 10: The insert sort algorithm.

The Matlab code for the calculation performed by Algorithm 10 is given below:

function y=insertsort(x);
n=length(x);
for i=2:n

c=x(i);
for j=i-1:-1:1

if x(j)>x(j+1);
x(j+1)=x(j);
x(j)=c;

end
end

end
y=x;

The quicksort and shellsort sorting algorithms introduced in the next section are
more advanced. These algorithms are presented in this guide to provide insight into
the background of high-quality algorithmic procedures.

5.1.4 Quick Sort (Recursive)
Quick (recursive) sorting into classes, or simply quicksort, is one of the fastest current
sorting algorithms based on the comparison of elements. The algorithm was devised
in 1962 by Sir Charles Antony Richard Hoare. It has the best possible average time
complexity (𝑛 · log 𝑛) among the sorting algorithms of this type, but in the worst
case (which can usually be avoided in practice), it can also have a time complexity
of 𝑛2.

5.1 Sorting Algorithms 55

Quicksort attempts to divide a sorted sequence of numbers into two approxima-
tely equal parts. In one part, the numbers are greater, and in the other, they are
smaller than the value of one of the selected sequence elements, named the pivot.
If the pivot is optimally selected, both parts of the sequence will be approximately
the same size. Both parts are then sorted separately.

An important performance aspect of this calculation procedure is the choice
of pivot. Generally, the pivot is either a fixed element (the first or final element)
or a random element. As a fixed element, the choice is problematic with partially
ordered arrays or arrays with an underlying structure (where the problem is not
divided optimally and the complexity can increase to 𝑛2).

The calculation procedure of quicksort can be described as follows:

procedure quicksort(list_of_values)
if length(list_of_values) <= 1

return
pivot = randomly selected element from list_of_values

Divide list_of_values into 3 parts
list1 = {elements smaller than the pivot}
list2 = {pivot}
list3 = {elements larger than the pivot}

list_of_values = quicksort(list1) + list2 + quicksort(list3)

The QuickSort algorithm is based on “recursion”.

Recursion is a frequently used technique in mathematics and computer science.
The term is probably derived from the Latin verb itself, in which case it is called
a recursive function. An integral part of the recursive function is a terminating
condition that specifies when the nested loop ends. Because this is a frequent
source of error, it must be designed in a sufficiently robust manner, and all possible
conditions of its operation must be checked. (For details see, e.g., [14])

With smaller input sizes, quicksort is slow since it is very likely that the array
will not be split into ideal halves. For this reason, quicksort is only used with large
arrays. It is much more efficient to use insertsort or shellsort to sort smaller arrays
(see below).

One method of implementing recursive sorting with quicksort in Matlab is given
below:

function y=quicksort(x)
n=length(x);
if(n<=1);y=x;return;end;

56 Methods for Sorting a Set of Elements

if(n==2)
if(x(1)>x(2))

x=[x(2); x(1)];
end
y=x;
return;

end
m=fix(n/2);
pivot=x(m);
Smaller=find(x<pivot);
if(isempty(Smaller))

ind=find(x>pivot);
if(isempty(ind));y=x;return;end;
pivot=x(ind(1));
Smaller=find(x<pivot);

end
Larger=find(x>=pivot);
y=[quicksort(x(Smaller));quicksort(x(Larger))];

Comment 5.3. The algorithm assumes that the ordered vector is presented in
columns. We therefore call the m-function with a vector in an appropriate form; for
example:

A=[76 5 44 90 59 63 4 1 28 57];
B=quicksort(A’)

Comment 5.4. This m-function uses the Matlab fix function for integer division
and the find function to obtain a vector of elements of the sequence of values 𝑥
that satisfy the condition described in the input. The logical function isempty tests
the content of the variable (vector) in the parameter. If the variable is empty, the
result of the function is the logical value TRUE (i.e., the value 1). The return
command does not interrupt the calculation, as in the case of the break command,
it terminates the called function only (for recursive calculations, this does not end
the calculation but returns to the part of the algorithm from which the function was
called).

5.1.5 Shell Sort
Shell sort (abbreviated shellsort) is decreasing increment sort and similar to insert-
sort. It was discovered and published in 1959 by Donald Shell. The time complexity
of shellsort is approximately equal to 𝑛

3
2 and is the most powerful of the algorithms

whose complexity is 𝑛2.

5.1 Sorting Algorithms 57

A common problem with sorting algorithms is sorting elements into the opposite
part of the array from their original location. In normal quadratic algorithms, these
elements must gradually “traverse” the entire array. In this respect, Shellsort is
different because it does not compare adjacent elements but elements at a certain
distance at each step (this distance decreases at each step until it is reduced to 1).
This ensures that elements moved to the wrong side of the array can be quickly
moved to their correct positions.

The algorithm’s main challenge is in selecting the ideal distance for a comparison
of individual elements. Donald Shell originally suggested that comparisons should
start with a spacing value of 𝑛

2 , where 𝑛 is the array size, and therefore always halve
the distance between compared elements. The disadvantage of this approach is that
the elements in even and odd positions are compared only in the algorithm’s final
step. Other methods include, for example, selecting a 2 · 𝑘 − 1 (Hibbard) sequence
with a complexity of 𝑛

3
2 , the 9 · 4𝑖− 9 · 2𝑖 (Sedgewick) sequence with a complexity of

𝑛
4
2 , or the Fibonacci sequence multiplied twice by the golden ratio. The best results

are obtained with the sequence 1, 4, 10, 23, 57, 132, 301, 701, 1750 or gap·2.2, created
by Marcin Ciura.

The calculation procedure of the shellsort algorithm can be programmed in an
m-function, for example, as shown below:

function y=shellsort(x)
n=length(x);
gap=floor(n/2);
while gap>0

for j=gap:n
for i=j-gap:-gap:1

if x(i+gap)>=x(i)
break;

else
c=x(i);
x(i)=x(i+gap);
x(i+gap)=c;

end
end

end
gap=floor(gap/2);

end
y=x;

Comment 5.5. The m-function uses the floor function, which rounds the number
to the nearest integer in the direction of −∞; for example, floor(-0.4) is −1.

58 Methods for Sorting a Set of Elements

5.2 Working with Text Files
Sorting algorithms operations can be supplemented by loading numerical values from
a text file into the vector field in Matlab. This can then be sorted by one of the
described algorithms. Text files can also be used to write and save the results of
computations or for data preparation.

+

Example 5.6. Save the table of values of the function e𝑥 for 𝑥 = 0; 0.1; 0.2; . . . ; 1.0
in a text file named exp.txt.

Solution. Data may be written into a text file, for example, by using the Matlab
commands fopen, fprintf and fclose. A solution to the exercise is the following
sequence of commands:

x=0:.1:1;
y=[x;exp(x)];
fid=fopen(’exp.txt’,’w’);
fprintf(fid,’%6.2f %12.8f\n’,y);
fclose(fid);
type exp.txt

In the fopen function, the access mode to the file whose name contains the first
parameter must be specified with the second parameter. The basic options include
the parameter “r” for opening a file for reading and “w” for writing to the file (in
the latter case, any existing content in the file is overwritten).

The resulting content in the text file named exp.txt is determined by the com-
mand type. The file should contain the data:

0.00 1.00000000
0.10 1.10517092
0.20 1.22140276
0.30 1.34985881
0.40 1.49182470
0.50 1.64872127
0.60 1.82211880
0.70 2.01375271
0.80 2.22554093
0.90 2.45960311
1.00 2.71828183

N

+

Example 5.7. Use the randi function to randomly generate 10,000 numbers ran-
ging from 0 to 1,000,000 and write these values into a text file named values.txt.

5.2 Working with Text Files 59

Solution. To generate a specified number of random numbers in a predetermined
range of values has, the correctly called form of the command is:

randi(1000000,1,10000)

The correct sequence of commands in combination with writing to a text file is,
for example:

x=randi(1000000,1,10000);
fid=fopen(’values.txt’,’w’);
fprintf(fid,’%7g\n’,x);
fclose(fid);
type values.txt

N

+

Example 5.8. Load the contents of values.txt file you have just created into the
variable 𝐴, using the dlmread command.

Solution. This command is very simple and takes the form:

A=dlmread(’values.txt’)

However, the values.txt file must contain numerical values only. N

Comment 5.9. More generally, the operation from the previous example can be
performed as follows:

clear;
fid=fopen(’values.txt’);
k=0;
while feof(fid)==0

rd=fscanf(fid,’%f’,1);
if ~isempty(rd)

k=k+1;
A(k)=rd;

end
end
fclose(fid);
A’

The m-function described above contains the feof function, which returns the
value TRUE, i.e., 1, if the program reaches the end of the text file while reading
(otherwise, it returns the value FALSE, i.e., 0).

+

Example 5.10. Sort the contents of variable 𝐴 from the previous example using
the sorting algorithms described in this chapter.

60 Methods for Sorting a Set of Elements

Comment 5.11. If it is necessary to monitor the machine’s computation time, we
can take advantage of the function pair tic and toc:

clc
tic;
B=bubblesort(A);
toc

The computation time output may look like the following:

Elapsed time is 1.790291 seconds.

+

Example 5.12. Modify the computation procedures of the sorting algorithms so
that the result is a list of values sorted in descending order.

Comment 5.13. To check the correctness of an m-function, we can use Matlab’s
sort (sorts vectors and matrices in ascending and descending order) and issorted
(returns the value TRUE, i.e., 1, for a sorted vector or matrix, or FALSE, i.e., 0)
commands, where the input parameter is simply the respective vector or matrix.

61

Chapter 6

Systems of Linear Equations

Objectives
ó

This chapter describes:
∙ algorithms for solving systems of linear equations, using direct methods,
∙ iterative methods for solving systems of linear equations,
∙ triple for loops,
∙ matrix calculus.

Many problems in structural mechanics require the solution of a system of linear
equations; numerical methods designed for this purpose are therefore commonly
found in programming.

In general, a system of 𝑛 linear equations with 𝑛 variables can be written as:

𝑎1,1 · 𝑥1 + 𝑎1,2 · 𝑥2 + · · · + 𝑎1,𝑛 · 𝑥𝑛 = 𝑏1
𝑎2,1 · 𝑥1 + 𝑎2,2 · 𝑥2 + · · · + 𝑎2,𝑛 · 𝑥𝑛 = 𝑏2

...
...

. . .
...

...
𝑎𝑛,1 · 𝑥1 + 𝑎𝑛,2 · 𝑥2 + · · · + 𝑎𝑛,𝑛 · 𝑥𝑛 = 𝑏𝑛

, (6.1)

where variables 𝑥1, . . . , 𝑥𝑛, generally 𝑥𝑖 for 𝑖 = 1, . . . , 𝑛, are unknown, 𝑎𝑖,𝑗 for
𝑖, 𝑗 = 1, . . . , 𝑛 are the coefficients of the system of equations, and the numbers
𝑏𝑖 for 𝑖 = 1, . . . , 𝑛 are the absolute members of the system (or also the right or
right-hand side of the system).

Matrix calculus is used to solve the roots of systems of linear equations. The
coefficients of the system can be written in the form of a matrix:

[𝐴] =

⎡⎢⎢⎢⎣
𝑎1,1 𝑎1,2 · · · 𝑎1,𝑛

𝑎2,1 𝑎2,2 · · · 𝑎2,𝑛

...
...

. . .
...

𝑎𝑛,1 𝑎𝑛,2 · · · 𝑎𝑛,𝑛

⎤⎥⎥⎥⎦ , (6.2)

which is referred to as the matrix of the system.

62 Systems of Linear Equations

The unknown and the right-hand side of the system can be expressed as vectors:

{𝑥} =
{︀

𝑥1 𝑥2 · · · 𝑥𝑛

}︀𝑇
, (6.3)

{𝑏} =
{︀

𝑏1 𝑏2 · · · 𝑏𝑛

}︀𝑇
. (6.4)

The entire system of linear equations can then be expressed as a matrix:⎡⎢⎢⎢⎣
𝑎1,1 𝑎1,2 · · · 𝑎1,𝑛

𝑎2,1 𝑎2,2 · · · 𝑎2,𝑛

...
...

. . .
...

𝑎𝑛,1 𝑎𝑛,2 · · · 𝑎𝑛,𝑛

⎤⎥⎥⎥⎦ ·
⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑥1
𝑥2
...

𝑥𝑛

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑏1
𝑏2
...

𝑏𝑛

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (6.5)

or abbreviated in matrix form:
A · x = b , (6.6)

where A denotes the matrix of the system (i.e., the left(-hand) sides of the equations),
x denotes the column vector of the unknown roots of the system, and b denotes the
column vector of the right-hand sides of the equations.

One of the conditions for the unique solution of a system of linear equations is
that the matrix A must be regular.

Comment 6.1. A Regular matrix is a square matrix whose determinant is non-
zero. The opposite of a regular matrix is a singular matrix with a determinant of
zero. An important property of a regular matrix is that we can calculate a unique
inverse matrix. This is useful, for example, for solving a system of linear equations.

6.1 Direct Methods of Solving Systems of Linear
Equations

Methods for solving systems of linear equations that lead to an exact solution (if
rounding errors are not taken into account) in a finite number of computational steps
are referred to as direct methods. Their basic feature is the elimination of unknowns.
For full matrices, these methods tend to be the most efficient, but with a large
number of equations, the calculation may be limited by the computer’s memory.

6.1.1 Solving a Triangular System of Linear Equations
A general upper triangular system of linear equations can be written in the form:

𝑎1,1 · 𝑥1 + 𝑎1,2 · 𝑥2 + · · · + 𝑎1,𝑛 · 𝑥𝑛 = 𝑏1
𝑎2,2 · 𝑥2 + · · · + 𝑎2,𝑛 · 𝑥𝑛 = 𝑏2

. . .
...

...
𝑎𝑛,𝑛 · 𝑥𝑛 = 𝑏𝑛

, (6.7)

6.1 Direct Methods of Solving Systems of Linear Equations 63

or as a matrix ⎡⎢⎢⎢⎣
𝑎1,1 𝑎1,2 · · · 𝑎1,𝑛

𝑎2,2 · · · 𝑎2,𝑛

. . .
...

𝑎𝑛,𝑛

⎤⎥⎥⎥⎦ ·
⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑥1
𝑥2
...

𝑥𝑛

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑏1
𝑏2
...

𝑏𝑛

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (6.8)

The solution, referred to as back substitution (backtracking), is expressed by
Algorithm 11.

Input : 𝑛, A = [𝑎𝑖,𝑗] = [𝑎1,1, . . . , 𝑎𝑛,𝑛], b = {𝑏1, 𝑏2, . . . , 𝑏𝑛}𝑇

Output: x = {𝑥1, 𝑥2, . . . , 𝑥𝑛}𝑇

for 𝑖← 𝑛, 𝑛− 1, . . . , 2, 1 do

𝑥𝑖 ←
𝑏𝑖 −

𝑛∑︁
𝑗=𝑖+1

𝑎𝑖,𝑗 · 𝑥𝑗

𝑎𝑖,𝑖

end
Algorithm 11: The backward substitution algorithm.

Calculation of the upper triangular system of linear equations can be program-
med in Matlab as follows:

n=input(’Enter the number of unknowns in the system of eqs:\n n=’);
A=zeros(n,n);
fprintf(’\n Enter the matrix elements of system A:’);
for i=1:n

for j=i:n
fprintf(’\n A[%d,%d]=’,i,j)
A(i,j)=input(’’);

end
end
if det(A)==0

error(’The system of equations is singular! Det(A) is equal to 0!’)
end
fprintf(’\n Enter the elements of the vector b:’);
for i=1:n

fprintf(’\n b[%d]=’,i)
b(i)=input(’’);

end
if n==1

x(1)=b(1)/A(1,1);
else

for i=n:-1:1
s=0;

64 Systems of Linear Equations

if i<n
for j=i+1:n

s=s+A(i,j)*x(j);
end

end
x(i)=(b(i)-s)/A(i,i);

end
end
fprintf(’\n’)
disp(’System roots’)
disp(’---------------------------------’)
for i=1:n

fprintf(’x[%d]=%16.8f\n’,i,x(i))
end

Comment 6.2. In the example above, the input command is used to enter input
data, which allows a description of the entered quantity to be displayed on screen
and a value to be assigned to the variable by typing them directly on the keyboard.

+

Example 6.3. Determine the roots of the triangular system of linear equations of
order 4:

𝑥1 + 2 · 𝑥2 + 3 · 𝑥3 + 4 · 𝑥4 = 2
2 · 𝑥2 + 6 · 𝑥3 + 12 · 𝑥4 = 8

6 · 𝑥3 + 24 · 𝑥4 = 18
24 · 𝑥4 = 24

(6.9)

Solution. The resulting vector of unknown roots is 𝑥 =
{︀
−1 1 −1 1

}︀𝑇 . N

Comment 6.4. We can check the correctness of the solution by re-substituting
the roots into the individual equations of the system, or better, by subtracting the
left-hand side of the system from the right-hand side, whereby we can then obtain
the residual vector of the solution r:

fprintf(’\n’)
disp(’Residual vector’)
disp(’---------------------------------’)
for i=1:n

r(i)=0;
for j=i:n

r(i)=r(i)+A(i,j)*x(j);
end
r(i)=r(i)-b(i);
fprintf(’r[%d]=%16.8f\n’,i,r(i))

end

Examples to Practice 65

Individual elements should converge to zero. We obtain a residual vector for the
triangular system:

r[1] = 0.00000000
r[2] = 0.00000000
r[3] = 0.00000000
r[4] = 0.00000000

Comment 6.5. We can also check the accuracy of the solution using the Euclidean
norm of the residual vector r, given by the expression

√︁∑︀
𝑖

|𝑟𝑖|2, which can be called
in Matlab with the command norm(A*x-b).

Comment 6.6. Difficulties arise with the algorithm if the numbers on the diago-
nal, i.e., 𝑎𝑖,𝑖, are small. The system matrix A is then almost singular (det A ≈ 0).
A solution is to rearrange the system of linear equations so that the largest matrix
elements of the system A are on the diagonal.

Examples to Practice !
1. Design an algorithm to solve a general triangular system of linear equations which has

a lower matrix of the system A (zeros above the diagonal).

6.1.2 The Gaussian Elimination Method
Gaussian elimination is one of the oldest numerical methods. It is based on con-
verting the initial matrix A to an upper triangular matrix. By adjusting rows with
multipliers, this matrix is fine-tuned into a form where only zeros are located below
the main diagonal. The adjusted matrix then corresponds to a system of equations
that is equivalent to the original system and can be solved in a manner similar to
a triangular system of linear equations by using back substitution (backtracking).
The entire calculation procedure is schematically described by Algorithm 12.

The m-function in Matlab looks as follows:

function x=gauss(A,b)
if det(A)==0

error(’The system of equations is singular! Det(A) is equal to 0!’)
return

end
n=length(A);
if n==1

x(1)=b(1)/A(1,1);
return

end

66 Systems of Linear Equations

Input : 𝑛, A = [𝑎𝑖,𝑗] = [𝑎1,1, . . . , 𝑎𝑛,𝑛], b = {𝑏1, 𝑏2, . . . , 𝑏𝑛}𝑇

Output: x = {𝑥1, 𝑥2, . . . , 𝑥𝑛}𝑇

for 𝑘 ← 1, 2, . . . , 𝑛− 2, 𝑛− 1 do
for 𝑖← 𝑘 + 1, 𝑘 + 2, . . . , 𝑛− 1, 𝑛 do

𝑚← − 𝑎𝑖,𝑘
𝑎𝑘,𝑘

for 𝑗 ← 𝑘, 𝑘 + 1, . . . , 𝑛− 1, 𝑛 do
𝑎𝑖,𝑗 ← 𝑎𝑖,𝑗 + 𝑚 · 𝑎𝑘,𝑗

end
𝑏𝑖 ← 𝑏𝑖 + 𝑚 · 𝑏𝑘

end
end
for 𝑖← 𝑛, 𝑛− 1, . . . , 2, 1 do

𝑥𝑖 ←
𝑏𝑖 −

𝑛∑︁
𝑗=𝑖+1

𝑎𝑖,𝑗 · 𝑥𝑗

𝑎𝑖,𝑖

end
Algorithm 12: The Gaussian elimination algorithm.

for k=1:n-1
if A(k,k)==0

error(’There is a zero on the diagonal!’)
return

end
for i=k+1:n

m=-A(i,k)/A(k,k);
for j=k:n

A(i,j)=A(i,j)+m*A(k,j);
end;
b(i)=b(i)+m*b(k);

end
end
for i=n:-1:1

s=0;
if i<n

for j=i+1:n
s=s+A(i,j)*x(j);

end
end
x(i)=(b(i)-s)/A(i,i);

end

Examples to Practice 67

+

Example 6.7. Using the m-function above, solve the roots of the system of four
linear equations:

2 · 𝑥1 − 𝑥2 + 3 · 𝑥3 − 𝑥4 = 7
𝑥1 − 𝑥2 + 4 · 𝑥3 − 2 · 𝑥4 = 5

3 · 𝑥1 + 2 · 𝑥2 + 𝑥3 + 4 · 𝑥4 = 31
4 · 𝑥1 − 3 · 𝑥2 + 3 · 𝑥3 − 3 · 𝑥4 = −5

(6.10)

Solution. The solution is the vector of unknown roots {𝑥} =
{︀

1 2 4 5
}︀𝑇 . This

example demonstrates how the Gaussian elimination algorithm works:

Original matrix A Original vector b
---------------------------- ----------------------------

2.000 -1.000 3.000 -1.000 7.000
1.000 -1.000 4.000 -2.000 5.000
3.000 2.000 1.000 4.000 31.000
4.000 -3.000 3.000 -3.000 -5.000

Modified matrix A Modified vector b
---------------------------- ----------------------------

2.000 -1.000 3.000 -1.000 7.000
0.000 -0.500 2.500 -1.500 1.500
0.000 0.000 14.000 -5.000 31.000
0.000 0.000 0.000 -0.857 -4.286

The roots of the system are:

x[1] = 1.000
x[2] = 2.000
x[3] = 4.000
x[4] = 5.000

The residual vector is:

r[1] = 0.000e+000
r[2] = 0.000e+000
r[3] = -7.105e-015
r[4] = -1.776e-015

N

+

68 Systems of Linear Equations

Example 6.8. Determine the roots of the system of three linear equations with the
matrix of the system

[𝐴] =

⎡⎣2 1 0
1 1 2
1 1 1

⎤⎦ (6.11)

and the vector of the right-hand sides:

{𝑏} =
{︀

1 4 1
}︀𝑇

. (6.12)

Solution. The vector of unknown roots is equal to {𝑥} =
{︀

3 −5 3
}︀𝑇 . N

+

Example 6.9. Solve the system of four linear equations given by the matrix of the
system

[𝐴] =

⎡⎢⎢⎣
4 −1 −1 0
−1 4 0 −1
−1 0 4 −1
0 −1 −1 4

⎤⎥⎥⎦ (6.13)

and the vector of the right-hand sides:

{𝑏} =
{︀

1 2 0 1
}︀𝑇

. (6.14)

Solution. The resulting vector of the unknown roots of the system of four linear
equations is equal to {𝑥} =

{︀
0.5 0.75 0.25 0.5

}︀𝑇 . N

+

Example 6.10. Determine the machine time and accuracy of the solution (the norm
of the residual vector) of a randomly generated system of 600 linear equations.

Solution. The example can be solved using the following sequence of commands:
clc;
clear;
n=600;
m=1200;
A=randn(n,m);
A=A*A’;
b=randn(n,1);
tic, x=gauss(A,b); toc
norm(A*x’-b)

N

+

Example 6.11. Using the general joint method, solve the reactions and internal
forces for the truss illustrated in Figure 6.1. The input parameters are 𝑏 = 3 m,
ℎ = 1.5 m, 𝐹1 = 5 kN and 𝐹2 = 12 kN. Then solve the system of linear equations
using Gaussian elimination.

Examples to Practice 69

Fig. 6.1 Statics diagram of the truss.

Solution. If the truss in Figure 6.1 is interpreted as a system of material points,
from a kinematic point of view it contains 2 · 𝑠 degrees of freedom, where 𝑠 is the
number of material points, i.e. joints. Because the structure consists of five joints
(𝑠 = 5), we obtain 𝑛𝑣 = 2 · 𝑠 = 10 degrees of freedom, which are removed by three
external (𝑣e = 3) and seven internal (𝑣𝑖 = 7) connections (number of rods). Since
𝑛𝑣 = 𝑣e + 𝑣𝑖, it is a statically and kinematically definite construction.

If two equilibrium conditions are specified in each joint, we can obtain a total
of ten equilibrium conditions which form a system of linear equations, from which
we can then determine ten unknowns, i.e., three reactions (𝑅𝑎𝑥, 𝑅𝑎𝑧 and 𝑅𝑏𝑥) and
seven internal forces (𝑁1, 𝑁1, . . . , 𝑁7).

The individual equilibrium conditions are:

∙ Joint 𝑎:
1. 𝑅𝑥 = 0 : −𝑅𝑎𝑥 + 𝑁1 + 𝑁4 · cos(𝛼) = 0
2. 𝑅𝑧 = 0 : −𝑅𝑎𝑧 + 𝑁3 + 𝑁4 · sin(𝛼) = 0

∙ Joint 𝑏:
3. 𝑅𝑥 = 0 : +𝑅𝑏𝑥 + 𝑁6 · cos(𝛼) = 0
4. 𝑅𝑧 = 0 : −𝑁3 −𝑁6 · sin(𝛼) = 0

∙ Joint 𝑐:
5. 𝑅𝑥 = 0 : −𝑁1 + 𝑁2 = 0

70 Systems of Linear Equations

6. 𝑅𝑧 = 0 : +𝐹1 + 𝑁5 = 0
∙ Joint 𝑑:

7. 𝑅𝑥 = 0 : −𝑁4 · cos(𝛼)−𝑁6 · cos(𝛼) + 𝑁7 · cos(𝛼) = 0
8. 𝑅𝑧 = 0 : −𝑁4 · sin(𝛼)−𝑁5 + 𝑁6 · sin(𝛼)−𝑁7 · sin(𝛼) = 0

∙ Joint e:
9. 𝑅𝑥 = 0 : −𝑁2 −𝑁7 · cos(𝛼) = 0

10. 𝑅𝑧 = 0 : +𝐹2 + 𝑁7 · sin(𝛼) = 0

The entire system of linear equations of order 10 can be clearly written as a ma-
trix:

A · x = b , (6.15)
where A denotes the matrix of the left-hand sides of the equations, containing the
geometry of the structure:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 +1 0 0 + cos(𝛼) 0 0 0
0 −1 0 0 0 +1 + sin(𝛼) 0 0 0
0 0 +1 0 0 0 0 0 + cos(𝛼) 0
0 0 0 0 0 −1 0 0 − sin(𝛼) 0
0 0 0 −1 +1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 − cos(𝛼) 0 − cos(𝛼) + cos(𝛼)
0 0 0 0 0 0 − sin(𝛼) −1 + sin(𝛼) − sin(𝛼)
0 0 0 0 −1 0 0 0 0 − cos(𝛼)
0 0 0 0 0 0 0 0 0 + sin(𝛼)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (6.16)

x represents the column vector of unknown roots, containing the ten unknown re-
actions and internal forces:{︀

𝑅𝑎𝑥 𝑅𝑎𝑧 𝑅𝑏𝑧 𝑁1 𝑁2 𝑁3 𝑁4 𝑁5 𝑁6 𝑁7
}︀𝑇 (6.17)

and b represents the column vector of the right-hand sides of the equations, contai-
ning the nodal load of the truss:{︀

0 0 0 0 0 −𝐹1 0 0 0 −𝐹2
}︀𝑇

. (6.18)

The trigonometric functions cos(𝛼) and sin(𝛼) contained in the matrix A can be
expressed directly from the truss’ dimensions:

cos(𝛼) = 𝑏

𝑙
, sin(𝛼) = ℎ

𝑙
, (6.19)

where 𝑙 is the length of rods No. 4, 6 and 7:

𝑙 = 𝑙4 = 𝑙6 = 𝑙7 =
√

𝑏2 + ℎ2 . (6.20)

Examples to Practice 71

Given the condition of the solution of the Gaussian method that the elements on
the diagonal of the matrix A must not be equal to 0, the matrix A and the vector
of the right-hand sides b must be adjusted by suitably rearranging the order of the
junction equations, namely:

∙ the 5th joint equation is moved to the 4th row,
∙ the 9th joint equation is moved to the 5th row,
∙ the 4th joint equation is moved to the 6th row,
∙ the 6th joint equation is moved to the 8th row,
∙ the 8th joint equation is moved to the 9th row.

The modified matrix of the left-hand sides A therefore has the resulting form:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 +1 0 0 + cos(𝛼) 0 0 0
0 −1 0 0 0 +1 + sin(𝛼) 0 0 0
0 0 +1 0 0 0 0 0 + cos(𝛼) 0
0 0 0 −1 +1 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 − cos(𝛼)
0 0 0 0 0 −1 0 0 − sin(𝛼) 0
0 0 0 0 0 0 − cos(𝛼) 0 − cos(𝛼) + cos(𝛼)
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 − sin(𝛼) −1 + sin(𝛼) − sin(𝛼)
0 0 0 0 0 0 0 0 0 + sin(𝛼)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (6.21)

and the column vector of the right-hand sides of the equations b:{︀
0 0 0 0 0 0 0 −𝐹1 0 −𝐹2

}︀𝑇
. (6.22)

The column vector of unknown roots x remains unchanged.
The system of linear equations constructed in this way can be solved for specifi-

cally entered input quantities by using the Gaussian elimination method:

The roots of the system are:

x[1] = 29.000 kN
x[2] = 17.000 kN
x[3] = 29.000 kN
x[4] = 24.000 kN
x[5] = 24.000 kN
x[6] = 14.500 kN
x[7] = 5.590 kN
x[8] = -5.000 kN
x[9] = -32.423 kN
x[10] = -26.833 kN

72 Systems of Linear Equations

The norm of the residual vector is:

n =

0

N

+

Example 6.12. Solve the reactions and internal forces for the truss depicted in
Figure 6.2 using the general joint method. The input parameters are 𝑏 = 4 m,
ℎ = 4 m, 𝐹1 = 8 kN and 𝐹2 = 14 kN. Then solve the system of linear equations
using the Gaussian elimination method.

Fig. 6.2 Statics diagram of the truss.

Solution. If the truss in Figure 6.2 is interpreted in the same way as in Example 6.11,
i.e., as a system of material points, from a kinematic point of view, it contains 2 · 𝑠
degrees of freedom, where 𝑠 is the number of material points, or joints. Because
the structure contains seven joints (𝑠 = 7), we obtain 𝑛𝑣 = 2 · 𝑠 = 14 degrees of
freedom, which are removed by three external (𝑣e = 3) and eleven internal (𝑣𝑖 = 11)
connections (number of rods). Since 𝑛𝑣 = 𝑣e + 𝑣𝑖, it is a statically and kinematically
definite structure and can only be solved using equilibrium conditions.

If two equilibrium conditions are specified in each joint, we can obtain a total of
fourteen equilibrium conditions which form a system of linear equations, from which

Examples to Practice 73

we can then determine fourteen unknowns, i.e., three reactions (𝑅𝑎𝑥, 𝑅𝑎𝑧 and 𝑅𝑔𝑧)
and eleven internal forces (𝑁1, 𝑁1, . . . , 𝑁11).

The individual equilibrium conditions are:

∙ Joint 𝑎:
1. 𝑅𝑥 = 0 : −𝑅𝑎𝑥 + 𝑁1 · cos(𝛼) + 𝑁2 = 0
2. 𝑅𝑧 = 0 : −𝑅𝑎𝑧 −𝑁1 · sin(𝛼) = 0

∙ Joint 𝑏:
3. 𝑅𝑥 = 0 : +𝐹1 −𝑁1 · cos(𝛼) + 𝑁3 · cos(𝛼) + 𝑁4 = 0
4. 𝑅𝑧 = 0 : +𝑁1 · sin(𝛼) + 𝑁3 · sin(𝛼) = 0

∙ Joint 𝑐:
5. 𝑅𝑥 = 0 : −𝑁2 −𝑁3 · cos(𝛼) + 𝑁5 · cos(𝛼) + 𝑁6 = 0
6. 𝑅𝑧 = 0 : +𝑁3 · sin(𝛼) + 𝑁5 · sin(𝛼) = 0

∙ Joint 𝑑:
7. 𝑅𝑥 = 0 : −𝑁4 · cos(𝛼)−𝑁5 · cos(𝛼) + 𝑁7 · cos(𝛼) + 𝑁8 = 0
8. 𝑅𝑧 = 0 : +𝑁5 · sin(𝛼) + 𝑁7 · sin(𝛼) = 0

∙ Joint e:
9. 𝑅𝑥 = 0 : −𝑁8 −𝑁9 · cos(𝛼) + 𝑁11 · cos(𝛼) + 𝑁12 = 0

10. 𝑅𝑧 = 0 : +𝑁9 · sin(𝛼) + 𝑁11 · sin(𝛼) = 0
∙ Joint 𝑓 :

11. 𝑅𝑥 = 0 : −𝑁10 −𝑁11 · cos(𝛼) + 𝑁13 · cos(𝛼) = 0
12. 𝑅𝑧 = 0 : +𝑁11 · sin(𝛼) + 𝑁13 · sin(𝛼) = 0

∙ Joint 𝑔:
13. 𝑅𝑥 = 0 : −𝑁12 −𝑁13 · cos(𝛼) = 0
14. 𝑅𝑧 = 0 : −𝑁13 · sin(𝛼)−𝑅𝑔𝑧 = 0

The entire system of linear equations of order 14 can be clearly written as a ma-
trix, as with Example 6.11:

A · x = b , (6.23)

where A denotes the matrix of the left-hand sides of the equations, containing the
geometry data of the structure, x represents the column vector of unknown roots,
containing the fourteen unknown reactions and internal forces (selected order x =
=
{︀

𝑅𝑎𝑥 𝑅𝑎𝑧 𝑁1 𝑁2 . . . 𝑁11 𝑅𝑔𝑧

}︀𝑇), and b is the column vector of the right-
-hand sides of the equations, containing the nodal loads of the truss.

Some rows of matrix A contain a zero, and therefore it is necessary to rearrange
the order of the joint equations:

∙ the 5th joint equation is moved to the 4th row,
∙ the 7th joint equation is moved to the 5th row,

74 Systems of Linear Equations

∙ the 9th joint equation is moved to the 8th row,
∙ the 11th joint equation is moved to the 10th row,
∙ the 13th joint equation is moved to the 12th row.

The list of the resulting values of the roots of the system is as follows:

The roots of the system are:

x[1] = 8.000 kN
x[2] = 2.000 kN
x[3] = -2.236 kN
x[4] = 9.000 kN
x[5] = 2.236 kN
x[6] = -10.000 kN
x[7] = -2.236 kN
x[8] = 11.000 kN
x[9] = 2.236 kN
x[10] = -12.000 kN
x[11] = 13.416 kN
x[12] = 6.000 kN
x[13] = -13.416 kN
x[14] = 12.000 kN

The residual vector is:

r[1] = 0
r[2] = 0
r[3] = 0
r[4] = 0
r[5] = 0
r[6] = 0
r[7] = 0
r[8] = -8.882e-16
r[9] = -6.661e-16
r[10] = 8.882e-16
r[11] = 1.776e-15
r[12] = 0
r[13] = -1.776e-15
r[14] = -1.776e-15

The norm of the residual vector is:

n =

3.3894e-015

Examples to Practice 75

N

Comment 6.13. Because the nodes are labelled appropriately and the system’s
equations are suitably formulated, the matrix of the system A in Example 6.12
takes the form of a a band matrix (for details, see Chapter 6.2.3). In the resulting
system matrix, the non-zero elements are at most two columns to the left and four
columns to the right from the diagonal (the width of the strip is therefore 7). As
an extension to the exercise, try to modify the Gaussian elimination algorithm to
account for the bandwidth and reduce the number of computations.

6.1.3 The Gauss-Jordan Method
The Gauss-Jordan method is a modified Gaussian elimination method. This com-
putational procedure modifies the system matrix A into a diagonal or even identity
matrix. The calculation procedure is performed by Algorithm 13 and is executed by
a Matlab m-function:

function x=gauss_jordan(A,b)
if det(A)==0

error(’The system of equations is singular! Det(A) is equal to 0!’)
return

end
n=length(A);
if n==1

x(1)=b(1)/A(1,1);
return

end
for k=1:n

if A(k,k)==0
error(’There is a zero on the diagonal!’)
return

end
for i=1:n

if ~(i==k)
m=-A(i,k)/A(k,k);
for j=k:n

A(i,j)=A(i,j)+m*A(k,j);
end;
b(i)=b(i)+m*b(k);

end
end

end
for i=1:n

76 Systems of Linear Equations

x(i)=b(i)/A(i,i);
end

Input : 𝑛, A = [𝑎𝑖,𝑗] = [𝑎1,1, . . . , 𝑎𝑛,𝑛], b = {𝑏1, 𝑏2, . . . , 𝑏𝑛}𝑇

Output: x = {𝑥1, 𝑥2, . . . , 𝑥𝑛}𝑇

for 𝑘 ← 1, 2, . . . , 𝑛− 2, 𝑛 do
for 𝑖← 1, 2, . . . , 𝑘 − 1, 𝑘 + 1, . . . , 𝑛 do

𝑚← − 𝑎𝑖,𝑘
𝑎𝑘,𝑘

for 𝑗 ← 1, 2, . . . , 𝑛− 1, 𝑛 do
𝑎𝑖,𝑗 ← 𝑎𝑖,𝑗 + 𝑚 · 𝑎𝑘,𝑗

end
𝑏𝑖 ← 𝑏𝑖 + 𝑚 · 𝑏𝑘

end
end
for 𝑖← 1, 2, . . . , 𝑛− 1, 𝑛 do

𝑥𝑖 ← 𝑏𝑖
𝑎𝑖,𝑖

end
Algorithm 13: Gauss-Jordan method algorithm.

Examples to Practice 77

The Gauss-Jordan method can be used to solve matrix equations, written as
follows:

A · X = B , (6.24)
where X is the matrix of the roots of the system, and B is the matrix of the left-
-hand sides; both have the general dimension [𝑛, 𝑟]. The calculation procedure must
therefore be modified to work with more right-hand sides, for example, as described
by the modified Algorithm 14.

Input : 𝑛, A = [𝑎𝑖,𝑗] = [𝑎1,1, . . . , 𝑎𝑛,𝑛], B = [𝑏𝑖,𝑗] = [𝑏1,1, . . . , 𝑏𝑛,𝑟]
Output: X = [𝑥𝑖,𝑗] = [𝑥1,1, . . . , 𝑥𝑛,𝑟]
for 𝑘 ← 1, 2, . . . , 𝑛− 2, 𝑛 do

for 𝑖← 1, 2, . . . , 𝑘 − 1, 𝑘 + 1, . . . , 𝑛 do
𝑚← − 𝑎𝑖,𝑘

𝑎𝑘,𝑘

for 𝑗 ← 1, 2, . . . , 𝑛− 1, 𝑛 do
𝑎𝑖,𝑗 ← 𝑎𝑖,𝑗 + 𝑚 · 𝑎𝑘,𝑗

end
for 𝑗 ← 1, 2, . . . , 𝑟 − 1, 𝑟 do

𝑏𝑖,𝑗 ← 𝑏𝑖,𝑗 + 𝑚 · 𝑏𝑘,𝑗

end
end

end
for 𝑗 ← 1, 2, . . . , 𝑟 − 1, 𝑟 do

for 𝑖← 1, 2, . . . , 𝑛− 1, 𝑛 do
𝑥𝑖,𝑗 ←

𝑏𝑖,𝑗
𝑎𝑖,𝑖

end
end

Algorithm 14: Gauss-Jordan method algorithm for solving matrix equations.
+

Example 6.14. Calculate the matrix equation using the Gauss-Jordan method:⎡⎣2 1 0
1 1 2
1 1 1

⎤⎦ ·
⎡⎣𝑥1,1 𝑥1,2 𝑥1,3

𝑥2,1 𝑥2,2 𝑥2,3
𝑥3,1 𝑥3,2 𝑥3,3

⎤⎦𝑇

=

⎡⎣1 4 1
2 2 1
3 −1 2

⎤⎦𝑇

. (6.25)

Solution. The solution is the matrix:

[𝑋] =

⎡⎣ 3 −5 3
2 −2 1
−2 7 −3

⎤⎦𝑇

. (6.26)

N

78 Systems of Linear Equations

The solution of a matrix equation can be used, for example, to solve an inverse
matrix, when the matrix of the right-hand sides is formed by an identity diagonal
matrix, or to calculate a truss with multiple load states, such as the example in
Exercise 6.11.

+

Example 6.15. Use the Gauss-Jordan method to calculate the inverse matrix of
the original matrix: ⎡⎣1 2 6

2 5 15
6 15 46

⎤⎦ (6.27)

Solution. The solution is the inverse matrix:

[𝐴]−1 =

⎡⎣ 5 −2 0
−2 10 −3
0 −3 1

⎤⎦ , (6.28)

which can be verified by:
A = B = A*B =

1 2 6 5 -2 0 1 0 0
2 5 15 -2 10 -3 0 1 0
6 15 46 0 -3 1 0 0 1

N

Examples to Practice!
1. Determine the reactions and internal forces of the truss in the Example in 6.11, also

for the load case, which consists of a pair of vertical nodal loads 𝐹 = 10 kN in joints
𝑑 and e.

6.1.4 The LU Decomposition
The LU decomposition method is based on the principle that every regular matrix
A can be decomposed into the product of two triangular matrices L and U such
that:

A = L · U . (6.29)
The system of linear equations is then solved in two calculation steps, solving

the triangular system of linear equations first:

L · y = b , (6.30)

and then similarly
U · x = y . (6.31)

Examples to Practice 79

Input : 𝑛, A = [𝑎𝑖,𝑗] = [𝑎1,1, . . . , 𝑎𝑛,𝑛], b = {𝑏1, 𝑏2, . . . , 𝑏𝑛}𝑇

Output: x = {𝑥1, 𝑥2, . . . , 𝑥𝑛}𝑇

for 𝑖← 1, 2, . . . , 𝑛− 1, 𝑛 do
for 𝑗 ← 1, 2, . . . , 𝑛− 1, 𝑛 do

𝑢𝑖,𝑗 ← 0
end

end
for 𝑖← 1, 2, . . . , 𝑛− 1, 𝑛 do

for 𝑗 ← 1, 2, . . . , 𝑛− 1, 𝑛 do
if 𝑖 = 𝑗 then

𝑙𝑖,𝑗 ← 1
else

𝑙𝑖,𝑗 ← 0
end

end
end
for 𝑗 ← 1, 2, . . . , 𝑛− 1, 𝑛 do

for 𝑖← 1, 2, . . . , 𝑗 − 1, 𝑗 do

𝑢𝑖,𝑗 ← 𝑎𝑖,𝑗 −
𝑖−1∑︀
𝑘=1

𝑙𝑖,𝑘 · 𝑢𝑘,𝑗

end
for 𝑖← 𝑗 + 1, 𝑗 + 2, . . . , 𝑛− 1, 𝑛 do

𝑙𝑖,𝑗 ←
𝑎𝑖,𝑗 −

𝑗−1∑︁
𝑘=1

𝑙𝑖,𝑘 · 𝑢𝑘,𝑗

𝑢𝑗,𝑗

end
end
for 𝑖← 1, 2, . . . , 𝑛− 1, 𝑛 do

𝑦𝑖 ← 𝑏𝑖 −
𝑖−1∑︀
𝑗=1

𝑙𝑖,𝑗 · 𝑦𝑗

end
for 𝑖← 𝑛, 𝑛− 1, . . . , 2, 1 do

𝑥𝑖 ←
𝑦𝑖 −

𝑛∑︁
𝑗=𝑖+1

𝑢𝑖,𝑗 · 𝑥𝑗

𝑢𝑖,𝑖

end
Algorithm 15: Algorithm for the LU decomposition method.

In the lower triangular matrix L, the value 1 is selected on the diagonal. The

80 Systems of Linear Equations

matrix U is upper triangular. The advantage of the LU decomposition method is in
its use with problems containing multiple systems of linear equations over the same
matrix A; this matrix is decomposed once only, and then only triangular systems
are iteratively solved.

The calculation procedure for solving a system of linear equations using LU
decomposition is expressed in Algorithm 15 and can be implemented via a Matlab
m-function, e.g., in the following way:

function x=lu_decomposition(A,b)
if det(A)==0

error(’The system of equations is singular! Det(A) is equal to 0!’)
return

end
n=length(A);
if n==1

x(1)=b(1)/A(1,1);
return

end
L=eye(n,n);
U=zeros(n,n);
for j=1:n

for i=1:j
s=0;

if i>1
for k=1:i-1

s=s+L(i,k)*U(k,j);
end

end
U(i,j)=A(i,j)-s;

end
if U(j,j)==0

error(’There is a zero on the diagonal!’)
return

end
for i=j+1:n

s=0;
if j>1

for k=1:j-1
s=s+L(i,k)*U(k,j);

end
end
L(i,j)=(A(i,j)-s)/U(j,j);

end

Examples to Practice 81

end
for i=1:n

s=0;
if i>1

for j=1:i-1
s=s+L(i,j)*y(j);

end
end
y(i)=(b(i)-s);

end
for i=n:-1:1

s=0;
if i<n

for j=i+1:n
s=s+U(i,j)*x(j);

end
end
if U(i,i)==0

error(’There is a zero on the diagonal!’)
return

end
x(i)=(y(i)-s)/U(i,i);

end

+

Example 6.16. Use the LU decomposition method to calculate the roots of the
system of linear equations given in Exercise 6.7.

Solution. A full listing of interim and final results can represent the solution:

Original matrix A Original vector b
---------------------------- ----------------------------

2.000 -1.000 3.000 -1.000 7.000
1.000 -1.000 4.000 -2.000 5.000
3.000 2.000 1.000 4.000 31.000
4.000 -3.000 3.000 -3.000 -5.000

Modified matrix L Modified matrix U
---------------------------- ----------------------------

1.000 0.000 0.000 0.000 2.000 -1.000 3.000 -1.000
0.500 1.000 0.000 0.000 0.000 -0.500 2.500 -1.500
1.500 -7.000 1.000 0.000 0.000 0.000 14.000 -5.000
2.000 2.000 -0.571 1.000 0.000 0.000 0.000 -0.857

82 Systems of Linear Equations

Matrix L*U

2.000 -1.000 3.000 -1.000
1.000 -1.000 4.000 -2.000
3.000 2.000 1.000 4.000
4.000 -3.000 3.000 -3.000

The roots of the system are:

x[1] = 1.000e+000
x[2] = 2.000e+000
x[3] = 4.000e+000
x[4] = 5.000e+000

The residual vector is:

r[1] = 0
r[2] = 0
r[3] = -7.105e-15
r[4] = -1.776e-15

The norm of the residual vector is:

norm = 7.324e-15

N

6.1.5 The Cholesky Method (Decomposition)
The Cholesky method (also called the Cholesky decomposition) is a modification of
LU decomposition for solving systems of linear equations with a symmetric, regular,
positive definite square system matrix A, which is modified to the product of the
lower and upper triangular matrices, where one triangular matrix is the transpose
of the matrix of the other:

A = U ·U𝑇 . (6.32)
The lower triangular matrix U from this decomposition is called the Cholesky

triangle of the matrix A.

Comment 6.17. A positive definite matrix is a symmetric square matrix whose
eigenvalues are greater than zero. The following must be true:

x · A · x𝑇 > 0 . (6.33)

Examples to Practice 83

The calculation procedure for solving a system of linear equations using the Cho-
lesky method contains roughly half the number of calculation operations compared
to the LU decomposition method and is schematically described by Algorithm 16.

Vstup : 𝑛, A = [𝑎𝑖,𝑗] = [𝑎1,1, . . . , 𝑎𝑛,𝑛], b = {𝑏1, 𝑏2, . . . , 𝑏𝑛}𝑇

Výstup: x = {𝑥1, 𝑥2, . . . , 𝑥𝑛}𝑇

for 𝑖← 1, 2, . . . , 𝑛− 1, 𝑛 do
for 𝑗 ← 1, 2, . . . , 𝑛− 1, 𝑛 do

if 𝑖 = 𝑗 then
𝑢𝑖,𝑗 ← 1

else
𝑢𝑖,𝑗 ← 0

end
end

end
for 𝑗 ← 1, 2, . . . , 𝑛− 1, 𝑛 do

for 𝑖← 𝑗, 𝑗 + 1, . . . , 𝑛− 1, 𝑛 do

𝑢𝑗,𝑗 ←

√︃
𝑎𝑗,𝑗 −

𝑗−1∑︀
𝑘=1

𝑢2
𝑗,𝑘

𝑢𝑖,𝑗 ←
𝑎𝑖,𝑗 −

𝑗−1∑︁
𝑘=1

𝑢𝑖,𝑘 · 𝑢𝑗,𝑘

𝑢𝑗,𝑗

end
end
for 𝑖← 1, 2, . . . , 𝑛− 1, 𝑛 do

𝑦𝑖 ←
𝑏𝑖 −

𝑖−1∑︁
𝑗=1

𝑢𝑖,𝑗 · 𝑦𝑗

𝑢𝑖,𝑖

end
for 𝑖← 𝑛, 𝑛− 1, . . . , 2, 1 do

𝑥𝑖 ←
𝑦𝑖 −

𝑖−1∑︁
𝑗=1

𝑢𝑗,𝑖 · 𝑥𝑗

𝑢𝑖,𝑖

end
Algorithm 16: The algorithm for the Cholesky method.

84 Systems of Linear Equations
+

Example 6.18. Use Cholesky decomposition on the matrix:

[𝐴] =

⎡⎢⎢⎢⎢⎣
1 −1 −1 −1 −1
−1 2 0 0 0
−1 0 3 1 1
−1 0 1 4 2
−1 0 1 2 5

⎤⎥⎥⎥⎥⎦ . (6.34)

Solution. The solution is:

[𝑈] =

⎡⎢⎢⎢⎢⎣
1 0 0 0 0
−1 1 0 0 0
−1 −1 1 0 0
−1 −1 −1 1 0
−1 −1 −1 −1 1

⎤⎥⎥⎥⎥⎦ , (6.35)

which can be verified by:

A = U =
1 -1 -1 -1 -1 1 0 0 0 0

-1 2 0 0 0 -1 1 0 0 0
-1 0 3 1 1 -1 -1 1 0 0
-1 0 1 4 2 -1 -1 -1 1 0
-1 0 1 2 5 -1 -1 -1 -1 1

U*U’ =
1 -1 -1 -1 -1

-1 2 0 0 0
-1 0 3 1 1
-1 0 1 4 2
-1 0 1 2 5

N

The Cholesky method can be executed in an m-function as follows:

function x=cholesky_met(A,b)
n=length(A);
U=eye(n,n);
for j=1:n

for i=j:n
s=0;
if i>1

for k=1:j-1
s=s+U(j,k)^2;

end

6.2 Iterative Methods of Solving Systems of Linear Equations 85

end
U(j,j)=sqrt(A(j,j)-s);
s=0;
if i>1

for k=1:j-1
s=s+U(i,k)*U(j,k);

end
end
U(i,j)=(A(i,j)-s)/U(j,j);

end
end
for i=1:n

s=0;
if i>1

for j=1:i-1
s=s+U(i,j)*y(j);

end
end
y(i)=(b(i)-s)/U(i,i);

end
for i=n:-1:1

s=0;
if i<n

for j=i+1:n
s=s+U(j,i)*x(j);

end
end
x(i)=(y(i)-s)/U(i,i);

end
+

Example 6.19. Calculate the roots of the system of equations from Example 6.9
using the Cholesky method.

6.2 Iterative Methods of Solving Systems of Li-
near Equations

Unlike direct methods of calculation, solving systems of linear equations with ite-
rative methods consists in gradually approaching the exact result. There are many
ways to create such a sequence of approximations, whose limit is the vector x of
precisely determined roots of the system of linear equations.

86 Systems of Linear Equations

A system of linear equations with a real-valued system matrix can be expressed,
for example, by the relation (6.6). It is assumed that only one exact solution exists:

x = A−1 · b . (6.36)
Equation (6.6) can be adjusted to a form suitable for iteration:

x = H · x + g , (6.37)

where H represents the iteration matrix. The sequence of iterations x(𝑘) = {𝑥𝑘
1, 𝑥𝑘

2 až
𝑥𝑘

𝑛}𝑇 based on the relation (6.37) is constructed according to the recurrence formula:

x(𝑘+1) = H · x(𝑘) + g , (6.38)
for iteration steps 𝑘 = 0, 1, 2,

In addition to the iterative formula, it is necessary to define the choice of zero
approximation x(0) = {𝑥0

1, 𝑥0
2, . . . , 𝑥0

𝑛}𝑇 and a method to terminate the iteration
cycle by specifying:
(a) the exact number of iteration cycles to be performed, for example using a for

loop,
(b) a terminating condition with a specified accuracy bound 𝜀 > 0, for example

using the vector norm:
‖x(𝑘) − x(𝑘−1)‖ < 𝜀 . (6.39)

Both the iteration matrix H and the vector g may change at each iteration step,
for example at step 𝑘. This refers to a non-stationary iterative process and differs
from the stationary process where the matrix H and vector g are independent of
the iteration cycle 𝑘.

An iterative calculation of a system of linear equations converges to a solution
if the system matrix A is diagonally dominant (the values of the elements on the
diagonal prevail); it is expressed as:

|𝑎𝑖,𝑖| >
𝑖−1∑︁
𝑗=1

|𝑎𝑖,𝑗|+
𝑛∑︁

𝑗=𝑖+1

|𝑎𝑖,𝑗| , 𝑖 = 1, 2, . . . , 𝑛 . (6.40)

+

Example 6.20. Construct a function to determine whether the matrix A is diago-
nally dominant. Try to use (6.40) on the matrix:

[𝐴] =

⎡⎢⎢⎣
4 −1 −1 0
−1 4 0 −1
−1 0 4 −1
0 −1 −1 4

⎤⎥⎥⎦ . (6.41)

6.2 Iterative Methods of Solving Systems of Linear Equations 87

6.2.1 The Jacobi Iteration
In a general system of linear equations A · x = b, all equations are expressed as:

𝑎𝑖,1 · 𝑥1 + 𝑎𝑖,2 · 𝑥2 + · · · + 𝑎𝑖,𝑛 · 𝑥𝑛 = 𝑏𝑖 , 𝑖 = 1, 2, . . . , 𝑛 . (6.42)

If 𝑎𝑖,𝑖 ̸= 0, each equation can be adjusted to:

𝑥𝑖 =

𝑏𝑖 −
𝑖−1∑︁
𝑗=1

𝑎𝑖,𝑗 · 𝑥𝑗 −
𝑛∑︁

𝑗=𝑖+1

𝑎𝑖,𝑗 · 𝑥𝑗

𝑎𝑖,𝑖

, 𝑖 = 1, 2, . . . , 𝑛 , (6.43)

which means that the 𝑖-th unknown root of the system can be determined from the
𝑖-th equation.

Jacobi’s iterative recurrence formula takes the form:

𝑥
(𝑘)
𝑖 =

𝑏𝑖 −
𝑖−1∑︁
𝑗=1

𝑎𝑖,𝑗 · 𝑥(𝑘−1)
𝑗 −

𝑛∑︁
𝑗=𝑖+1

𝑎𝑖,𝑗 · 𝑥(𝑘−1)
𝑗

𝑎𝑖,𝑖

, 𝑖 = 1, 2, . . . , 𝑛 , (6.44)

where 𝑘 is the iteration cycle number (𝑘 = 1, 2, . . . , 𝑚).

Input : 𝑚, 𝑛, A = [𝑎𝑖,𝑗] = [𝑎1,1, . . . , 𝑎𝑛,𝑛], b = {𝑏1, 𝑏2, . . . , 𝑏𝑛}𝑇 ,
x(0) = {𝑥(0)

1 , 𝑥
(0)
2 , . . . , 𝑥

(0)
𝑛 }𝑇

Output: x(𝑚) = {𝑥(𝑚)
1 , 𝑥

(𝑚)
2 , . . . , 𝑥

(𝑚)
𝑛 }𝑇

for 𝑘 ← 1, 2, . . . , 𝑚− 1, 𝑚 do
for 𝑖← 1, 2, . . . , 𝑛− 1, 𝑛 do

𝑥
(𝑘)
𝑖 =

𝑏𝑖 −
𝑖−1∑︁
𝑗=1

𝑎𝑖,𝑗 · 𝑥(𝑘−1)
𝑗 −

𝑛∑︁
𝑗=𝑖+1

𝑎𝑖,𝑗 · 𝑥(𝑘−1)
𝑗

𝑎𝑖,𝑖

end
end

Algorithm 17: The Jacobi iteration algorithm.

The Jacobi iteration method for 𝑚 iteration cycles is expressed by Algorithm 17.
If the terminating condition 6.39 is used to terminate the iterative calculation, the
algorithm is modified slightly (see Algorithm 18).

88 Systems of Linear Equations

Input : 𝑛, 𝜀, A = [𝑎𝑖,𝑗] = [𝑎1,1, . . . , 𝑎𝑛,𝑛], b = {𝑏1, 𝑏2, . . . , 𝑏𝑛}𝑇 ,
x(0) = {𝑥(0)

1 , 𝑥
(0)
2 , . . . , 𝑥

(0)
𝑛 }𝑇

Output: x(𝑚) = {𝑥(𝑚)
1 , 𝑥

(𝑚)
2 , . . . , 𝑥

(𝑚)
𝑛 }𝑇

𝑘 ← 1
for 𝑖← 1, 2, . . . , 𝑛− 1, 𝑛 do

𝑥
(1)
𝑖 =

𝑏𝑖 −
𝑖−1∑︁
𝑗=1

𝑎𝑖,𝑗 · 𝑥(0)
𝑗 −

𝑛∑︁
𝑗=𝑖+1

𝑎𝑖,𝑗 · 𝑥(0)
𝑗

𝑎𝑖,𝑖

end
while ‖x(𝑘) − x(𝑘−1)‖ = 𝜀 do

𝑘 ← 𝑘 + 1
for 𝑖← 1, 2, . . . , 𝑛− 1, 𝑛 do

𝑥
(𝑘)
𝑖 =

𝑏𝑖 −
𝑖−1∑︁
𝑗=1

𝑎𝑖,𝑗 · 𝑥(𝑘−1)
𝑗 −

𝑛∑︁
𝑗=𝑖+1

𝑎𝑖,𝑗 · 𝑥(𝑘−1)
𝑗

𝑎𝑖,𝑖

end
end

Algorithm 18: The Jacobi iteration algorithm with a termination condition.

The Jacobi iteration algorithm can be written in Matlab in different ways. The
first m-function contains the calculation procedure for solving a system of linear
equations with Jacobi’s method and a finite number of cycles, i.e., using a for loop.
To write this algorithm, we use Matlab’s matrix operation capabilities:

function x=jacobi1(A,b,x,m)
n=length(A);
d=diag(A);
r=A-diag(d);
for k=1:m

x=(b-r*x)./d;
end

The second m-function is written in a more generally. The calculation also checks
whether the system matrix A is regular and diagonally dominant:

function x=jacobi2(A,b,x,m)
if det(A)==0

error(’The system of equations is singular! Det(A) is equal to 0!’)
return

end
n=length(A);

6.2 Iterative Methods of Solving Systems of Linear Equations 89

for i=1:n
if A(i,i)==0

error(’There is a zero on the diagonal!’)
return

end
s=0;
for j=1:n

if ~(i==j)
s=s+abs(A(i,j));

end
end
if abs(A(i,i))<s

disp(’The matrix A is not diagonally dominant!’)
return

end
end
for k=1:m

y=x;
for i=1:n

s1=0;
if i>1

for j=1:i-1
s1=s1+A(i,j)*y(j);

end
end
s2=0;
if i<n

for j=i+1:n
s2=s2+A(i,j)*y(j);

end
end
x(i)=(b(i)-s1-s2)/A(i,i);

end
end

The third m-function solves the system of linear equations with Jacobi iteration
and a while loop, which is terminated by the termination condition (6.39):

function x=jacobi3(A,b,x,eps)
y=x;
it_num=1;
for i=1:n

s1=0;

90 Systems of Linear Equations

if i>1
for j=1:i-1

s1=s1+A(i,j)*y(j);
end

end
s2=0;
if i<n

for j=i+1:n
s2=s2+A(i,j)*y(j);

end
end
if A(i,i)==0

error(’There is a zero on the diagonal!’)
return

end
x(i)=(b(i)-s1-s2)/A(i,i);

end
while ~(norm(y-x)<eps) & it_num<1000

y=x;
it_num=it_num+1;
for i=1:n

s1=0;
if i>1

for j=1:i-1
s1=s1+A(i,j)*y(j);

end
end
s2=0;
if i<n

for j=i+1:n
s2=s2+A(i,j)*y(j);

end
end
if A(i,i)==0

error(’There is a zero on the diagonal!’)
return

end
x(i)=(b(i)-s1-s2)/A(i,i);

end
end

All three writing methods assume the zero approximation of the solved roots of
the system x(0) = {𝑥(0)

1 , 𝑥
(0)
2 , . . . , 𝑥

(0)
𝑛 }𝑇 .

6.2 Iterative Methods of Solving Systems of Linear Equations 91

+

Example 6.21. Find the solution for the roots of a system of linear equations using
Jacobi iterations: ⎡⎢⎢⎣

4 −1 −1 0
−1 4 0 −1
−1 0 4 −1
0 −1 −1 4

⎤⎥⎥⎦ ·
⎧⎪⎪⎨⎪⎪⎩

𝑥1
𝑥2
𝑥3
𝑥4

⎫⎪⎪⎬⎪⎪⎭ =

⎧⎪⎪⎨⎪⎪⎩
1
2
0
1

⎫⎪⎪⎬⎪⎪⎭ . (6.45)

First perform the calculations for the finite number of cycles 𝑚 = 5, 10 and 20
and observe the solution’s increasing accuracy. Finally, perform the calculation using
the m-function with the termination condition (6.39) and an accuracy parameter of
𝜀 = 1 · 10−6.

Solution. The correct solution of the roots of the system is equal to the vector:

{𝑥} =
{︀

0.5 0.75 0.25 0.5
}︀𝑇

. (6.46)

The course of the iterative calculation for the input x(0) = {1, 1, 1, 1}𝑇 is shown
below:

Jacobi iteration
--

it# x[1] x[2] x[3] x[4]
--

0 1.000000 1.000000 1.000000 1.000000
1 0.750000 1.000000 0.500000 0.750000
2 0.625000 0.875000 0.375000 0.625000
3 0.562500 0.812500 0.312500 0.562500
4 0.531250 0.781250 0.281250 0.531250
5 0.515625 0.765625 0.265625 0.515625
6 0.507813 0.757813 0.257813 0.507813
7 0.503906 0.753906 0.253906 0.503906
8 0.501953 0.751953 0.251953 0.501953
9 0.500977 0.750977 0.250977 0.500977

10 0.500488 0.750488 0.250488 0.500488
11 0.500244 0.750244 0.250244 0.500244
12 0.500122 0.750122 0.250122 0.500122
13 0.500061 0.750061 0.250061 0.500061
14 0.500031 0.750031 0.250031 0.500031
15 0.500015 0.750015 0.250015 0.500015
16 0.500008 0.750008 0.250008 0.500008
17 0.500004 0.750004 0.250004 0.500004
18 0.500002 0.750002 0.250002 0.500002
19 0.500001 0.750001 0.250001 0.500001
20 0.500000 0.750000 0.250000 0.500000

92 Systems of Linear Equations

To obtain results with an accuracy parameter of 𝜀 = 1 · 10−6, the Jacobi calcu-
lation executes 20 iteration cycles.

N

6.2.2 Gauss-Seidel Iteration Method
The general system of linear equations A · x = b is again expressed by Eq. (6.42),
whereas if the condition 𝑎𝑖,𝑖 ̸= 0 is met, each equation can be defined according to:

𝑥𝑖 =

𝑏𝑖 −
𝑖−1∑︁
𝑗=1

𝑎𝑖,𝑗 · 𝑥𝑗 −
𝑛∑︁

𝑗=𝑖+1

𝑎𝑖,𝑗 · 𝑥𝑗

𝑎𝑖,𝑖

, 𝑖 = 1, 2, . . . , 𝑛 . (6.47)

The Gauss-Seidel iterative recurrence formula is derived from the equation:

𝑥
(𝑘)
𝑖 =

𝑏𝑖 −
𝑖−1∑︁
𝑗=1

𝑎𝑖,𝑗 · 𝑥(𝑘)
𝑗 −

𝑛∑︁
𝑗=𝑖+1

𝑎𝑖,𝑗 · 𝑥(𝑘−1)
𝑗

𝑎𝑖,𝑖

, 𝑖 = 1, 2, . . . , 𝑛 , (6.48)

which differs from Jacobi’s iteration formula in that the calculated roots of the
system 𝑥

(𝑘)
𝑗 are used for the next calculation immediately, not in the next iteration

cycle. The entire calculation then converges more quickly to the exact solution.
The calculation using the Gauss-Seidel iteration method for a finite number of

𝑚 iteration cycles is expressed by Algorithm 19. Of course, the procedure may also
apply a terminating condition (6.39).

Input : 𝑚, 𝑛, A = [𝑎𝑖,𝑗] = [𝑎1,1, . . . , 𝑎𝑛,𝑛], b = {𝑏1, 𝑏2, . . . , 𝑏𝑛}𝑇 ,
x(0) = {𝑥(0)

1 , 𝑥
(0)
2 , . . . , 𝑥

(0)
𝑛 }𝑇

Output: x(𝑚) = {𝑥(𝑚)
1 , 𝑥

(𝑚)
2 , . . . , 𝑥

(𝑚)
𝑛 }𝑇

for 𝑘 ← 1, 2, . . . , 𝑚− 1, 𝑚 do
for 𝑖← 1, 2, . . . , 𝑛− 1, 𝑛 do

𝑥
(𝑘)
𝑖 =

𝑏𝑖 −
𝑖−1∑︁
𝑗=1

𝑎𝑖,𝑗 · 𝑥(𝑘)
𝑗 −

𝑛∑︁
𝑗=𝑖+1

𝑎𝑖,𝑗 · 𝑥(𝑘−1)
𝑗

𝑎𝑖,𝑖

end
end

Algorithm 19: Gauss-Seidel iteration algorithm.

6.2 Iterative Methods of Solving Systems of Linear Equations 93

+

Example 6.22. Solve the system of linear equations given in Exercise 6.21 using
the Gauss-Seidel iteration method. For the calculation, use the accuracy parameter
𝜀 = 1 · 10−6 and the zero approximation of the roots of the solved system x(0) =
= {1, 1, 1, 1}𝑇 .

Solution. The course of the iterative calculation is shown below:

Gauss-Seidel iteration
--

#it x[1] x[2] x[3] x[4]
--

0 1.000000 1.000000 1.000000 1.000000
1 0.750000 0.937500 0.437500 0.593750
2 0.593750 0.796875 0.296875 0.523438
3 0.523438 0.761719 0.261719 0.505859
4 0.505859 0.752930 0.252930 0.501465
5 0.501465 0.750732 0.250732 0.500366
6 0.500366 0.750183 0.250183 0.500092
7 0.500092 0.750046 0.250046 0.500023
8 0.500023 0.750011 0.250011 0.500006
9 0.500006 0.750003 0.250003 0.500001

10 0.500001 0.750001 0.250001 0.500000
11 0.500000 0.750000 0.250000 0.500000
12 0.500000 0.750000 0.250000 0.500000

To obtain results with an accuracy of 𝜀 = 1 · 10−6, the Gauss-Seidel calculation
executes 12 iteration cycles.

N

6.2.3 Sparse and Band Matrix
When solving systems of equations in numerical mathematics, sparse and band
system matrices are frequently encountered.

A sparse matrix is a matrix that contains a significant number of zero elements.
A band matrix, however, has non-zero elements only in close proximity to the di-
agonal. The band width of the matrix then represents the maximum number of
columns near the diagonal of the matrix with non-zero elements. It is also possible
to distinguish half-band widths 𝑝, 𝑞, which refer to the maximum number of columns
with non-zero elements to the left and right of the diagonal.

94 Systems of Linear Equations

+

Example 6.23. Find the solution for the roots of a system of linear equations with
the system band matrix:⎡⎢⎢⎢⎢⎢⎣

3 −1
−1 3 −1

. . .

−1 3 −1
−1 3

⎤⎥⎥⎥⎥⎥⎦ ·
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑥1
𝑥2
...

𝑥𝑛−1
𝑥𝑛

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2
1
...
1
2

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(6.49)

for 𝑛 = 100 using the Gauss-Seidel method adapted to solving band matrices. Con-
sider the accuracy parameter 𝜀 = 1 ·10−6 and zero approximation of the roots of the
solved system x(0) = {0, 0, . . . , 0, 0}𝑇 .

Solution. The matrix of the system A and the vector of the right-hand sides is
generated in Matlab as follows:

clc;
clear;
n=1000;
E=ones(n,1);
A=spdiags([-E 3*E -E],-1:1,n,n);
b=ones(n,1);
b(1)=2;
b(n)=2;
x=zeros(n,1);

The calculation can then be performed with the m-function, which executes the
calculation procedure of the Gauss-Seidel iteration method adapted for solving band
matrices. In this case, the half-band widths 𝑝, 𝑞 are equal to 1.

function x=gauss_seidel_pas(A,b,x,p,q,eps)
n=length(A);
it_max=1000;
y=x;
it_num=1;
for i=1:n

s1=0;
if i>1

from=i-p;
if from<1

from=1;
end
for j=from:i-1

s1=s1+A(i,j)*x(j);

6.2 Iterative Methods of Solving Systems of Linear Equations 95

end
end
s2=0;
if i<n

to=i+q;
if to>n

to=n;
end
for j=i+1:to

s2=s2+A(i,j)*y(j);
end

end
if A(i,i)==0

error(’There is a zero on the diagonal!’)
return

end
x(i)=(b(i)-s1-s2)/A(i,i);

end
while ~(norm(y-x)<eps) & it_num<it_max

y=x;
it_num=it_num+1;
for i=1:n

s1=0;
if i>1

from=i-p;
if from<1

from=1;
end
for j=from:i-1

s1=s1+A(i,j)*x(j);
end

end
s2=0;
if i<n

to=i+q;
if to>n

to=n;
end
for j=i+1:to

s2=s2+A(i,j)*y(j);
end

end
if A(i,i)==0

96 Systems of Linear Equations

error(’There is a zero on the diagonal!’)
return

end
x(i)=(b(i)-s1-s2)/A(i,i);

end
end
if it_num==it_max

disp([’The calculation was not terminated ’,...
’by the termination condition!’])

end

The calculation utility also provides a terminating condition where the maximum
number of iteration cycles does not exceed 1000. If this condition is fulfilled and the
calculation is terminated, it means that the iterative calculation is not converging
quickly enough or is diverging. N

+

Example 6.24. Calculate the system of linear equations with the system band
matrix given in Exercise 6.23 using the Gauss-Seidel iteration method for 𝑛 = 1000.
Consider the accuracy parameter 𝜀 = 1 · 10−6 and the zero approximation of the
roots of the solved system x(0) = {0, 0, . . . , 0, 0}𝑇 .

+

Example 6.25. Find the solution for the roots of a system of linear equations with
the system band matrix:⎡⎢⎢⎢⎢⎢⎣

2 1
1 2 1

. . .

1 2 1
1 2

⎤⎥⎥⎥⎥⎥⎦ ·
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑥1
𝑥2
...

𝑥𝑛−1
𝑥𝑛

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
0
...
0
1

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(6.50)

for 𝑛 = 100 using the Gauss-Seidel method, adapted for solving band matrices.
Consider the accuracy parameter 𝜀 = 1 · 10−6 and the zero approximation of the
roots of the solved system x(0) = {0, 0, . . . , 0, 0}𝑇 .

Solution. The correct solution of the roots of the system is equal to the vector:

{𝑥} =
{︀

1 −1 1 −1 · · · 1 −1
}︀𝑇

. (6.51)

N

+

Example 6.26. Calculate the system of linear equations with the system band
matrix given in Exercise 6.25 using the Gauss-Seidel iteration method for 𝑛 = 1000.
Consider the accuracy parameter 𝜀 = 1 · 10−6 and the zero approximation of the
roots of the solved system x(0) = {0, 0, . . . , 0, 0}𝑇 .

6.2 Iterative Methods of Solving Systems of Linear Equations 97

6.2.4 The Conjugate Gradient Method
The conjugate gradient method is a calculation procedure well suited to solving
systems of linear equations for which the system matrix A is square, symmetric and
positive definite.

The combined gradients method consists in selecting an appropriate sequence of
vectors d(𝑘) that determine the direction from x(𝑘) to the next approximation x(𝑘+1).
The vectors d(𝑘) are gradually constructed from the sequence of residual vectors r(𝑘)

so that (d(𝑘), A ·d(𝑘−1)) = 0 is true for the scalar product (d(𝑘), A ·d(𝑘−1)). The vector
sequence d(𝑘) is then A-orthogonal.

The calculation procedure is executed by Algorithm 20, in which the initial
approximation x(0) = 0 and the residual vector r(0) = b are first created. r(0) is
selected as the first direction of d(0). The value 𝛼(0) is determined for which the
function (quadratic form) 𝐹 (x(0) + 𝛼 · r(0)) = 𝐹 (x) = 1

2 · (A · x, x)− (b, x) reaches its
minimum, so that:

𝛼(0) = (d(0), r(0))
(d(0), A · d(0))

= (r(0))𝑇 · r(0)

(d(0))𝑇 · A · d(0) . (6.52)

Input : 𝑚, 𝑛, 𝜀, A = [𝑎𝑖,𝑗] = [𝑎1,1, . . . , 𝑎𝑛,𝑛], b = {𝑏1, 𝑏2, . . . , 𝑏𝑛}𝑇

Output: x = {𝑥1, 𝑥2, . . . , 𝑥𝑛}𝑇

x(0) ← 0
d(0) ← r(0) ← b
for 𝑘 ← 1, 2, . . . , 𝑚− 1, 𝑚 do

if ‖r(𝑘−1)‖ < 𝜀 then
stop

else

𝛼(𝑘−1) ← (r(𝑘−1))𝑇 · r(𝑘−1)

(d(𝑘−1))𝑇 · A · d(𝑘−1)

x(𝑘) ← x(𝑘−1) + 𝛼(𝑘−1) · d(𝑘−1)

r(𝑘) ← r(𝑘−1) − 𝛼(𝑘−1) · A · d(𝑘−1)

𝛽(𝑘−1) ← (r(𝑘))𝑇 · r(𝑘)

(r(𝑘−1))𝑇 · r(𝑘−1)

d(𝑘) ← r(𝑘) + 𝛽(𝑘−1) · d(𝑘−1)

end
end

Algorithm 20: The conjugate gradient algorithm.

Now, the procedure corrects the approximation of the solution of the system
x(1) = x(0) + 𝛼(0) · d(0), calculates a new residual vector r(1) = r(0) − 𝛼(0) · A · d(0),
and determines a new direction d(1) in the form d(1) = r(1) + 𝛽(0) · d(0) so that

98 Systems of Linear Equations

(d(1), A · d(0)) = 0. The value of 𝛽(0) is determined from the equation:

𝛽(0) = − (d(0), A · r(1))
(d(0), A · d(0))

= (r(1))𝑇 · r(1)

(r(0))𝑇 · r(0) . (6.53)

Next, the procedure determines the value of 𝛼(1) so that the function 𝐹 (x(1) +
+ 𝛼 · r(1)) reaches its minimum. The entire calculation is repeated until the termi-
nation condition is satisfied.

The procedure for solving a system of equations using the conjugate gradient
method is executed in Matlab as follows:

function x=con_grad(A,b,eps)
n=length(A);
it_max=1000;
x=zeros(n,1);
d=b;
r=b;
for k=1:it_max

if norm(r)<eps
return

end
alpha=r’*r/(d’*A*r);
x=x+alpha*d;
rs=r;
r=r-alpha*A*d;
beta=r’*r/(rs’*rs);
d=r+beta*d;
if k==it_max

disp([’The calculation was not terminated ’,...
’by the termination condition!’])

end
end

The values of 𝛼(𝑘−1) and 𝛽(𝑘−1) can also be calculated using an m-function with
Matlab’s dot command for the scalar product of two vectors:

alfa=dot(d,r)/dot(d,A*d);

and

beta=-dot(d,A*r)/dot(d,A*d);

+

Example 6.27. Calculate the system of linear equations in the system band matrix
given in Exercise 6.23 using the conjugate gradient method for 𝑛 = 10000 and
accuracy parameters 𝜀 = 1 · 10−6 and 𝜀 = 1 · 10−12.

6.2 Iterative Methods of Solving Systems of Linear Equations 99

+

Example 6.28. Calculate the system of linear equations in the system band ma-
trix given in Exercise 6.25 using the conjugate gradient method for 𝑛 = 1000 and
accuracy parameters 𝜀 = 1 · 10−6 and 𝜀 = 1 · 10−12.

+

Example 6.29. Find the solution for the roots of the system of linear equations
with the system sparse matrix:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −1 0.5
−1 3 −1 0.5

−1 3 −1 0.5
.

.

−1 3 −1
−1 3 −1

. .
. . . .

0.5 −1 3 −1
0.5 −1 3 −1

0.5 −1 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
·

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑥1
𝑥2

...

...

𝑥𝑛−1
𝑥𝑛

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2.5
1.5
...

1.5
1
1

1.5
...

1.5
2.5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.54)

for 𝑛 = 10000 using the conjugate gradient method with the required accuracy
parameter 1 · 10−6.
Solution. The matrix of the system A and the vector of the right-hand sides can be
generated with Matlab commands:

clc;
clear;
n=100;
E=ones(n,1);
n2=n/2;
A=spdiags([-E 3*E -E],-1:1,n,n);
C=spdiags([E/2],0,n,n);
C=fliplr(C);
A=A+C;
A(n2+1,n2)=-1;
A(n2,n2+1)=-1;
b=zeros(n,1);
b(1)=2.5;
b(n)=2.5;
b(2:n-1)=1.5;
b(n2:n2+1)=1;

The correct solution of the roots of the system is equal to the vector:

{𝑥} =
{︀

1 1 · · · 1 1
}︀𝑇

. (6.55)
N

100

Chapter 7

Numerical Integration of
a Definite Integral

Objectives
ó

This chapter provides a more detailed introduction to:
∙ basic algorithms for the approximate calculation of definite integrals,
∙ advanced computational procedures used for integral calculus.
In numerical integration, we compute an approximate solution of a definite in-

tegral: ∫︁ 𝑏

𝑎

𝑓(𝑥) d𝑥 , (7.1)

where 𝑓(𝑥) is a continuous function in the interval ⟨𝑎, 𝑏⟩ and where 𝑎, 𝑏 represent
the limits of the definite integral.

Comment 7.1. For numerical integration, the word quadrature is used—mainly
associated with one-dimensional integrals. Two-dimensional integration is sometimes
referred to as cubature.

The interval ⟨𝑎, 𝑏⟩ is divided into 𝑛 intervals of the same size:
⟨𝑎, 𝑏⟩ = ⟨𝑎 ≡ 𝑥0, 𝑥1⟩ ∪ ⟨𝑥1, 𝑥2⟩ ∪ . . . ∪ ⟨𝑥𝑛−1, 𝑥𝑛 ≡ 𝑏⟩ , (7.2)

while the width of all subintervals is the same:

ℎ = 𝑏− 𝑎

𝑛
. (7.3)

In each subinterval, the integrated function 𝑓(𝑥) is approximated by a simpler
interpolation or approximation function (polynomial of degree 𝑚) 𝜙𝑚(𝑥):∫︁ 𝑏

𝑎

𝑓(𝑥) d𝑥 =
∫︁ 𝑏

𝑎

𝜙𝑚(𝑥) d𝑥 + 𝑅𝑚(𝑓) , (7.4)

where 𝑅𝑚(𝑓) is the error of the calculation formula used.

7.1 Rectangle Method 101

7.1 Rectangle Method
In the case of using the rectangle method of numerical integration, the integrated
function 𝑓(𝑥) is approximated in each of the subintervals by a zero-degree polyno-
mial, that is, by a constant function 𝜙0(𝑥) = const. It then applies:∫︁ 𝑏

𝑎

𝑓(𝑥) d𝑥 = ℎ ·
𝑛−1∑︁
𝑖=0

𝑓(𝑥𝑖) + 𝑅0(𝑓) , (7.5)

where 𝑅0(𝑓) is the calculation error that can be minimized by increasing the number
of subintervals 𝑛.

+

Example 7.2. Approximate: ∫︁ 2

1
ln(𝑥) d𝑥 (7.6)

using the rectangle method. During the calculation, gradually increase the number
of subintervals 𝑛 = 5, 10, 20, 100 and monitor the achieved accuracy of the solution
by comparing it with the analytical exact solution of the integral.

Solution. The solution to the problem can be based on the equation (7.5), which
can be programmed in Matlab in the following way, for example:

function y=rect(f,a,b,n)
if n<1

error(’The number of intervals n must be > 0 !’)
end;
if ~(a<b)

error(’The limits of the integral must be a > b !’)
end;
h=(b-a)/n;
y=0;
for x=a:h:b-h

y=y+f(x);
end
y=y*h;

The rect function can be called with four input parameters: 𝑓 is the integrated
function, which can be defined in Matlab with the help of the inline command,
𝑎, 𝑏 are the integration limits (𝑎 < 𝑏) and 𝑛 the number of subintervals into which
the interval ⟨𝑎; 𝑏⟩ was divided.

102 Numerical Integration of a Definite Integral

The calculation can then be called, for example, by the following sequence of
commands:

clc;
format long;
g=inline(’log(x)’);
integral=rect(g,1,2,5)

The integration result using the rectangle method with five subintervals is then:

integral =
0.315316817512604

If the result is compared with the exact value of the analytical solution:∫︁ 2

1
ln(𝑥) d𝑥 = ln(4)− 1 ≈ 0.386294361119891 . (7.7)

for example with the help of commands

res=log(4)-1;
fprintf(’Deviation from the exact solution = %8.6e\n\n’,res-int)

the deviation of the achieved approximation from the exact analytical solution is:

Deviation from the exact solution = 7.097754e-002

For the increased number of subintervals 𝑛 = 10, 20, 100, the resulting value of
the approximation of the solved integral, including the deviation from the exact
analytical solution, is:

integral =
0.351220577717757

Deviation from the exact solution = 3.507378e-002

integral =
0.368861530118207

Deviation from the exact solution = 1.743283e-002

integral =
0.382824458574729

Deviation from the exact solution = 3.469903e-003

7.1 Rectangle Method 103

Fig. 7.1 The idea of calculating the integral by the rectangle method with 𝑛 = 20
subintervals.

which testifies to the great inaccuracy and inefficiency of the rectangle method, the
idea of which can be shown schematically for 𝑛 = 20 in Fig. 7.1 (the approximation
of the solved integral is equal to the red colored area). N

Comment 7.3. The analytical solution of the integral (7.6) can be obtained for
verification in Matlab with the command

int(log(sym(’x’)),1,2)

which is used to calculate the so-called symbolic integration. The result is then

log(4) - 1

104 Numerical Integration of a Definite Integral

7.2 Trapezoid Method
If the trapezoid method of numerical integration is used for numerical integration,
the integrated function 𝑓(𝑥) is approximated by a polynomial of the first degree on
individual subintervals, i.e., a linear function 𝜙1(𝑥) = 𝑘 · 𝑥 + 𝑞. Then:

∫︁ 𝑏

𝑎

𝑓(𝑥) d𝑥 = ℎ ·
(︂

𝑓(𝑎 ≡ 𝑥0) + 𝑓(𝑥1)
2 + 𝑓(𝑥1) + 𝑓(𝑥2)

2 + · · ·+

+ 𝑓(𝑥𝑛−1) + 𝑓(𝑥𝑛 ≡ 𝑏)
2

)︂
+ 𝑅1 =

= ℎ ·
(︂

1
2 · 𝑓(𝑎 ≡ 𝑥0) + 𝑓(𝑥1) + · · ·+ 𝑓(𝑥𝑛−1) + 1

2 · 𝑓(𝑥𝑛 ≡ 𝑏)
)︂

+ 𝑅1 , (7.8)

where 𝑅1(𝑓) is the computation error for which we have:

𝑅1(𝑓) = −𝑏− 𝑎

12 · ℎ2 · 𝑓 ′′(𝜉) , (7.9)

for 𝜉 ∈ ⟨𝑎, 𝑏⟩. If the integrated function has a continuous second derivative, then
arbitrarily small calculation errors can be achieved by a suitable choice of the number
of subintervals 𝑛.

If the limits of the integral are 𝑥0, 𝑥1 and 𝑦0 = 𝑓(𝑥0), 𝑦1 = 𝑓(𝑥1) are their
respective functional values (𝑛 = 1), the so-called trapezoid rule can be defined as
follows:

Definition 7.4. Trapezoid Rule:∫︁ 𝑥1

𝑥0

𝑓(𝑥) d𝑥 = ℎ

2 · (𝑦0 + 𝑦1)−
ℎ3

12 · 𝑓
′′(𝑐) , (7.10)

where ℎ = 𝑥1 − 𝑥0 a 𝑐 lies between 𝑥0 a 𝑥1.

+

Example 7.5. Use the trapezoid rule to approximate the integral given in Exer-
cise 7.2: ∫︁ 2

1
ln(𝑥) d𝑥 (7.11)

for the 𝑛 = 1 subinterval and determine the maximum deviation of this approxi-
mation from the exact solution.

Solution. By applying the trapezoid rule, we can obtain:∫︁ 2

1
ln(𝑥) d𝑥 ≈ ℎ

2 · (𝑦0 + 𝑦1) = 1
2 · (ln 1 + ln 2) ≈ 0.346573590279973 . (7.12)

7.2 Trapezoid Method 105

The calculation error using the trapezoid rule is given for 1 < 𝑐 < 2:

𝑅1(𝑓) = −ℎ3

12 · 𝑓
′′(𝑐) . (7.13)

It holds that:
𝑓 ′(𝑥) = 1

𝑥
(7.14)

and
𝑓 ′′(𝑥) = − 1

𝑥2 , (7.15)

therefore the calculation error is:

𝑅1(𝑓) = 13

12 · 𝑐2 . (7.16)

The greatest inaccuracy of the calculation will therefore be:

𝑅1(𝑓) 5 13

12 · 12 = 1
12 = 0.083 . (7.17)

In other words, the trapezoid rule says:∫︁ 2

1
ln(𝑥) d𝑥 = 0.346573590279973± 0.083 , (7.18)

which can be compared to the exact solution of the problem:∫︁ 2

1
ln(𝑥) d𝑥 = ln(4)− 1 ≈ 0.386294361119891 . (7.19)

N

Comment 7.6. The analytical solution of derivatives (7.15) and (7.16) can be
obtained in Matlab via the commands

diff(log(sym(’x’)),1)
diff(log(sym(’x’)),2)

which are used to calculate the so-called symbolic derivative (the order of the requi-
red derivative is contained in the 2nd input parameter). The resulting statement of
both analytical relations then looks looks as follows:

1/x
-1/x^2

106 Numerical Integration of a Definite Integral

+

Example 7.7. Determine the approximations of the integral given in Exercise 7.2:∫︁ 2

1
ln(𝑥) d𝑥 (7.20)

by the trapezoid method for 𝑛 = 5, 10, 20, 100 subintervals and compare the achieved
results with the exact analytical solution.

Solution. The calculation of the integral using the trapezoid method can be based
on the equation (7.8), which can be applied in Matlab as follows:

function y=trapezoid(f,a,b,n)
if n<1

error(’The number of intervals n must be > 0 !’)
end;
if ~(a<b)

error(’The limits of the integral must be a > b !’)
end;
h=(b-a)/n;
y=f(a)/2+f(b)/2;
for x=a+h:h:b-h

y=y+f(x);
end
y=y*h;

The trapezoid function can be called with the same four input parameters as
in the case of the rectangle method: 𝑓 is the integrated function that can be defined
in Matlab with the help of the inline command, 𝑎, 𝑏 are the integration limits
(𝑎 < 𝑏) and 𝑛 is the number of subintervals into which the interval ⟨𝑎; 𝑏⟩ was divided.

The calculation and comparison of the accuracy with the exact analytical solution
can then be called, similar to the case of Exercise 7.2, for example by the following
sequence of commands:

clc;
format long;
g=inline(’log(x)’);
int=trapezoid(g,1,2,5)
res=log(4)-1;
fprintf(’Deviation from the exact solution = %8.6e\n\n’,res-int)

The integration result using the rectangle method with five, ten, twenty and one
hundred subintervals is then:

7.3 Simpson’s Method 107

integral =
0.384631535568599

Deviation from the exact solution = 1.662826e-003

integral =
0.385877936745754

Deviation from the exact solution = 4.164244e-004

integral =
0.386190209632206

Deviation from the exact solution = 1.041515e-004

integral =
0.386290194477529

Deviation from the exact solution = 4.166642e-006

which indicates greater accuracy and efficiency of the solution than when using the
rectangle method.

The principle of calculating the solved integral by the trapezoidal rule can be
shown schematically for 𝑛 = 5 subintervals in Fig. 7.2 (the approximation of the
solved integral is equal to the red colored area). N

7.3 Simpson’s Method
If polynomials of the second degree, that is, the quadratic function 𝜙2(𝑥) = 𝑎 · 𝑥2 +
+ 𝑏 · 𝑥 + 𝑐, are chosen for the approximation of the function 𝑓(𝑥) on individual
subintervals, numerical integration is performed using Simpson’s method of nume-
rical integration. However, the number of subintervals 𝑛 must be even. Then we
have:

∫︁ 𝑏

𝑎

𝑓(𝑥) d𝑥 = ℎ

3 ·
(︂

𝑓(𝑎 ≡ 𝑥0) + 4 · 𝑓(𝑥1) + 2 · 𝑓(𝑥2) + 4 · 𝑓(𝑥3) + · · ·+

+ 4 · 𝑓(𝑥𝑛−3) + 2 · 𝑓(𝑥𝑛−2) + 4 · 𝑓(𝑥𝑛−1) + 𝑓(𝑥𝑛 ≡ 𝑏)
)︂

+ 𝑅2(𝑓) , (7.21)

where 𝑅2(𝑓) is the computation error that can be determined:

108 Numerical Integration of a Definite Integral

Fig. 7.2 The principle of calculating the integral using the trapezoid method with
the number of subintervals 𝑛 = 5.

𝑅2(𝑓) = −𝑏− 𝑎

180 · ℎ
4 · 𝑓 ′′′′(𝜉) , (7.22)

for 𝜉 ∈ ⟨𝑎, 𝑏⟩. If the integrated function has a continuous fourth derivative, then
arbitrarily small calculation errors can be achieved by a suitable choice of the number
of subintervals 𝑛.

If the limits of the integral are 𝑥0, 𝑥2 and 𝑦0 = 𝑓(𝑥0), 𝑦2 = 𝑓(𝑥2) are their
respective functional values (𝑛 = 2), and if there exists 𝑓 ′′′(𝑥) which is continuous,
the so-called Simpson’s rule can be defined as follows:

7.3 Simpson’s Method 109

Definition 7.8. Simpson’s Rule:∫︁ 𝑥2

𝑥0

𝑓(𝑥) d𝑥 = ℎ

3 · (𝑦0 + 4 · 𝑦1 + 𝑦2)−
ℎ5

90 · 𝑓
′′′′(𝑐) , (7.23)

where ℎ = 𝑥2 − 𝑥1 = 𝑥1 − 𝑥0, 𝑦1 = 𝑓(𝑥1), and 𝑐 lies between 𝑥0 and 𝑥2.

+

Example 7.9. Use Simpson’s rule to approximate the integral given in Exercises 7.2
and 7.5: ∫︁ 2

1
ln(𝑥) d𝑥 (7.24)

for 𝑛 = 2 subintervals and determine the maximum deviation of this approximation
from the exact solution.

Solution. According to Simpson’s rule, the result for ℎ = 2− 1.5 = 1.5− 1 = 0.5 is:∫︁ 2

1
ln(𝑥) d𝑥 ≈ ℎ

3 ·(𝑦0+4·𝑦1+𝑦2) = 0.5
3 ·(ln 1+4·ln 1.5+ln 2) ≈ 0.385834602165434 .

(7.25)
The calculation error determined by Simpson’s rule for 1 < 𝑐 < 2:

𝑅2(𝑓) = −ℎ5

90 · 𝑓
′′′′(𝑐) . (7.26)

It holds that:
𝑓 ′′′(𝑥) = 2

𝑥3 (7.27)

and
𝑓 ′′′′(𝑥) = − 6

𝑥4 , (7.28)

so the greatest calculation inaccuracy will be:

𝑅2(𝑓) 5 0.55 · 6
90 · 14 = 0.55 · 6

60 = 1
480 = 0.002083 . (7.29)

The result of Simpson’s rule calculation is therefore:∫︁ 2

1
ln(𝑥) d𝑥 = 0.385834602165434± 0.002083 , (7.30)

which is a significantly more accurate value of the resulting approximation of Inte-
gral (7.24) than when calculating with the trapezoid rule. N

Comment 7.10. The analytical solution of derivations (7.27) and (7.28) can once
again be performed in Matlab via the commands for symbolic differentiation:

110 Numerical Integration of a Definite Integral

diff(log(sym(’x’)),3)
diff(log(sym(’x’)),4)

The resulting statement of both analytical equations then looks as follows:

2/x^3
-6/x^4

+

Example 7.11. Use Simpson’s method to calculate the approximation of the inte-
gral given in Exercise 7.9: ∫︁ 2

1
ln(𝑥) d𝑥 (7.31)

for 𝑛 = 4, 8, 16, 32 subintervals and compare the obtained results with the exact
analytical solution.

Solution. The solution of the integral using the Simpson method is based on the re-
lation (7.21), which can be programmed in Matlab, for example, using the following
sequence of commands:

function y=simpson(f,a,b,n)
if n<1

error(’The number of intervals n must be > 0 !’)
end;
if ~(mod(n,2)==0)

error(’The number of intervals n must be even !’)
end;
if ~(a<b)

error(’The limits of the integral must be a > b !’)
end;
h=(b-a)/n;
y=f(a)+f(b);
k=1;
for x=a+h:h:b-h

if mod(k,2)==0
y=y+2*f(x);

else
y=y+4*f(x);

end
k=k+1;

end
y=y*h/3;

7.3 Simpson’s Method 111

The simpson function can be called with the same four input parameters as in
the case of the rectangle or trapezoid method: 𝑓 is the integrated function that can
be defined in Matlab with the help of the inline command, 𝑎, 𝑏 are the integration
limits (𝑎 < 𝑏) and 𝑛 is the number of subintervals into which the interval ⟨𝑎; 𝑏⟩ was
divided (it must be an even number, which is also checked in the program via the
mod command for calculating the remainder of division by an integer).

The calculation and comparison of the accuracy with the exact analytical solution
can then be obtained via the commands:

clc;
format long;
g=inline(’log(x)’);
int=simpson(g,1,2,4)
res=log(4)-1;
fprintf(’Deviation from the exact solution = %8.6e\n\n’,res-int)

The integration results using Simpson’s method with four, eight, sixteen and
thirty-two subintervals are as follows:

integral =
0.386259562814567

Deviation from the exact solution = 3.479831e-005

integral =
0.386292043466313

Deviation from the exact solution = 2.317654e-006

integral =
0.386294213675793

Deviation from the exact solution = 1.474441e-007

integral =
0.386294351862333

Deviation from the exact solution = 9.257558e-009

which testifies to the greater accuracy and efficiency of the solution than in the
previous two numerical methods of integration. N

+

Example 7.12. Use Simpson’s method with division into 𝑛 = 32 subintervals to
determine the coordinates of the centroid of the circular arc, the diagram of which

112 Numerical Integration of a Definite Integral

is shown in Fig. 7.3. The radius of the circular arc is 𝑟 = 8 m and the central angles
are 𝜙𝑎 = −30∘ and 𝜙𝑏 = 22∘.

Fig. 7.3 Circular arc diagram.

Solution. The length of the circular arc is given by the equation:

𝑠 =
∫︁

𝑠

d𝑠 , (7.32)

whereas d𝑠 = 𝑟 · d𝜙, so that equation (7.32) can be modified:

𝑠 =
∫︁ 𝜙𝑏

𝜙𝑎

𝑟 d𝜙 = 𝑟 · (𝜙𝑏 − 𝜙𝑎) . (7.33)

The required static moments are determined as follows:

𝑆𝑥 =
∫︁

𝑠

𝑧 d𝑠 =
∫︁ 𝜙𝑏

𝜙𝑎

𝑟 · 𝑧 d𝜙 (7.34)

and
𝑆𝑧 =

∫︁
𝑠

𝑥 d𝑠 =
∫︁ 𝜙𝑏

𝜙𝑎

𝑟 · 𝑥 d𝜙 . (7.35)

When converting from Cartesian coordinates to polar coordinates, the equations
𝑥 = 𝑟 · sin 𝜙 and 𝑧 = 𝑟 · (1 − cos 𝜙) can be used, so the relations (7.34) and (7.35)
will be modified into the following forms:

𝑆𝑥 =
∫︁ 𝜙𝑏

𝜙𝑎

𝑟2 · (1− cos 𝜙) d𝜙 (7.36)

7.3 Simpson’s Method 113

and
𝑆𝑧 =

∫︁ 𝜙𝑏

𝜙𝑎

𝑟2 · sin 𝜙 d𝜙 . (7.37)

The resulting coordinates of the centroid of the parabolic arc in the given coor-
dinate system are then:

𝑥𝑇 = 𝑆𝑧

𝑠
(7.38)

and
𝑧𝑇 = 𝑆𝑥

𝑠
. (7.39)

A specific solution in Matlab can be done using a sequence of commands:

clc;
format long;
fia=-30/180*pi;
fib=22/180*pi;
r=8;
g1=inline(’1-cos(fi)’);
g2=inline(’sin(fi)’);
int1=simpson(g1,fia,fib,32);
int2=simpson(g2,fia,fib,32);
s=r*(fib-fia)
xT=int2*r^2/s
zT=int1*r^2/s

which yield the following results:

s =
7.260569688296410

xT =
-0.539095557536041

zT =
0.290574351201034

N

+

Example 7.13. Using Simpson’s method, determine the coordinates of the centroid
of the parabolic arc, the diagram of which is shown in Fig. 7.4. The shape of the
median is given by a quadratic parabola with the equation 𝑧(𝑥) = 𝑘 · 𝑥2. The
horizontal coordinates of both extreme points are 𝑥𝑎 = −2 m and 𝑥𝑏 = 6 m, the
vertical ordinate of point 𝑏 is then 𝑧𝑏 = 2 m.

114 Numerical Integration of a Definite Integral

Fig. 7.4 Parabolic arc diagram.

Solution. The parameter 𝑘 of the parabolic arc is determined from the relation:

𝑘 = 𝑧𝑏

𝑥2
𝑏

. (7.40)

The length of the arc is given by the relation:

𝑠 =
∫︁

𝑠

d𝑠 =
∫︁ 𝑥𝑏

𝑥𝑎

√︀
1 + (𝑧′)2 d𝑥 =

∫︁ 𝑥𝑏

𝑥𝑎

√
1 + 4 · 𝑘2 · 𝑥2 d𝑥 . (7.41)

The required static moments are determined as follows:

𝑆𝑥 =
∫︁

𝑠

𝑧 d𝑠 =
∫︁ 𝑥𝑏

𝑥𝑎

𝑘 · 𝑥2 ·
√

1 + 4 · 𝑘2 · 𝑥2 d𝑥 (7.42)

and
𝑆𝑧 =

∫︁
𝑠

𝑥 d𝑠 =
∫︁ 𝑥𝑏

𝑥𝑎

𝑥 ·
√

1 + 4 · 𝑘2 · 𝑥2 d𝑥 . (7.43)

The resulting coordinates of the center of gravity of the parabolic arc in the given
coordinate system are then:

𝑥𝑇 = 𝑆𝑧

𝑠
(7.44)

and
𝑧𝑇 = 𝑆𝑥

𝑠
. (7.45)

A specific solution in Matlab can be obtained by the following sequence of
commands:

clc;
format long;
xa=-2;

Examples to Practice 115

xb=6;
g1=inline(’sqrt(1+(2*(2/(6^2))*x)^2)’);
g2=inline(’(2/(6^2))*x^2*sqrt(1+(2*(2/(6^2))*x)^2)’);
g3=inline(’x*sqrt(1+(2*(2/(6^2))*x)^2)’);
int1=simpson(g1,xa,xb,32);
int2=simpson(g2,xa,xb,32);
int3=simpson(g3,xa,xb,32);
xT=int3/int1
zT=int2/int1

which yield the following results:

xT =
2.115895489649506

zT =
0.550954275587375

N

Comment 7.14. A certain flaw of the previous calculation is the definition of a trio
of inline functions using specific input values for 𝑥𝑏 = 2 and 𝑧𝑏 = 6, which enter these
functions as the definition of the parabola parameter 𝑘 = 2

62 . In this way, the use of
inline functions with two variables 𝑔(𝑘, 𝑥) could be avoided, for which the simpson
m-function would also have to be modified. Try to generalize the given calculation.

Examples to Practice !
1. Use Simpson’s method to approximate the following integrals:

a)
∫︁ 1

0
𝑥2 d𝑥 ,

b)
∫︁ 𝜋

0
sin2(𝑥) d𝑥 ,

c)
∫︁ 𝜋

2

0
cos(𝑥) d𝑥 ,

d)
∫︁ 1

0
e𝑥 d𝑥 ,

Choose the number of intervals gradually 𝑛 = 4, 8, 16, 32. Compare the results with
the exact solution.

116 Numerical Integration of a Definite Integral

7.4 Romberg’s Method
Romberg’s method of numerical integration is based on an idea related to a more
detailed expression of the solution by the trapezoid method:

∫︁ 𝑏

𝑎

𝑓(𝑥) d𝑥 = ℎ

2 ·
(︃

𝑓(𝑥0) + 2 ·
𝑛−1∑︁
𝑖=1

𝑓(𝑥𝑖) + 𝑓(𝑥𝑛)
)︃

+𝑐2 ·ℎ2+𝑐4 ·ℎ4+𝑐6 ·ℎ6+. . . (7.46)

where 𝑐𝑖 depends only on the derivatives of 𝑓(𝑥) in the interval ⟨𝑎; 𝑏⟩ and not on ℎ.
We introduce the following sequence of differences ℎ𝑖 for 𝑖 = 1, 2, . . . , 𝑗:

ℎ1 = 𝑏− 𝑎

ℎ2 = 1
2 · (𝑏− 𝑎)

ℎ3 = 1
4 · (𝑏− 𝑎)

...

(7.47)

ℎ𝑗 = 1
2𝑗−1 · (𝑏− 𝑎) , (7.48)

as well as the respective approximations of the solved integral:

𝑅1,1 = ℎ1

2 · (𝑓(𝑎) + 𝑓(𝑏))

𝑅2,1 = ℎ2

2 ·
(︂

𝑓(𝑎) + 𝑓(𝑏) + 2 · 𝑓
(︂

𝑎 + 𝑏

2

)︂)︂
= 1

2 ·𝑅1,1 + ℎ2 · 𝑓
(︂

𝑎 + 𝑏

2

)︂
...

(7.49)

𝑅𝑗,1 = 1
2 ·𝑅𝑗−1,1 + ℎ𝑗 ·

2𝑗−2∑︁
𝑖=1

𝑓(𝑎 + (2 · 𝑖− 1) · ℎ𝑗) (7.50)

for 𝑗 = 2, 3, . . . , 𝑛.
The next step of Romberg’s method is the determination of refined approxi-

mations of the integrals 𝑅𝑗,𝑘 for 𝑘 = 2, . . . , 𝑗, which can be determined using the
previous values of the approximations 𝑅𝑗,𝑘−1 and 𝑅𝑗−1,𝑘−1:

𝑅𝑗,𝑘 = 4𝑘−1 ·𝑅𝑗,𝑘−1 −𝑅𝑗−1,𝑘−1

4𝑘−1 − 1
. (7.51)

The most accurate approximation of the solved integral is then 𝑅𝑗,𝑗, which can be
determined using equations (7.48) and (7.51) in the loop, as schematically indicated
in Algorithm 21.

7.4 Romberg’s Method 117

Input : 𝑛, 𝑎, 𝑏

Output: R

𝑅1,1 = (𝑏− 𝑎) · 𝑓(𝑎) + 𝑓(𝑏)
2

for 𝑗 ← 2, 3, . . . , 𝑛 do

ℎ𝑗 = 𝑏− 𝑎
2𝑗−1

𝑅𝑗,1 = 1
2 ·𝑅𝑗−1,1 + ℎ𝑗 ·

2𝑗−2∑︀
𝑖=1

𝑓(𝑎 + (2 · 𝑖− 1) · ℎ𝑗)

for 𝑘 ← 2, 3, . . . , 𝑗 do

𝑅𝑗,𝑘 = 4𝑘−1 ·𝑅𝑗,𝑘−1 −𝑅𝑗−1,𝑘−1
4𝑘−1 − 1

end
end

Algorithm 21: Algorithm for Romberg’s method of numerical integration.

+

Example 7.15. Use Romberg’s method of numerical integration to calculate the
approximation of the integral: ∫︁ 2

1
ln(𝑥) d𝑥 (7.52)

for dividing 𝑛 = 3. Compare the resulting approximation with the result of the exact
analytical solution.

Solution. The calculation of the integral using Romberg’s method can be program-
med in Matlab in the following way, for example:

function r=romberg(f,a,b,n)
h=(b-a)./(2.^(0:n-1));
r(1,1)=(b-a)*(f(a)+f(b))/2;
for j=2:n

s=0;
for i=1:2^(j-2)

s=s+f(a+(2*i-1)*h(j));
end
r(j,1)=r(j-1,1)/2+h(j)*s;
for k=2:j

r(j,k)=(4^(k-1)*r(j,k-1)-r(j-1,k-1))/(4^(k-1)-1);
end

end

The result for 𝑛 = 3 is then:

118 Numerical Integration of a Definite Integral

integral =
0.346573590279973 0 0
0.376019349194069 0.385834602165434 0
0.383699509409442 0.386259562814567 0.386287893524509

Deviation from the exact solution = 6.467595e-006

N

7.5 Adaptive Integration
The adaptive method of numerical integration differs from the previous methods
of numerical integration by the uneven division of the integration interval ⟨𝑎; 𝑏⟩. In
places where the integrated function is sufficiently smooth and varies slowly, coarser
interval divisions can be used. On the other hand, in places where the integrated
function changes significantly, it is advisable to use a finer division of intervals.

The method is based on a modification of the trapezoid or Simpson’s method.
In the case of the trapezoid method it holds that:∫︁ 𝑏

𝑎

𝑓(𝑥) d𝑥 = 𝑆𝑎,𝑏 − ℎ3 · 𝑓
′′(𝑐0)
12 , (7.53)

where ℎ = 𝑏−𝑎 and 𝑎 < 𝑐0 < 𝑏. If the point 𝑐0 is chosen in the middle of the interval
⟨𝑎; 𝑏⟩, the relation (7.53) can be modified as follows:

∫︁ 𝑏

𝑎

𝑓(𝑥) d𝑥 = 𝑆𝑎,𝑐 −
ℎ3

8 ·
𝑓 ′′(𝑐1)

12 + 𝑆𝑐,𝑏 −
ℎ3

8 ·
𝑓 ′′(𝑐2)

12 =

= 𝑆𝑎,𝑐 + 𝑆𝑐,𝑏 −
ℎ3

4 ·
𝑓 ′′(𝑐3)

12 . (7.54)

Using the difference of relations (7.54) from (7.53), it is possible to obtain an
estimate of the error of the given calculation operation:

𝑆𝑎,𝑏 − (𝑆𝑎,𝑐 + 𝑆𝑐,𝑏) = ℎ3 · 𝑓
′′(𝑐0)
12 − ℎ3

4 ·
𝑓 ′′(𝑐3)

12 ≈ 3
4 · ℎ

3 · 𝑓
′′(𝑐3)
12 , (7.55)

which is roughly three times the inaccuracy of the calculation of the expression
(7.53). When entering the desired accuracy bound 𝜀, it is then possible to define the
terminating condition as follows:

𝑆𝑎,𝑏 − (𝑆𝑎,𝑐 + 𝑆𝑐,𝑏) < 3 · 𝜀 . (7.56)

If the criterion of the termination condition is not met, both intervals are divided
into half. On each part, the terminating condition is then evaluated separately, which
leads to an uneven division of the integrated interval ⟨𝑎; 𝑏⟩ into sections with the
same inaccuracy.

7.5 Adaptive Integration 119

+

Example 7.16. Determine the approximations of the integral:∫︁ 2

1
ln(𝑥) d𝑥 (7.57)

using the adaptive method of numerical integration, based on the trapezoid method,
with the required accuracy bound 1 ·10−6. Compare both calculated approximations
with the result of the exact analytical solution.

Solution. The calculation of the integral using the adaptive method, based on the
trapezoid rule, can be performed in the Matlab, for example, with the following
m-function:

function s=adap_int(f,a0,b0,tol0)
s=0;
n=1;
a(1)=a0;
b(1)=b0;
tol(1)=tol0;
S(1)=trapez(f,a,b);
while n>0

c=(a(n)+b(n))/2;
oldS=S(n);
S(n)=trapez(f,a(n),c);
S(n+1)=trapez(f,c,b(n));
if abs(oldS-(S(n)+S(n+1)))<3*tol(n)

s=s+S(n)+S(n+1);
n=n-1;

else
b(n+1)=b(n);
b(n)=c;
a(n+1)=c;
tol(n)=tol(n)/2;
tol(n+1)=tol(n);
n=n+1;

end
end

where the trapez function applies the trapezoidal rule:

function s=trapez(f,a,b)
s=(f(a)+f(b))*(b-a)/2;

120 Numerical Integration of a Definite Integral

After specifying the desired solution inaccuracy tolerance 𝜀 = 1 · 10−6, the result
of the integral will be:
integral =

0.386293831301211

Deviation from the exact solution = 5.298187e-007

The algorithm can be demonstrated by listing individual subintervals of the
solved integral. When specifying the desired tolerance of inaccuracy 𝜀 = 1 ·10−3, the
original interval ⟨𝑎; 𝑏⟩ is divided into ten subintervals with different widths, on which
the trapezoid method is applied (the subintervals are shown within the operations
of the calculation algorithm, i.e. in reverse order):

i ai bi hi

1 1.8750 2.0000 0.125000
2 1.7500 1.8750 0.125000
3 1.6250 1.7500 0.125000
4 1.5000 1.6250 0.125000
5 1.3750 1.5000 0.125000
6 1.2500 1.3750 0.125000
7 1.1875 1.2500 0.062500
8 1.1250 1.1875 0.062500
9 1.0625 1.1250 0.062500

10 1.0000 1.0625 0.062500

N

Comment 7.17. The algorithm of the adaptive numerical integration method can
be modified so that the solution is based on Simpson’s integration method (e.g. [8]).

7.6 Gaussian Method
The Gaussian method of numerical integration (Gaussian quadrature) is based on
the relation: ∫︁ 1

−1
𝑓(𝑥) d𝑥 ≈

𝑛∑︁
𝑖=1

𝑐𝑖 · 𝑓(𝑥𝑖) , (7.58)

where the coefficients 𝑐𝑖 and the roots 𝑥𝑖 for 𝑛 = 1, 2, . . . , 5 integration points are
given in Table 7.1.

7.6 Gaussian Method 121

𝑛 𝑥𝑖 𝑐𝑖

1 0 2
2 −

√︁
1
3 ≈ −0.5774 1√︁
1
3 ≈ 0.5774 1

3 −
√︁

3
5 ≈ −0.7746 5

9 ≈ 0.5556
0 8

9 ≈ 0.8889√︁
3
5 ≈ 0.7746 5

9 ≈ 0.5556

4 −
√︂

15 + 2 ·
√

30
35 ≈ −0.8611 90− 5 ·

√
30

180 ≈ 0.3479

−
√︂

15− 2 ·
√

30
35 ≈ −0.3400 90 + 5 ·

√
30

180 ≈ 0.6521√︂
15− 2 ·

√
30

35 ≈ 0.3400 90 + 5 ·
√

30
180 ≈ 0.6521√︂

15 + 2 ·
√

30
35 ≈ 0.8611 90− 5 ·

√
30

180 ≈ 0.3479

5 −
√︂

35 + 2 ·
√

70
63 ≈ −0.9062 322− 13 ·

√
70

900 ≈ 0.2369

−
√︂

35− 2 ·
√

70
63 ≈ −0.5385 322 + 13 ·

√
70

900 ≈ 0.4786
0 128

225 ≈ 0.5689√︂
35− 2 ·

√
70

63 ≈ 0.5385 322 + 13 ·
√

70
900 ≈ 0.4786√︂

35 + 2 ·
√

70
63 ≈ 0.9062 322− 13 ·

√
70

900 ≈ 0.2369

Tab. 7.1 Roots 𝑥𝑖 and coefficients 𝑐𝑖 of Gaussian quadrature for 𝑛 = 1, 2, . . . , 5
points.

When solving the integral with generally specified limits ⟨𝑎; 𝑏⟩, it is necessary to
transform the integral (7.58):

∫︁ 𝑏

𝑎

𝑓(𝑥) d𝑥 =
∫︁ 1

−1
𝑓

(︂
(𝑏− 𝑎) · 𝑡 + 𝑏 + 𝑎

2

)︂
· 𝑏− 𝑎

2 d𝑡 ≈

≈
𝑛∑︁

𝑖=1

𝑐𝑖 · 𝑓
(︂

(𝑏− 𝑎) · 𝑡𝑖 + 𝑏 + 𝑎

2

)︂
· 𝑏− 𝑎

2 , (7.59)

where 𝑡 is the result of the substitution

𝑡 = 2 · 𝑥− 𝑎− 𝑏

𝑏− 𝑎
, (7.60)

122 Numerical Integration of a Definite Integral

and 𝑡𝑖 the respective root 𝑥𝑖 of the Gaussian quadrature.

+

Example 7.18. Approximate the integral:∫︁ 2

1
ln(𝑥) d𝑥 (7.61)

using the Gaussian method of numerical integration successively for 𝑛 = 1, 2, . . . , 5
integration points and determine the deviations of these approximations from the
exact solution.

Solution. The m-function for calculating the Gaussian quadrature for 𝑛 = 1, 2 až
5 integration points can take the form:

function s=gauss_int(f,a,b,n)
if ~((n==1)|(n==2)|(n==3)|(n==4)|(n==5))

error(’The number of intervals n must be 1,2,3,4 or 5 !’)
end;
if ~(a<b)

error(’The limits of the integral must be a > b !’)
end;
if n==1

x(1)=0; c(1)=2;
end
if n==2

x(1)=-sqrt(1/3); x(2)=sqrt(1/3);
c(1)=1; c(2)=1;

end
if n==3

x(1)=-sqrt(3/5); x(2)=0; x(3)=sqrt(3/5);
c(1)=5/9; c(2)=8/9; c(3)=5/9;

end
if n==4

x(1)=-sqrt((15+2*sqrt(30))/35);
x(2)=-sqrt((15-2*sqrt(30))/35);
x(3)=sqrt((15-2*sqrt(30))/35);
x(4)=sqrt((15+2*sqrt(30))/35);
c(1)=(90-5*sqrt(30))/180;
c(2)=(90+5*sqrt(30))/180;
c(3)=(90+5*sqrt(30))/180;
c(4)=(90-5*sqrt(30))/180;

end
if n==5

x(1)=-sqrt((35+2*sqrt(70))/63);
x(2)=-sqrt((35-2*sqrt(70))/63);

7.6 Gaussian Method 123

x(3)=0;
x(4)=sqrt((35-2*sqrt(70))/63);
x(5)=sqrt((35+2*sqrt(70))/63);
c(1)=(322-13*sqrt(70))/900;
c(2)=(322+13*sqrt(70))/900;
c(3)=128/225;
c(4)=(322+13*sqrt(70))/900;
c(5)=(322-13*sqrt(70))/900;

end
s=0;
for i=1:n

s=s+(f(((b-a)*x(i)+b+a)/2)*(b-a)/2)*c(i);
end

As for a comparison of the accuracy of the solution with increasing number of
integration points 𝑛 = 1, 2, . . . , 5, it is possible to obtain the following results:

integral =
0.405465108108164

Deviation from the exact solution = -1.917075e-002

integral =
0.386594944116741

Deviation from the exact solution = -3.005830e-004

integral =
0.386300421584011

Deviation from the exact solution = -6.060464e-006

integral =
0.386294496938714

Deviation from the exact solution = -1.358188e-007

integral =
0.386294364348948

Deviation from the exact solution = -3.229058e-009

N

124

Chapter 8

Numerical Derivation

Objectives
ó

This chapter introduces
∙ the basic calculation procedures for numerically determining the appro-

ximate value of the derivatives of a function,
∙ an advanced method of numerical derivation,
∙ the basics of solving partial derivatives of a function of two variables

numerically.

Numerical derivation consists in determining the approximate value of the de-
rivative of the function 𝑓(𝑥) at a specific point 𝑥 using the function values at the
surrounding points and interpolation polynomials of degree 𝑚, for which:

𝑓 ′(𝑥) ≈ 𝑝′
𝑚(𝑥) . (8.1)

The derivative of the function 𝑓(𝑥) at 𝑥 gives the direction of the tangent to the
function at that point.

8.1 Finite Difference Method
The simplest formulas for calculating the derivative of the function 𝑓(𝑥) at 𝑥0 and
𝑥1 (𝑥0 < 𝑥1) take the form:

𝑓 ′(𝑥0) = 𝑓(𝑥1)− 𝑓(𝑥0)
ℎ

− ℎ

2 · 𝑓
′′(𝜉0) (8.2)

and
𝑓 ′(𝑥1) = 𝑓(𝑥1)− 𝑓(𝑥0)

ℎ
+ ℎ

2 · 𝑓
′′(𝜉1) , (8.3)

where ℎ = 𝑥1 − 𝑥0 and 𝜉0, 𝜉1 ∈ ⟨𝑥0, 𝑥1⟩. The calculation assumes the existence
of the second derivative 𝑓 ′′(𝑥) in the solved interval ⟨𝑥0, 𝑥1⟩. The final terms in

8.1 Finite Difference Method 125

Equations (8.2) and (8.3) denote the errors of the calculated approximation, which
is ignored when calculating 𝑓 ′(𝑥).

Both points 𝑥0 and 𝑥1 are therefore separated by a difference of ℎ. Equation (8.2)
is generalized as follows:

𝑓 ′(𝑥) = 𝑓(𝑥 + ℎ)− 𝑓(𝑥)
ℎ

− ℎ

2 · 𝑓
′′(𝜉) ≈ 𝑓(𝑥 + ℎ)− 𝑓(𝑥)

ℎ
, (8.4)

where 𝜉 lies in the interval ⟨𝑥, 𝑥 + ℎ⟩. To determine the derivative at 𝑥 according
to (8.4), it is therefore necessary to also know the value of the function 𝑓(𝑥) at
the second point 𝑥 + ℎ. The equation (8.4) is referred to as the two-point forward
difference formula.

Definition 8.1. The derivative of the function 𝑓 at 𝑥 is defined by the rule:

𝑓 ′(𝑥) = lim
ℎ→0

𝑓(𝑥 + ℎ)− 𝑓(𝑥)
ℎ

. (8.5)

Similarly, Equation (8.3) is generalized as follows:

𝑓 ′(𝑥) = 𝑓(𝑥)− 𝑓(𝑥− ℎ)
ℎ

+ ℎ

2 · 𝑓
′′(𝜉) ≈ 𝑓(𝑥)− 𝑓(𝑥− ℎ)

ℎ
. (8.6)

In this case, we refer to the two-point backward difference formula, because to
determine the derivative at 𝑥, it is also necessary to know the value of the function
𝑓(𝑥) at 𝑥− ℎ.

+

Example 8.2. Approximate the derivative of the function:

𝑓(𝑥) = 1
𝑥

(8.7)

at 𝑥 = 2 with the difference ℎ = 0.1 using Equation (8.4).

Solution. Using the two-point forward difference formula, we obtain:

𝑓 ′(𝑥 = 2) ≈ 𝑓(2 + 0.1)− 𝑓(2)
0.1 =

1
2.1 −

1
2

0.1 ≈ −0.238095238095238 . (8.8)

The analytically determined first derivative of the function (8.7) is:

𝑓 ′(𝑥) = − 1
𝑥2 , (8.9)

and for 𝑥 = 2, the exact value of the solution is:

𝑓 ′(2) = − 1
22 = −1

4 = −0.25 , (8.10)

126 Numerical Derivation

therefore the deviation of the resulting approximation of the exact analytical solution
and the error in the numerical calculation of the derivative are:

− 0.238095238095238− (−0.25) ≈ 0.011904761904762 . (8.11)

In (8.4), the calculation error is expressed as:
ℎ

2 · 𝑓
′′(𝜉) . (8.12)

The second derivative of the function (8.7) is:

𝑓 ′′(𝑥) = 2
𝑥3 , (8.13)

therefore (8.12) can be evaluated for 𝜉 = 2:
0.1
2 ·

2
23 = 0.0125 . (8.14)

and 𝜉 = 2.1:
0.1
2 ·

2
(2.1)3 ≈ 0.010797969981643 . (8.15)

The error in the calculation of (8.11) in fact lies between the values of (8.14)
and (8.15). N

+

Example 8.3. Using Equation (8.6), approximate the derivative of the function:

𝑓(𝑥) = 1
𝑥

(8.16)

at 𝑥 = 2 with the difference ℎ = 0.1.

Solution. Using the two-point backward difference formula, we obtain:

𝑓 ′(𝑥 = 2) ≈ 𝑓(2)− 𝑓(2− 0.1)
0.1 =

1
2 −

1
1.9

0.1 ≈ −0.263157894736842 . (8.17)

The error in the calculation is:

− 0.25− (−0.263157894736842) ≈ 0.013157894736842 (8.18)

and lies in the range of values:
0.1
2 ·

2
23 = 0.0125 (8.19)

and
0.1
2 ·

2
(1.9)3 ≈ 0.014579384749964 . (8.20)

N

8.1 Finite Difference Method 127

The calculation of the derivative according to (8.2) and (8.3) is based on the
derivative of the first degree interpolation polynomial 𝑝1 at the nodes 𝑥0 and 𝑥1 =
= 𝑥0 + ℎ. Using the second degree polynomial 𝑝2, we obtain:

𝑓 ′(𝑥0) = −3 · 𝑓(𝑥0) + 4 · 𝑓(𝑥1)− 𝑓(𝑥2)
2 · ℎ + ℎ2

3 · 𝑓
′′′(𝜉0) , (8.21)

𝑓 ′(𝑥2) = 𝑓(𝑥0)− 4 · 𝑓(𝑥1) + 3 · 𝑓(𝑥2)
2 · ℎ + ℎ2

3 · 𝑓
′′′(𝜉1) (8.22)

and
𝑓 ′(𝑥1) = 𝑓(𝑥2)− 𝑓(𝑥0)

2 · ℎ − ℎ2

12 · 𝑓
′′′(𝜉0)−

ℎ2

12 · 𝑓
′′′(𝜉1) , (8.23)

where ℎ = 𝑥1 − 𝑥0 = 𝑥2 − 𝑥1, 𝜉0 ∈ ⟨𝑥0, 𝑥1⟩ and 𝑥𝑖1 ∈⟩𝑥1, 𝑥2⟩. The calculation
assumes that a third derivative 𝑓 ′′′(𝑥) exists in the solved interval ⟨𝑥0, 𝑥2⟩.

Eq. (8.21) is generalized as:

𝑓 ′(𝑥) = −3 · 𝑓(𝑥) + 4 · 𝑓(𝑥 + ℎ)− 𝑓(𝑥 + 2 · ℎ)
2 · ℎ + ℎ2

3 · 𝑓
′′′(𝜉0) ≈

≈ −3 · 𝑓(𝑥) + 4 · 𝑓(𝑥 + ℎ)− 𝑓(𝑥 + 2 · ℎ)
2 · ℎ . (8.24)

To determine the derivative at 𝑥 according to (8.24), it is necessary to also
know the value of the function 𝑓(𝑥) at the other two points 𝑥 + ℎ and 𝑥 + 2 · ℎ.
Equation (8.24) is referred to as a three-point forward difference formula.

Definition 8.4. The derivative of the function 𝑓 at 𝑥 is defined as:

𝑓 ′(𝑥) = lim
ℎ→0

−3 · 𝑓(𝑥) + 4 · 𝑓(𝑥 + ℎ)− 𝑓(𝑥 + 2 · ℎ)
2 · ℎ . (8.25)

Similarly, Equation (8.22) is generalized as:

𝑓 ′(𝑥) = 𝑓(𝑥− 2 · ℎ)− 4 · 𝑓(𝑥− ℎ) + 3 · 𝑓(𝑥)
2 · ℎ + ℎ2

3 · 𝑓
′′′(𝜉1) ≈

≈ 𝑓(𝑥− 2 · ℎ)− 4 · 𝑓(𝑥− ℎ) + 3 · 𝑓(𝑥)
2 · ℎ . (8.26)

In this case, we refer to the three-point backward difference formula, because to
determine the derivative at 𝑥, it is necessary to also know the value of the function
𝑓(𝑥) at the two other points 𝑥− ℎ and 𝑥− 2 · ℎ.

The derivative of the function 𝑓(𝑥) can also be calculated using the generalized
relation (8.23):

𝑓 ′(𝑥) = 𝑓(𝑥 + ℎ)− 𝑓(𝑥− ℎ)
2 · ℎ − ℎ2

12 · 𝑓
′′′(𝜉0)−

ℎ2

12 · 𝑓
′′′(𝜉1) ≈

≈ 𝑓(𝑥 + ℎ)− 𝑓(𝑥− ℎ)
2 · ℎ − ℎ2

6 · 𝑓
′′′(𝜉) ≈ 𝑓(𝑥 + ℎ)− 𝑓(𝑥− ℎ)

2 · ℎ , (8.27)

128 Numerical Derivation

where 𝜉 ∈⟩𝑥 + ℎ, 𝑥 − ℎ⟩. In this case, we refer to the three-point central difference
formula. The point 𝑥 lies in the middle of the calculation interval ⟨𝑥 + ℎ, 𝑥− ℎ⟩.

+

Example 8.5. Approximate the derivative of the function:

𝑓(𝑥) = 1
𝑥

(8.28)

at 𝑥 = 2 with the difference ℎ = 0.1 using the equation (8.24).

Solution. Using the three-point forward difference formula, we can obtain:

𝑓 ′(𝑥 = 2) ≈ −3 · 𝑓(2) + 4 · 𝑓(2 + 0.1)− 𝑓(2 + 2 · 0.1)
2 · 0.1 =

=
−3

2 + 4
2.1 −

1
2.2

0.2 ≈ −0.248917748917749 . (8.29)

The error of the numerical calculation of the derivative equals:

− 0.248917748917749− (−0.25) ≈ 0.001082251082251 . (8.30)

In (8.24) the calculation error is expressed by the formula:

− ℎ2

3 · 𝑓
′′′(𝜉0) . (8.31)

The third derivative of the function (8.28) is:

𝑓 ′′′(𝑥) = − 6
𝑥4 , (8.32)

therefore (8.31) can be enumerated for 𝜉 = 2:

− (0.1)2

3 · − 6
24 = 0.00125 , (8.33)

and 𝜉 = 2.1:

− (0.1)2

3 · − 6
(2.1)4 ≈ 0.001028378093490 . (8.34)

The error in (8.30) in fact lies between the values of (8.33) and (8.34). N

+

Example 8.6. Using Equation (8.26), approximate the derivative of the function:

𝑓(𝑥) = 1
𝑥

(8.35)

at 𝑥 = 2 with the difference ℎ = 0.1.

8.1 Finite Difference Method 129

Solution. Using the three-point backward difference formula, we obtain:

𝑓 ′(𝑥 = 2) ≈ 𝑓(2− 2 · 0.1)− 4 · 𝑓(2− 0.1) + 3 · 𝑓(2)
2 · 0.1 =

=

1
1.8 −

4
1.9 + 3

2
0.2 ≈ −0.248538011695906 . (8.36)

The error of the numerical calculation of the derivative is:

− 0.248538011695906− (−0.25) ≈ 0.001461988304094 . (8.37)

The error in (8.26) can be enumerated for 𝜉 = 2:

− (0.1)2

3 · − 6
24 = 0.00125 , (8.38)

and 𝜉 = 1.9:

− (0.1)2

3 · − 6
(1.9)4 ≈ 0.001534672078944 . (8.39)

The error in (8.37) lies between the values of (8.38) and (8.39). N

+

Example 8.7. Using (8.27), approximate the derivative of the function:

𝑓(𝑥) = 1
𝑥

(8.40)

at 𝑥 = 2 with the difference ℎ = 0.1.

Solution. The derivative of the function (8.40) is determined using the three-point
central difference formula:

𝑓 ′(𝑥 = 2) ≈ 𝑓(2 + 0.1)− 𝑓(2− 0.1)
2 · 0.1 =

1
2.1 −

1
1.9

0.2 ≈ −0.250626566416040 . (8.41)

The error in the calculation is:

− 0.25− (−0.250626566416040) ≈ 6.265664160400863 · 10−4 . (8.42)

In (8.27), the calculation error is expressed by the formula:

− ℎ2

6 · 𝑓
′′′(𝜉) . (8.43)

The third derivative of the function (8.40), according to (8.32), is equal to:

𝑓 ′′′(𝑥) = − 6
𝑥4 , (8.44)

130 Numerical Derivation

so that (8.43) can be calculated first for 𝜉 = 1.9:

− (0.1)2

6 · − 6
(1.9)4 ≈ 7.673360394717661 · 10−4 . (8.45)

and then for 𝜉 = 2.1:

− (0.1)2

6 · − 6
(2.1)4 ≈ 5.141890467449263 · 10−4 . (8.46)

The error in the calculation of (8.42) lies between the values of (8.45) and (8.46).
N

If the function to be solved has a fourth derivative 𝑓 ′′′(𝑥), then the second deri-
vative 𝑓 ′′(𝑥) at 𝑥1 can be determined using the polynomial of the second degree 𝑝2:

𝑓 ′′(𝑥1) = 𝑓(𝑥0)− 2 · 𝑓(𝑥1) + 𝑓(𝑥2)
ℎ2 − ℎ2

12 · 𝑓
′′′′(𝜉) , (8.47)

for 𝜉 ∈ ⟨𝑥0, 𝑥2⟩.

+

Example 8.8. Using (8.47), approximate the second derivative of the function:

𝑓(𝑥) = 1
𝑥

(8.48)

at 𝑥 = 2 with the difference ℎ = 0.1.

Solution. The approximation of the second derivative of the function (8.48) is de-
termined by substituting the appropriate values into expression (8.47):

𝑓 ′′(2) = 𝑓(2− 0.1)− 2 · 𝑓(2) + 𝑓(2 + 0.1)
(0.1)2 ≈ 0.250626566416034 . (8.49)

The analytically determined second derivative of the function (8.48) is defined
by (8.13):

𝑓 ′′(𝑥) = 2
𝑥3 , (8.50)

and for 𝑥 = 2, the exact solution is therefore:

𝑓 ′′(2) = 2
23 = 2

8 = 0.25 , (8.51)

and means that the error in calculating by (8.49) is:

0.250626566416034− 0.25 ≈ 6.265664160344797 · 10−4 . (8.52)

8.1 Finite Difference Method 131

In (8.47), the calculation error is expressed by the formula:

ℎ2

12 · 𝑓
′′′′(𝜉) . (8.53)

The fourth derivative of the function (8.48) is:

𝑓 ′′′′(𝑥) = 24
𝑥5 , (8.54)

and means that (8.53) can first be calculated for 𝜉 = 1.9:

(0.1)2

12 · 24
(1.9)5 ≈ 8.077221468123856 · 10−4 . (8.55)

and then for 𝜉 = 2.1:

(0.1)2

12 · 24
(2.1)5 ≈ 4.897038540427868 · 10−4 . (8.56)

The error in the calculation of (8.52) lies between the values of (8.55) and (8.56).
N

The relation (8.47) can also be obtained as a derivative from the first derivatives:

𝑓 ′′(𝑥) ≈ 𝑓 ′(𝑥)− 𝑓 ′(𝑥− ℎ)
ℎ

=

=

𝑓(𝑥 + ℎ)− 𝑓(𝑥)
ℎ

− 𝑓(𝑥)− 𝑓(𝑥− ℎ)
ℎ

ℎ
=

= 𝑓(𝑥 + ℎ)− 2 · 𝑓(𝑥) + 𝑓(𝑥− ℎ)
ℎ2 , (8.57)

where 𝑓 ′(𝑥) is determined using the two-point forward difference formula (8.4).
The third derivative of the function 𝑓(𝑥) is similarly determined, for example,

by using the three-point central difference formula (8.27):

𝑓 ′′′(𝑥) ≈ 𝑓 ′′(𝑥 + ℎ)− 𝑓 ′′(𝑥− ℎ)
2 · ℎ =

=

𝑓(𝑥 + 2 · ℎ)− 2 · 𝑓(𝑥 + ℎ) + 𝑓(𝑥)
ℎ2 − 𝑓(𝑥)− 2 · 𝑓(𝑥− ℎ) + 𝑓(𝑥− 2 · ℎ)

ℎ2

2 · ℎ =

= 𝑓(𝑥 + 2 · ℎ)− 2 · 𝑓(𝑥 + ℎ) + 2 · 𝑓(𝑥− ℎ)− 𝑓(𝑥− 2 · ℎ)
2 · ℎ3 , (8.58)

132 Numerical Derivation

or the fourth derivative of the function 𝑓(𝑥), for example, by using the difference
formula (8.47):

𝑓 ′′′′(𝑥) ≈ 𝑓 ′′(𝑥 + ℎ)− 2 · 𝑓 ′′(𝑥) + 𝑓 ′′(𝑥− ℎ)
ℎ2 =

=

𝑓(𝑥 + 2 · ℎ)− 2 · 𝑓(𝑥 + ℎ) + 𝑓(𝑥)
ℎ2 − 2 · 𝑓(𝑥 + ℎ)− 2 · 𝑓(𝑥) + 𝑓(𝑥− ℎ)

ℎ2 +

ℎ2

+𝑓(𝑥)− 2 · 𝑓(𝑥− ℎ) + 𝑓(𝑥− 2 · ℎ)
ℎ2

ℎ2 =

= 𝑓(𝑥 + 2 · ℎ)− 4 · 𝑓(𝑥 + ℎ) + 6 · 𝑓(𝑥)− 4 · 𝑓(𝑥− ℎ) + 𝑓(𝑥− 2 · ℎ)
ℎ4 . (8.59)

Examples to Practice!
1. Use the relationships for numerically determining the first, second, third and fourth

derivatives to calculate the slope, bending moment, shear force and load by deriving
the deflection curve of the structure from the exercises below:
a) 3.1
b) 3.2
c) 3.3.

Determine the given quantities by first tabulating them in cross-sections with spacings
of 10 cm, and then, display them graphically. Compare with the exact solution.

8.2 Numerical Differentiation with a Variable Difference 133

8.2 Numerical Differentiation with a Variable Di-
fference

In the numerical calculation of the derivative, the question arises of the size of the di-
fference ℎ. The solution lies in Neville’s algorithm (similar to Romberg’s integration
– see Chapter 7.4), which was defined by English mathematician Eric Harold Neville.
The calculation procedure is based on the three-point central difference formula 8.27.

The calculation is performed in a cycle with the control variable 𝑖 for a total 𝑛
times while the step ℎ is adjusted according to the value:

ℎ𝑖 = ℎ0

10𝑖−1 , (8.60)

where ℎ0 is the initial difference value.
The magnitude of the derivative is then:

𝑎𝑖,1 = 𝑓(𝑥 + ℎ𝑖)− 𝑓(𝑥− ℎ𝑖)
2 · ℎ𝑖

, (8.61)

which can be further refined to:

𝑎𝑖,𝑗 = 𝑎𝑖,𝑗−1 · 102·𝑗−2 − 𝑎𝑖−1,𝑗−1

102·𝑗−2 − 1
, (8.62)

for 𝑗 = 2, 3, . . . , 𝑛. The most accurate estimate of the required derivative is contai-
ned in the variable 𝑎𝑛,𝑛 at the end of the calculation. This calculation procedure is
executed by Algorithm 22.

Input : 𝑓, 𝑥, ℎ0, 𝑛

Output: a
ℎ1 = ℎ0

𝑎1,1 = 𝑓(𝑥 + ℎ1)− 𝑓(𝑥− ℎ1)
2 · ℎ1

for 𝑖← 2, 3, . . . , 𝑛 do

ℎ𝑖 = ℎ0
10𝑖−1

𝑎𝑖,1 = 𝑓(𝑥 + ℎ𝑖)− 𝑓(𝑥− ℎ𝑖)
2 · ℎ𝑖

for 𝑗 ← 2, 3, . . . , 𝑖 do

𝑎𝑖,𝑗 = 𝑎𝑖,𝑗−1 · 102·𝑗−2 − 𝑎𝑖−1,𝑗−1
102·𝑗−2 − 1

end
end

Algorithm 22: Neville’s algorithm of numerical derivation.

134 Numerical Derivation

+

Example 8.9. Calculate the derivative approximation:

𝑓(𝑥) = 1
𝑥

(8.63)

at 𝑥 = 2 using Neville’s algorithm of numerical differentiation. Compare the resulting
approximation with the result of the exact analytical solution.

Solution. The calculation of the derivative using Neville’s algorithm is executed in
Matlab, for example, as follows:

function a=neville(f,x,h0,n)
h(1)=h0;
a(1,1)=(f(x+h(1))-f(x-h(1)))/(2*h(1));
for i=2:n

h(i)=h0/(10^(i-1));
a(i,1)=(f(x+h(i))-f(x-h(i)))/(2*h(i));
for j=2:i

a(i,j)=(a(i,j-1)*10^(2*j-2)-a(i-1,j-1))/(10^(2*j-2)-1);
end

end

The result for 𝑛 = 3 is:
deriv =

-0.250626566416040 0 0
-0.250006250156248 -0.249999984335442 0
-0.250000062499978 -0.249999999998399 -0.249999999999966

Deviation from the exact solution = 3.438916e-014

N

8.3 Partial Derivatives 135

8.3 Partial Derivatives
When solving a function of two variables:

𝑧 = 𝑓(𝑥, 𝑦) , (8.64)

partial derivatives can be determined. If 𝑦 is treated as a constant, the partial
derivative with respect to 𝑥 is defined as:

𝜕𝑧

𝜕𝑥
= lim

Δ𝑥→0

𝑓(𝑥 + Δ𝑥, 𝑦)− 𝑓(𝑥, 𝑦)
Δ𝑥

. (8.65)

Conversely, the partial derivative of the function 𝑓(𝑥, 𝑦) with respect to 𝑦 takes
the form:

𝜕𝑧

𝜕𝑦
= lim

Δ𝑦→0

𝑓(𝑥, 𝑦 + Δ𝑦)− 𝑓(𝑥, 𝑦)
Δ𝑦

. (8.66)

The second partial derivatives of the function 𝑓(𝑥, 𝑦) can then be determined
using the equations:

𝜕2𝑧

𝜕𝑥2 = lim
Δ𝑥→0

𝑓(𝑥 + Δ𝑥, 𝑦)− 2 · 𝑓(𝑥, 𝑦) + 𝑓(𝑥−Δ𝑥, 𝑦)
Δ𝑥2 (8.67)

and
𝜕2𝑧

𝜕𝑦2 = lim
Δ𝑦→0

𝑓(𝑥, 𝑦 + Δ𝑦)− 2 · 𝑓(𝑥, 𝑦) + 𝑓(𝑥, 𝑦 −Δ𝑦)
Δ𝑦2 . (8.68)

We can also define the mixed partial derivative of the function 𝑓(𝑥, 𝑦):

𝜕2𝑧

𝜕𝑥𝜕𝑦
= lim

Δ𝑥,Δ𝑦→0

𝑓(𝑥 + Δ𝑥, 𝑦 + Δ𝑦)− 𝑓(𝑥 + Δ𝑥, 𝑦 −Δ𝑦)−
4 ·Δ𝑥 ·Δ𝑦

−𝑓(𝑥−Δ𝑥, 𝑦 + Δ𝑦) + 𝑓(𝑥−Δ𝑥, 𝑦 −Δ𝑦)
4 ·Δ𝑥 ·Δ𝑦

. (8.69)

The third partial derivative of the function 𝑓(𝑥, 𝑦) is determined in a manner
similar to (8.58):

𝜕3𝑧

𝜕𝑥3 = lim
Δ𝑥→0

𝑓(𝑥 + 2 ·Δ𝑥, 𝑦)− 2 · 𝑓(𝑥 + Δ𝑥, 𝑦)+
2 ·Δ𝑥3

+2 · 𝑓(𝑥−Δ𝑥, 𝑦)− 𝑓(𝑥− 2 ·Δ𝑥, 𝑦)
2 ·Δ𝑥3 (8.70)

and

𝜕3𝑧

𝜕𝑦3 = lim
Δ𝑦→0

𝑓(𝑥, 𝑦 + 2 ·Δ𝑦)− 2 · 𝑓(𝑥, 𝑦 + Δ𝑦)+
2 ·Δ𝑦3

+2 · 𝑓(𝑥, 𝑦 −Δ𝑦)− 𝑓(𝑥, 𝑦 − 2 ·Δ𝑦)
2 ·Δ𝑦3 . (8.71)

136 Numerical Derivation

The same procedure is followed for the case of the fourth partial derivatives of
the function 𝑓(𝑥, 𝑦), for example, in a manner similar to (8.59):

𝜕4𝑧

𝜕𝑥4 = lim
Δ𝑥→0

𝑓(𝑥 + 2 ·Δ𝑥, 𝑦)− 4 · 𝑓(𝑥 + Δ𝑥, 𝑦) + 6 · 𝑓(𝑥, 𝑦)−
Δ𝑥4

−4 · 𝑓(𝑥−Δ𝑥, 𝑦) + 𝑓(𝑥− 2 ·Δ𝑥, 𝑦)
Δ𝑥4 (8.72)

and

𝜕4𝑧

𝜕𝑦4 = lim
Δ𝑦→0

𝑓(𝑥, 𝑦 + 2 ·Δ𝑦)− 4 · 𝑓(𝑥, 𝑦 + Δ𝑦) + 6 · 𝑓(𝑥, 𝑦)−
Δ𝑦4

−4 · 𝑓(𝑥, 𝑦 −Δ𝑦) + 𝑓(𝑥, 𝑦 − 2 ·Δ𝑦)
Δ𝑦4 . (8.73)

We can also define the mixed fourth partial derivative of the function 𝑓(𝑥, 𝑦):

𝜕4𝑧

𝜕𝑥2𝜕𝑦2 = lim
Δ𝑥,Δ𝑦→0

𝑓(𝑥 + Δ𝑥, 𝑦 + Δ𝑦)− 2 · 𝑓(𝑥 + Δ𝑥, 𝑦) + 𝑓(𝑥 + Δ𝑥, 𝑦 −Δ𝑦)−
Δ𝑥2 ·Δ𝑦2

−2 · (𝑓(𝑥, 𝑦 + Δ𝑦)− 2 · 𝑓(𝑥, 𝑦) + 𝑓(𝑥, 𝑦 −Δ𝑦))+
Δ𝑥2 ·Δ𝑦2

+𝑓(𝑥−Δ𝑥, 𝑦 + Δ𝑦)− 2 · 𝑓(𝑥−Δ𝑥, 𝑦) + 𝑓(𝑥−Δ𝑥, 𝑦 −Δ𝑦)
Δ𝑥2 ·Δ𝑦2 . (8.74)

137

Chapter 9

Solving Differential Equations

Objectives
ó

This chapter:
∙ introduces students to the numerical solution of simple differential equati-

ons,
∙ highlights how such equations can be applied to solve elementary tasks

in construction mechanics.

Differential equations are equations which include derivatives of functions as va-
riables. According to the number of variables and the type of derivatives of functions,
differential equations are divided into:

∙ ordinary differential equations, which contain the derivatives of the desired
function with respect to only one variable,

∙ partial differential equations, which contain the derivatives of the desired func-
tion with respect to several variables, i.e., partial derivatives.

The order of a differential equation is defined according to the highest derivative
contained in the given differential equation.

The solution of a differential equation is a function that has appropriate deri-
vatives and satisfies the given differential equation—the integral of the differential
equation, of which there are infinitely many. In practical problems, the initial con-
ditions define a unique solution.

9.1 Ordinary Differential Equations of the First
Order

First-order ordinary differential equations contain one derivative of a function of one
dependent variable 𝑦(𝑥). For example, it is possible to numerically solve the function

138 Solving Differential Equations

𝑦 = 𝑦(𝑥) which in the interval ⟨𝑎, 𝑏⟩ satisfies the equation:

𝑦′(𝑥) = 𝑓(𝑥, 𝑦(𝑥)) , (9.1)

where 𝑓(𝑥, 𝑦(𝑥)) is the right-hand side of an ordinary differential equation of the
first order. To allow it to be uniquely determined, an initial condition on the form
must be satisfied:

𝑦(𝑎) = 𝑐 . (9.2)

9.1.1 Euler’s Method
The simplest computational procedure for the numerical solution of ordinary diffe-
rential equations with an initial condition was published in 1768 by Swiss mathe-
matician and physicist Leonhard Euler. The solution is based on the approximate
calculation of the derivative of the function 𝑦′(𝑥) in Equation (9.1) using the finite
difference method and the two-point forward difference formula (8.4):

𝑦′(𝑥𝑖) = 𝑓(𝑥𝑖, 𝑦(𝑥𝑖)) ≈
𝑦(𝑥𝑖+1)− 𝑦(𝑥𝑖)

ℎ
= 𝑓(𝑥𝑖, 𝑦𝑖) , (9.3)

where ℎ is the step corresponding to the value of (𝑥𝑖+1−𝑥𝑖). By simple modification
of (9.3), we can obtain the recurrence relation of Euler’s method:

𝑦𝑖+1 = 𝑦𝑖 + ℎ · 𝑓(𝑥𝑖, 𝑦𝑖) , (9.4)

for 𝑖 = 0, 1, . . . , 𝑛 − 1, where 𝑛 is the number of differences in the solved inter-
val ⟨𝑎, 𝑏⟩. The value of 𝑦0 must be uniquely determined using the initial condition
according to (9.2).

+

Example 9.1. Use Euler’s method to approximate the following ordinary differen-
tial equation in the interval ⟨−2; 3⟩:

𝑦′(𝑥) = 𝑥2 − 0.2 · 𝑦(𝑥) , (9.5)

with the initial condition 𝑦(−2) = −1. For the calculation step ℎ, successively select
ℎ as ℎ = 1, ℎ = 0.5, ℎ = 0.1 or ℎ = 0.01. Compare the resulting approximation with
the exact solution:

𝑦(𝑥) = 5 · 𝑥2 − 50 · 𝑥 + 250− 371
𝑒0.4 · 𝑒

−0.2·𝑥 . (9.6)

9.1 Ordinary Differential Equations of the First Order 139

Solution. Euler’s method is based on the recurrence relation (9.4) and is executed
in Matlab, for example, with the code:

f=inline(’x^2-0.2*y’);
a=-2;
b=3;
c=-1;
h=0.1;
n=(b-a)/h;
x(1)=a;
y(1)=c;
yexact(1)=c;
for i=1:n

x(i+1)=x(i)+h;
y(i+1)=y(i)+h*f(x(i),y(i));
yexact(i+1)=5*x4(i+1)^2-50*x4(i+1)+250-...

(371/exp(0.4))*exp(-0.2*x4(i+1));
end
[x’ y’ yexact’ (y-yexact)’]
plot(x,y,’r’,x,yexact,’b’);
legend(’Aproximation’,’Exact solution’);
title(’Euler’’s Method’);
xlabel(’x’);
ylabel(’y’);

The resulting solution for the calculation step ℎ = 0.5 is:

x y yexact y-yexact
--

-2.0000 -1.0000 -1.0000 0.0000
-1.5000 1.1000 0.5553 0.5447
-1.0000 2.1150 1.2509 0.8641
-0.5000 2.4035 1.4064 0.9971
0.0000 2.2882 1.3113 0.9769
0.5000 2.0593 1.2271 0.8322
1.0000 1.9784 1.3909 0.5875
1.5000 2.2806 2.0169 0.2637
2.0000 3.1775 3.2990 -0.1214
2.5000 4.8598 5.4127 -0.5529
3.0000 7.4988 8.5167 -1.0179

Figure 9.1 compares the accuracies of the solution for individual values of the
calculation steps ℎ = 1, ℎ = 0.5, ℎ = 0.1 and ℎ = 0.01.

N

140 Solving Differential Equations

Fig. 9.1 Resulting approximation of the function 𝑦(𝑥) in Exercise 9.1 for steps ℎ = 1,
ℎ = 0.5, ℎ = 0.1 and ℎ = 0.01.

Comment 9.2. The solution to the problem in Exercise 9.1 can also be checked
with Matlab’s mathematical tools. One option is the ode45 function, for example
with a solution inaccuracy tolerance of 1 · 10−9. It is first necessary to enter the
solved differential equation using a separate m-function:

function y=funct(x,y);
y=x^2-0.2*y;

which can then be referred to:

options=odeset(’AbsTol’,1e-9);
[x,y]=ode45(@funct,[-2 3],-1,options)

The final command lists the values of the resulting function 𝑦(𝑥) at 𝑥𝑖. If the
command is modified to:

ode45(@funct,[-2 3],-1)

9.1 Ordinary Differential Equations of the First Order 141

Fig. 9.2 Resulting approximation of the function 𝑦(𝑥) in Exercise 9.1 produced by
the function ode45.

the graph of the solved function 𝑦(𝑥) is displayed (see Fig. 9.2).
The second option to solve the problem in Exercise 9.1 using Matlab commands

is the dsolve function for the symbolic solution of ordinary differential equations,
followed by vectorization of the function 𝑦(𝑥), with the sequence of commands:

syms y(x) x
eqn = diff(y,x) == x^2-0.2*y;
cond = y(-2)== -1;
y(x) = dsolve(eqn,cond)
x=linspace(-2,3,1000);
z=eval(vectorize(y));
plot(x,z)

The resulting expression produced by the dsolve function:

y =
5*x^2 - 371*exp(-x/5)*exp(-2/5) - 50*x + 250

is identical to the exact solution (9.6).

142 Solving Differential Equations

+

Example 9.3. Using Euler’s method, determine the course of the shear force on
the cantilever beam shown schematically in Fig. 9.3. Specific input data are given
in Table 9.1. Choose ℎ as ℎ = 1 or ℎ = 0.5. Compare the resulting approximation
with the exact solution.

Fig. 9.3 Statics diagram for the solution of the statically determined cantilever.

Continuous force loading 𝑞𝑧 : 4 kN/m
Cantilever span 𝑙 : 6 m

Tab. 9.1 Input data from Exercise 9.3.

Solution. The ordinary differential equation of the first order follows from the well
known Schwedler formula:

𝑉𝑧(𝑥)
d𝑥

= −𝑞𝑧(𝑥) = const→ 𝑦′(𝑥) = −𝑞𝑧 · 𝑥0 . (9.7)

The initial condition is based on the static boundary condition, which indicates
the zero value of the shear force at the free edge of the cantilever, i.e.:

𝑉𝑧(𝑥 = 0) = 𝑦(𝑥 = 0) = 0 . (9.8)

Approximation of the shear force using Euler’s method is based on the recurrence
formula (9.4). The exact solution corresponds to the analytically derived equation
for the shear force 𝑉𝑧(𝑥):

𝑉𝑧(𝑥) = −𝑞𝑧 · 𝑥 . (9.9)

9.1 Ordinary Differential Equations of the First Order 143

Because the shear force function is linear, in this case, Euler’s method yields an
exact solution:

x y yexac y-yexac
--

0.0000 0.0000 0.0000 0.0000
0.5000 -2.0000 -2.0000 0.0000
1.0000 -4.0000 -4.0000 0.0000
1.5000 -6.0000 -6.0000 0.0000
2.0000 -8.0000 -8.0000 0.0000
2.5000 -10.0000 -10.0000 0.0000
3.0000 -12.0000 -12.0000 0.0000
3.5000 -14.0000 -14.0000 0.0000
4.0000 -16.0000 -16.0000 0.0000
4.5000 -18.0000 -18.0000 0.0000
5.0000 -20.0000 -20.0000 0.0000
5.5000 -22.0000 -22.0000 0.0000
6.0000 -24.0000 -24.0000 0.0000

N

+

Example 9.4. Using Euler’s method, determine the course of bending moments on
the cantilever described in Exercise 9.3. Select ℎ = 1 or ℎ = 0.5 for the calculation
step ℎ. Compare the resulting approximation with the exact solution.

Solution. The ordinary differential equation of the first order once again follows
from the Schwedler formula:

𝑀𝑦(𝑥)
d𝑥

= 𝑉𝑧(𝑥)→ 𝑦′(𝑥) = −𝑞𝑧 · 𝑥 . (9.10)

The initial condition is based on the static boundary condition, which indicates
the zero value of the bending moment at the free edge of the cantilever:

𝑀𝑦(𝑥 = 0) = 𝑦(𝑥 = 0) = 0 . (9.11)

Calculation of the approximation of the course of the bending moment using Eu-
ler’s method is based on the recurrence relation (9.4). The exact solution corresponds
to the analytically derived equation for the bending moment 𝑀𝑦(𝑥):

𝑀𝑦(𝑥) = −𝑞𝑧 · 𝑥2

2 . (9.12)

For the calculation step ℎ = 0.5, the results obtained by using Euler’s method
are as follows:

144 Solving Differential Equations

x y yexac y-yexac
--

0.0000 0.0000 0.0000 0.0000
0.5000 0.0000 -0.5000 0.5000
1.0000 -1.0000 -2.0000 1.0000
1.5000 -3.0000 -4.5000 1.5000
2.0000 -6.0000 -8.0000 2.0000
2.5000 -10.0000 -12.5000 2.5000
3.0000 -15.0000 -18.0000 3.0000
3.5000 -21.0000 -24.5000 3.5000
4.0000 -28.0000 -32.0000 4.0000
4.5000 -36.0000 -40.5000 4.5000
5.0000 -45.0000 -50.0000 5.0000
5.5000 -55.0000 -60.5000 5.5000
6.0000 -66.0000 -72.0000 6.0000

Figure 9.4 plots the course of the calculated bending moments.
N

Fig. 9.4 The resulting approximation of the bending moments on the cantilever in
Exercise 9.3.

9.1 Ordinary Differential Equations of the First Order 145

9.1.2 Runge–Kutta Method
Methods based on the Runge–Kutta calculation procedure are suitable for solving
ordinary differential equations of the form (9.1). These computing techniques were
developed around 1900 by German mathematicians Carl Runge and Martin Wilhelm
Kutta. They are expressed by the general recurrence relation:

𝑦𝑖+1 = 𝑦𝑖 + ℎ ·
𝑠∑︁

𝑖=1

(𝑏𝑖 · 𝑘𝑖) , (9.13)

where the coefficients 𝑘𝑖 are given by the general relation:

𝑘𝑖 = 𝑓(𝑥𝑖 + 𝑐𝑖 · ℎ, 𝑦𝑖 + ℎ ·
𝑖−1∑︁
𝑗=1

(𝑎𝑖,𝑗 · 𝑘𝑗)) . (9.14)

Table 9.2 and Table 9.3 list the coefficients 𝑎𝑖,𝑗, 𝑏𝑖 and 𝑐𝑖 for 𝑖, 𝑗 = 1, . . . , 𝑠 for
Kutta’s method of the third order (𝑠 = 3) and the classic Runge–Kutta method of
the fourth order (𝑠 = 4), respectively.

𝑐1 = 0 𝑎1,1 = 0 𝑎1,2 = 0 𝑎1,3 = 0
𝑐2 = 1

2 𝑎2,1 = 1
2 𝑎2,2 = 0 𝑎2,3 = 0

𝑐3 = 1 𝑎3,1 = −1 𝑎3,2 = 2 𝑎3,3 = 0
𝑏1 = 1

6 𝑏2 = 2
3 𝑏3 = 1

6

Tab. 9.2 Coefficients 𝑎𝑖,𝑗, 𝑏𝑖 and 𝑐𝑖 of Kutta’s method.

𝑐1 = 0 𝑎1,1 = 0 𝑎1,2 = 0 𝑎1,3 = 0 𝑎1,4 = 0
𝑐2 = 1

2 𝑎2,1 = 1
2 𝑎2,2 = 0 𝑎2,3 = 0 𝑎2,4 = 0

𝑐3 = 1
2 𝑎3,1 = 0 𝑎3,2 = 1

2 𝑎3,3 = 0 𝑎3,4 = 0
𝑐4 = 1 𝑎4,1 = 0 𝑎4,2 = 0 𝑎4,3 = 1 𝑎4,4 = 0

𝑏1 = 1
6 𝑏2 = 1

3 𝑏3 = 1
3 𝑏4 = 1

6

Tab. 9.3 Coefficients 𝑎𝑖,𝑗, 𝑏𝑖 and 𝑐𝑖 of the classic Runge–Kutta method.

Comment 9.5. Using (9.13) and (9.14), it is possible to express the recurrent ex-
pression (9.4) for calculation with Euler’s method, which is of order 𝑠 = 1. Table 9.4
lists the corresponding coefficients 𝑎𝑖,𝑗, 𝑏𝑖 and 𝑐𝑖.

146 Solving Differential Equations

𝑐1 = 0 𝑎1,1 = 0
𝑏1 = 1

Tab. 9.4 Coefficients 𝑎𝑖,𝑗, 𝑏𝑖 and 𝑐𝑖 of Euler’s method.

A number of adaptive methods are based on the principle of the Runge–Kutta
method, for example the Heun–Euler method (𝑠 = 2, Table 9.5), the Ralston method
(𝑠 = 3, Table 9.6), and the Bogacki–Shampine method (𝑠 = 4, Table 9.7).

𝑐1 = 0 𝑎1,1 = 0 𝑎1,2 = 0
𝑐2 = 1 𝑎2,1 = 1 𝑎2,2 = 0

𝑏1 = 1 𝑏2 = 0

Tab. 9.5 Coefficients 𝑎𝑖,𝑗, 𝑏𝑖 and 𝑐𝑖 of the Heun–Euler method.

𝑐1 = 0 𝑎1,1 = 0 𝑎1,2 = 0 𝑎1,3 = 0
𝑐2 = 1

2 𝑎2,1 = 1
2 𝑎2,2 = 0 𝑎2,3 = 0

𝑐3 = 3
4 𝑎3,1 = 0 𝑎3,2 = −3

4 𝑎3,3 = 0
𝑏1 = 2

9 𝑏2 = 3
9 𝑏3 = 4

9

Tab. 9.6 Coefficients 𝑎𝑖,𝑗, 𝑏𝑖 and 𝑐𝑖 of Ralston’s method.

𝑐1 = 0 𝑎1,1 = 0 𝑎1,2 = 0 𝑎1,3 = 0 𝑎1,4 = 0
𝑐2 = 1

2 𝑎2,1 = 1
2 𝑎2,2 = 0 𝑎2,3 = 0 𝑎2,4 = 0

𝑐3 = 3
4 𝑎3,1 = 0 𝑎3,2 = 3

4 𝑎3,3 = 0 𝑎3,4 = 0
𝑐4 = 1 𝑎4,1 = 2

9 𝑎4,2 = 1
3 𝑎4,3 = 4

9 𝑎4,4 = 0
𝑏1 = 7

24 𝑏2 = 1
4 𝑏3 = 1

3 𝑏4 = 1
8

Tab. 9.7 Coefficients 𝑎𝑖,𝑗, 𝑏𝑖 and 𝑐𝑖 of the Bogacki–Shampine method.

+

Example 9.6. Using the Runge–Kutta method, approximate the ordinary differen-
tial equation in Exercise 9.1:

𝑦′(𝑥) = 𝑥2 − 0.2 · 𝑦(𝑥) , (9.15)

in the interval ⟨−2; 3⟩, with the initial condition 𝑦(−2) = −1. For ℎ, successively
select ℎ = 1, ℎ = 0.5, ℎ = 0.1 or ℎ = 0.01. Compare the resulting approximation
with the exact solution.

9.1 Ordinary Differential Equations of the First Order 147

Solution. The relations (9.13) and (9.14), which express the fundamental concept of
the Runge–Kutta method, can be applied with the calculation step size ℎ = 1 and
the values of the coefficients 𝑎𝑖,𝑗, 𝑏𝑖 and 𝑐𝑖 from Table 9.3 in the following manner:

f=inline(’x^2-0.2*y’);
a=-2;
b=3;
c=-1;
h=1;
n=(b-a)/h;
x(1)=a; y(1)=c;
for i=1:n

x(i+1)=x(i)+h;
K1=h*f(x(i),y(i));
K2=h*f(x(i)+h/2,y(i)+K1/2);
K3=h*f(x(i)+h/2,y(i)+K2/2);
K4=h*f(x(i)+h,y(i)+K3);
y(i+1)=y(i)+(K1+2*K2+2*K3+K4)/6;

end
[x’ y’], plot(x,y,’r’);

A comparison of the results with the exact solution (Fig. 9.5)

x y yexac y-yexac
--

-2.0000 -1.0000 -1.0000 0.0000
-1.0000 1.2508 1.2509 -0.0001
0.0000 1.3112 1.3113 -0.0001
1.0000 1.3910 1.3909 0.0001
2.0000 3.2994 3.2990 0.0004
3.0000 8.5175 8.5167 0.0008

indicates that the accuracy of the calculated approximations is significantly greater
than the accuracy achieved with Euler’s method.

N

+

Example 9.7. Using methods based on the classical Runge–Kutta method, for
example Kutta’s third-order, Heun–Euler, Ralston or Bogacki–Shampine, approxi-
mate the ordinary differential equation given in Exercise 9.1:

𝑦′(𝑥) = 𝑥2 − 0.2 · 𝑦(𝑥) , (9.16)
in the interval ⟨−2; 3⟩, with the initial condition 𝑦(−2) = −1. For the calculation
step ℎ, successively select ℎ = 1, ℎ = 0.5, ℎ = 0.1 and ℎ = 0.01. Compare the
resulting approximation with the exact solution.

148 Solving Differential Equations

Fig. 9.5 The resulting approximation from the Runge–Kutta method.

+

Example 9.8. Using the Runge–Kutta method, determine the course of bending
moments on the cantilever described in Exercise 9.3. For the calculation step ℎ, select
ℎ = 1 or ℎ = 0.5. Compare the resulting approximation with the exact solution.

Solution. Calculation of the approximation of the course of bending moments using
the Runge-Kutta method is based on the recurrence relations (9.13) and (9.14) and
the respective values of the coefficients 𝑎𝑖,𝑗, 𝑏𝑖 and 𝑐𝑖 listed in Table 9.3.

For the calculation step ℎ = 0.5, the Runge–Kutta method generates significantly
more accurate results than Euler’s method:

x y yexac y-yexac
--

0.0000 0.0000 0.0000 0.0000
0.5000 -0.5000 -0.5000 0.0000
1.0000 -2.0000 -2.0000 0.0000
1.5000 -4.5000 -4.5000 0.0000
2.0000 -8.0000 -8.0000 0.0000
2.5000 -12.5000 -12.5000 0.0000

9.1 Ordinary Differential Equations of the First Order 149

3.0000 -18.0000 -18.0000 0.0000
3.5000 -24.5000 -24.5000 0.0000
4.0000 -32.0000 -32.0000 0.0000
4.5000 -40.5000 -40.5000 0.0000
5.0000 -50.0000 -50.0000 0.0000
5.5000 -60.5000 -60.5000 0.0000
6.0000 -72.0000 -72.0000 0.0000

Figure 9.6 plots the results for the calculated bending moments.
N

Fig. 9.6 Resulting approximation of the bending moments on the cantilever described
in Exercise 9.8.

+

Example 9.9. Determine the course of bending moments on the cantilever beam
from Exercise 9.3 using the other methods based on the classic Runge–Kutta method,
i.e., Kutta’s third-order method, the Heun–Euler method, the Ralston method and
the Bogacki–Shampine method. For the calculation step ℎ, successively select ℎ = 1,
ℎ = 0.5, ℎ = 0.1 and ℎ = 0.01. Compare the resulting approximation with the exact
solution.

150 Solving Differential Equations

9.1.3 Leapfrog Method
The leapfrog method is an example of a two-step method and is based on a recurrent
formula:

𝑦𝑖+1 = 𝑦𝑖−1 + 2 · ℎ · 𝑓(𝑥𝑖, 𝑦𝑖) . (9.17)

To calculate the value of 𝑦𝑖+1, the values of the function 𝑦𝑖 and 𝑦𝑖−1 at the two
previous points must be known. When the calculation begins, both values in the
initial section 𝑦0 and 𝑦1 are determined from the initial condition using one of the
one-step methods.

The leapfrog method is named thus because it describes the value of the calcu-
lated approximation which oscillates around the exact solution.

+

Example 9.10. Using the leapfrog method, approximate the ordinary differential
equation given in Exercise 9.1:

𝑦′(𝑥) = 𝑥2 − 0.2 · 𝑦(𝑥) , (9.18)

in the interval ⟨−2; 3⟩, with the initial condition 𝑦(−2) = −1. To determine the
value of the function at the second point of the calculation of 𝑦(−2 + ℎ), use Euler’s
methods. For the calculation step ℎ, successively select ℎ = 1, ℎ = 0.5, ℎ = 0.1 and
ℎ = 0.01. Compare the resulting approximation with the exact solution.

Solution. The leapfrog method is based on the recurrence relation (9.17). An exam-
ple of a program’s code for this method and a calculation step size of ℎ = 0.5 is
given below:

f=inline(’x^2-0.2*y’);
a=-2; b=3;
c=-1;
h=0.5;
n=(b-a)/h;
x(1)=a; y(1)=c;
x(2)=x(1)+h; y(2)=y(1)+h*f(x(1),y(1));;
for i=2:n

x(i+1)=x(i)+h;
y(i+1)=y(i-1)+2*h*f(x(i),y(i));

end
[x’ y’], plot(x,y,’r’);

Figure 9.7 plots the calculated approximation resulting from the leapfrog method
for a calculation step of ℎ = 0.5. The figure also illustrates the leapfrog method’s
characteristic calculation procedure, namely oscillation around the exact solution.

9.1 Ordinary Differential Equations of the First Order 151

Fig. 9.7 Resulting approximation of the leapfrog method with a computational step
of ℎ = 0.5.

The numerical results and deviations from the exact solution are summarized
below:

x y yexac y-yexac
--

-2.0000 -1.0000 -1.0000 0.0000
-1.5000 1.1000 0.5553 0.5447
-1.0000 1.0300 1.2509 -0.2209
-0.5000 1.8940 1.4064 0.4876
0.0000 0.9012 1.3113 -0.4101
0.5000 1.7138 1.2271 0.4866
1.0000 0.8084 1.3909 -0.5824
1.5000 2.5521 2.0169 0.5352
2.0000 2.5480 3.2990 -0.7509
2.5000 6.0425 5.4127 0.6298
3.0000 7.5895 8.5167 -0.9272

N

152 Solving Differential Equations

9.2 Ordinary Differential Equations of the Second
Order

As in the case of first-order ordinary differential equations (9.1), we can also solve
second-order ordinary differential equations:

𝑦′′(𝑥) = 𝑓(𝑥, 𝑦(𝑥), 𝑦′(𝑥)) . (9.19)
There are many types of second-order differential equation; for example, we can

solve ordinary differential equations with constant coefficients 𝑎,𝑏 and 𝑐, expressed
in the form:

𝑎 · 𝑦′′(𝑥) + 𝑏 · 𝑦′(𝑥) + 𝑐 · 𝑦(𝑥) = 𝑓(𝑥) . (9.20)
The numerical solution of equations such as (9.20) is based on conversion into

a system of two differential equations:

𝑧(𝑥) = 𝑦′(𝑥) (9.21)

and
𝑧′(𝑥) = 𝑓(𝑥)− 𝑏 · 𝑧(𝑥)− 𝑐 · 𝑦(𝑥)

𝑎
. (9.22)

Solving this case then requires two initial conditions:

𝑦(𝑎) = 𝑐 (9.23)

and
𝑧(𝑏) = 𝑑 . (9.24)

+

Example 9.11. Determine the course of the bending moments on the cantilever
described in Exercise 9.3 by solving an ordinary differential equation of the second
order based on Schwedler’s relations:

𝑀𝑦(𝑥)
d𝑥2 = −𝑞𝑧(𝑥) = const→ 𝑦′′(𝑥) = −𝑞𝑧 · 𝑥0 . (9.25)

The initial conditions are based on static boundary conditions, which indicate
a zero value of the shear force and the bending moment at the free edge of the
cantilever beam, i.e.:

𝑉𝑧(𝑥 = 0) = 𝑦′(𝑥 = 0) = 0 (9.26)
and

𝑀𝑦(𝑥 = 0) = 𝑦(𝑥 = 0) = 0 . (9.27)
Use Euler’s method for the numerical solution. As for the calculation step ℎ,

choose ℎ = 1 or ℎ = 0.5. Compare the resulting approximation with the exact
solution.

9.2 Ordinary Differential Equations of the Second Order 153

Solution. The entire calculation procedure is clear from the code of the program
with the calculation step ℎ = 0.5 in a Matlab m-file:

f=inline(’-4*x^0’);
q=4;
a=0;
b=6;
c=0;
d=0;
h=0.5;
n=(b-a)/h;
x(1)=a;
y(1)=c;
y2(1)=d;
for i=1:n

x(i+1)=x(i)+h;
y(i+1)=y(i)+h*f(x(i));
y2(i+1)=y2(i)+h*(y(i));

end
[x’ y2’]
plot(x,y2,’r’);

The coding can be improved in the following way (the solved function 𝑦(𝑥) and
its derivative 𝑦′(𝑥) are stored in one variable):

f=inline(’-4*x^0’);
q=4;
a=0;
b=6;
c=0;
d=0;
h=0.5;
x=a:h:b;
f=inline(’-4*x^0’);
y(1,:)=[d c];
for i=2:length(x)

K1=[y(i-1,2) -q];
y(i,:)=y(i-1,:)+K1*h;

end
[x’ y(:,1)]
plot(x,y(:,1),’r’);

154 Solving Differential Equations

For the calculation step ℎ = 0.5, the following results can be obtained using
Euler’s method:

x y yexac y-yexac
--

0.0000 0.0000 0.0000 0.0000
0.5000 0.0000 -0.5000 0.5000
1.0000 -1.0000 -2.0000 1.0000
1.5000 -3.0000 -4.5000 1.5000
2.0000 -6.0000 -8.0000 2.0000
2.5000 -10.0000 -12.5000 2.5000
3.0000 -15.0000 -18.0000 3.0000
3.5000 -21.0000 -24.5000 3.5000
4.0000 -28.0000 -32.0000 4.0000
4.5000 -36.0000 -40.5000 4.5000
5.0000 -45.0000 -50.0000 5.0000
5.5000 -55.0000 -60.5000 5.5000
6.0000 -66.0000 -72.0000 6.0000

N

+

Example 9.12. Solve the differential equation (9.25) from Exercise 9.11 to deter-
mine the course of bending moments using the classic Runge–Kutta method.

Solution. The entire calculation procedure is again evident from the code of the
program implementing a calculation step of ℎ = 0.5 in a Matlab m-file:

f=inline(’-4*x^0’);
q=4;
a=0;
b=6;
c=0;
d=0;
h=0.5;
n=(b-a)/h;
x(1)=a;
y(1)=c;
y2(1)=d;
for i=1:n

K1=f(x(i));
K2=f(x(i)+h/2);
K3=f(x(i)+h/2);
K4=f(x(i)+h);

9.2 Ordinary Differential Equations of the Second Order 155

y(i+1)=y(i)+h*((K1+K4)/6+(K2+K3)/3);
K1=y(i);
K2=(y(i)+y(i+1))/2;
K3=(y(i)+y(i+1))/2;
K4=y(i+1);
y2(i+1)=y2(i)+h*((K1+K4)/6+(K2+K3)/3);
x(i+1)=x(i)+h;

end
[x’ y2’]
plot(x,y2,’r’);

Even in this case, the coding can be improved by storing the solved function 𝑦(𝑥)
and its derivative 𝑦′(𝑥) in a single variable:

f=inline(’-4*x^0’);
q=4;
a=0;
b=6;
c=0;
d=0;
h=0.5;
x=a:h:b;
f=inline(’-4*x^0’);
y(1,:)=[d c];
for i=2:length(x)

K1=f(x(i-1));
K2=f(x(i-1)+h/2);
K3=f(x(i-1)+h/2);
K4=f(x(i-1)+h);
y(i,2)=y(i-1,2)+h*((K1+K4)/6+(K2+K3)/3);
K1=y(i-1,2);
K2=(y(i-1,2)+y(i,2))/2;
K3=(y(i-1,2)+y(i,2))/2;
K4=y(i,2);
y(i,1)=y(i-1,1)+h*((K1+K4)/6+(K2+K3)/3);

end
[x’ y(:,1)]
plot(x,y(:,1),’r’);

156 Solving Differential Equations

For the calculation step ℎ = 0.5, the Runge–Kutta method can obtain signifi-
cantly more accurate results than Euler’s method:

x y yexac y-yexac
--

0.0000 0.0000 0.0000 0.0000
0.5000 -0.5000 -0.5000 0.0000
1.0000 -2.0000 -2.0000 0.0000
1.5000 -4.5000 -4.5000 0.0000
2.0000 -8.0000 -8.0000 0.0000
2.5000 -12.5000 -12.5000 0.0000
3.0000 -18.0000 -18.0000 0.0000
3.5000 -24.5000 -24.5000 0.0000
4.0000 -32.0000 -32.0000 0.0000
4.5000 -40.5000 -40.5000 0.0000
5.0000 -50.0000 -50.0000 0.0000
5.5000 -60.5000 -60.5000 0.0000
6.0000 -72.0000 -72.0000 0.0000

N

+

Example 9.13. Solve the differential equation (9.25) from Exercise 9.11 for de-
termining the course of bending moments using other methods that are based on
the classic Runge–Kutta method, i.e. the Kutta method of the third order, the
Heun–Euler method, and the Ralston and Bogacki–Shampine methods.

+

Example 9.14. Determine the shape of the deflection curve of the cantilever beam
schematically shown in Fig. 9.8. Specific input data are given in Table 9.8. Use
Euler’s method for the numerical solution. For the calculation step ℎ, choose ℎ = 0.5,
ℎ = 0.25, ℎ = 0.1, or ℎ = 0.01. Compare the resulting approximation with the exact
solution.

Continuous force loading 𝑞𝑧 : 4 kN/m
Cantilever beam span 𝑙 : 3 m
Width of the rectangular cross-section 𝑏 : 0.02 m
Height of the rectangular cross-section ℎ : 0.15 m
Moment of inertia 𝐼𝑦 : 1

12 · 0.02 · 0.153 = 5.625 · 10−6 m4

Modulus of elasticity in tension
and compression 𝐸 : 2.1 · 1011 Pa

Tab. 9.8 Input data from Exercise 9.14.

9.2 Ordinary Differential Equations of the Second Order 157

Fig. 9.8 Static diagram of solved statically determined cantilever beam.

Solution. A second-order ordinary differential equation has the following form:

𝐸𝐼𝑦𝑤𝑧(𝑥)′′ = −𝑀𝑦(𝑥) , (9.28)

where 𝐸𝐼𝑦 is the bending stiffness of the beam (constant and non-zero).
The initial conditions are based on the deformation boundary conditions, which

indicate a zero value of deflection and rotation in the cantilever beam, i.e.:

𝜙𝑦(𝑥 = 0) = 𝑤′
𝑧(𝑥 = 0) = 0 (9.29)

and
𝑤𝑧(𝑥 = 0) = 𝑦(𝑥 = 0) = 0 . (9.30)

From the equilibrium conditions, the size of the force reaction in the cantilever
can be determined first:

𝑅𝑎,𝑧 = 𝑞𝑧 · 𝑙 (↑) , (9.31)

moment reaction in the cantilever beam:

𝑀𝑎,𝑦 = 𝑞𝑧 · 𝑙2

2 () , (9.32)

and finally the bending moment equation itself:

𝑀𝑦(𝑥) = −𝑞𝑧 · 𝑙2

2 + 𝑞𝑧 · 𝑙 · 𝑥−
𝑞𝑧 · 𝑥2

2 = 𝑞𝑧 ·
(︂
− 𝑙2

2 + 𝑙 · 𝑥− 𝑥2

2

)︂
, (9.33)

which appears in the solved differential equation (9.28).

158 Solving Differential Equations

The calculation via the Euler method can then be performed for a step of ℎ = 0.25
using the horner function (see chapter 3.1) and the following sequence of commands:

qz=4000;
l=3;
E=2.1*10^11;
width=0.02;
height=0.15;
Iy=1/12*width*height^3;
M=[-qz/2*l^2 qz*l -qz/2];
a=0;
b=l;
c=0;
d=0;
h=0.25;
n=(b-a)/h;
x(1)=a;
y(1)=c;
y2(1)=d;
for i=1:n

x(i+1)=x(i)+h;
y(i+1)=y(i)-h*horner(2,M,x(i+1))/(E*Iy);
y2(i+1)=y2(i)+h*y(i)*1000;

end
[x’ y2’]
plot(x,y2,’r’);

The achieved results can be compared with the exact value based on the analy-
tically determined equation of the deflection curve:

𝑤𝑧(𝑥) = 𝑞𝑧

𝐸𝐼𝑦

·
(︂

𝑙2 · 𝑥2

4 − 𝑙 · 𝑥3

6 + 𝑥4

24

)︂
. (9.34)

For the calculation step ℎ = 0.25, the following numerical values of the resulting
solution are obtained:

x y1 y1exac y[mm] yexac[mm] y-yexac
--

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.2500 0.0032 0.0035 0.0000 0.4503 -0.4503
0.5000 0.0058 0.0064 0.8003 1.7019 -0.9017
0.7500 0.0080 0.0088 2.2619 3.6161 -1.3542
1.0000 0.0097 0.0107 4.2593 6.0670 -1.8078
1.2500 0.0110 0.0122 6.6799 8.9424 -2.2625
1.5000 0.0119 0.0133 9.4246 12.1429 -2.7183

9.2 Ordinary Differential Equations of the Second Order 159

1.7500 0.0126 0.0141 12.4074 15.5826 -3.1752
2.0000 0.0130 0.0147 15.5556 19.1887 -3.6332
2.2500 0.0133 0.0150 18.8095 22.9018 -4.0923
2.5000 0.0134 0.0152 22.1230 26.6755 -4.5525
2.7500 0.0134 0.0152 25.4630 30.4767 -5.0138
3.0000 0.0134 0.0152 28.8095 34.2857 -5.4762

Figure 9.9 shows the calculated approximation of the deflection curve of the
cantilever beam determined by Euler’s method for a calculation step of ℎ = 0.25.

Fig. 9.9 The resulting approximation of the deflection curve of the cantilever beam
with a calculation step of ℎ = 0.25.

N

+

Example 9.15. Approximate the deflection curve of the cantilever beam from Exer-
cise 9.14 using the Runge–Kutta method.

160 Solving Differential Equations

Solution. The calculation of the deflection curve approximation can be done by the
following m-script:

qz=4000;
l=3;
E=2.1*10^11;
width=0.02;
height=0.15;
Iy=1/12*width*height^3;
M=[-qz/2*l^2 qz*l -qz/2];
a=0;
b=l;
h=0.25;
n=(b-a)/h;
c=0;
d=0;
x(1)=a;
y(1)=c;
y2(1)=d;
for i=1:n

x(i+1)=x(i)+h;
K1=horner(2,M,x(i))/(E*Iy);
K2=horner(2,M,x(i)+h/2)/(E*Iy);
K3=horner(2,M,x(i)+h/2)/(E*Iy);
K4=horner(2,M,x(i)+h)/(E*Iy);
y(i+1)=y(i)-h*((K1+K4)/6+(K2+K3)/3);
K1=y(i)*1000;
K2=(y(i)+y(i+1))*1000/2;
K3=(y(i)+y(i+1))*1000/2;
K4=y(i+1)*1000;
y2(i+1)=y2(i)+h*((K1+K4)/6+(K2+K3)/3);

end
[x’ y2’]
plot(x,y2,’r’);

For the calculation step ℎ = 0.5, the Runge–Kutta method can obtain signifi-
cantly more accurate results than the Euler’s method:

x y1 y1exac y[mm] yexac[mm] y-yexac
--

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.2500 0.0035 0.0035 0.4376 0.4503 -0.0127
0.5000 0.0064 0.0064 1.6777 1.7019 -0.0243
0.7500 0.0088 0.0088 3.5813 3.6161 -0.0347

9.2 Ordinary Differential Equations of the Second Order 161

1.0000 0.0107 0.0107 6.0229 6.0670 -0.0441
1.2500 0.0122 0.0122 8.8900 8.9424 -0.0524
1.5000 0.0133 0.0133 12.0833 12.1429 -0.0595
1.7500 0.0141 0.0141 15.5170 15.5826 -0.0656
2.0000 0.0147 0.0147 19.1182 19.1887 -0.0705
2.2500 0.0150 0.0150 22.8274 22.9018 -0.0744
2.5000 0.0152 0.0152 26.5983 26.6755 -0.0772
2.7500 0.0152 0.0152 30.3979 30.4767 -0.0788
3.0000 0.0152 0.0152 34.2063 34.2857 -0.0794

N

+

Example 9.16. Approximate the deflection curve of the cantilever beam from Exer-
cise 9.14 using the other methods based on the classic Runge–Kutta method, i.e.
Kutt’s third-order method, the Heun–Euler method, the Ralston method and the
Bogacki–Shampine method.

+

Example 9.17. Approximate the following ordinary differential equation of the
second order:

𝑦′′(𝑡) + 100 · 𝑦′(𝑡) + 10000 · 𝑦(𝑡) = 10000 · | sin(377 · 𝑡)| (9.35)

in the interval ⟨0; 0.08⟩ with initial conditions 𝑦(0) = 0 and 𝑦′(0) = 0. For the
numerical solution, use Euler’s method and the classical Runge–Kutta method of
the 4th order. As for the calculation step ℎ, successively choose ℎ = 0.01, ℎ = 0.0025
and ℎ = 0.0001. Compare the resulting approximation with the solution using the
ode45 function of Matlab.

Solution. Matlab does not have functions for solving ordinary differential equati-
ons of the second order. The solution is based on converting the problem into a sys-
tem of two differential equations described by the relations (9.21) and (9.22). In the
case of the solved problem, the given decomposition is performed using a separate
m-function, such as:

function y=funct(t,y);
y=[y(2);-100*y(2)-10000*y(1)+10000*abs(sin(377*t))];

which in m-script can be referred to for example as follows:

t0=[0 0];
interval=[0,0.08];
options = odeset(’AbsTol’,1e-9);
[t,y]=ode45(@funct,interval,t0,options)
plot(t,y(:,1))

162 Solving Differential Equations

A program that performs the calculation of the solved differential equation of
the 2nd order by Euler’s method, the classic Runge–Kutta method of the 4th order
and the ode45 function of Matlab for the calculation step ℎ = 0.0025 could for
instance look as follows:

a=0;
b=0.08;
c=0;
d=0;
h=0.0025;
n=(b-a)/h;
x(1)=a;
ye(1)=c;
yrk(1)=c;
y2e(1)=d;
y2rk(1)=d;
for i=1:n

x(i+1)=x(i)+h;
ye(i+1)=ye(i)+h*(1E4*abs(sin(377*x(i)))-100*ye(i)-1E4*y2e(i));
y2e(i+1)=y2e(i)+h*(ye(i));
K1=h*(1E4*abs(sin(377*x(i)))-100*yrk(i)-1E4*y2rk(i));
K2=h*(1E4*abs(sin(377*(x(i)+h/2)))-100*(yrk(i)+K1/2)-1E4*y2rk(i));
K3=h*(1E4*abs(sin(377*(x(i)+h/2)))-100*(yrk(i)+K2/2)-1E4*y2rk(i));
K4=h*(1E4*abs(sin(377*(x(i)+h)))-100*(yrk(i)+K3)-1E4*y2rk(i));
yrk(i+1)=yrk(i)+(K1+2*K2+2*K3+K4)/6;
K1=yrk(i);
K2=(yrk(i)+yrk(i+1))/2;
K3=(yrk(i)+yrk(i+1))/2;
K4=yrk(i+1);
y2rk(i+1)=y2rk(i)+h*((K1+K4)/6+(K2+K3)/3);

end
t0=[0 0];
interval=[0,0.08];
options=odeset(’AbsTol’,1e-9);
[xm,y2m]=ode45(@funct,interval,t0,options);
[x’ y2e’ y2rk’]
plot(x,y2e,’r’,x,y2rk,’b’,xm,y2m(:,1),’k:’);

9.2 Ordinary Differential Equations of the Second Order 163

The numerical results obtained by Euler’s method and the Runge–Kutta method
for a calculation step of ℎ = 0.0025 are as follows:

x y_eul y_rk

0.0000 0.0000 0.0000
0.0025 0.0000 0.0126
0.0050 0.0000 0.0610
0.0075 0.0506 0.1415
0.0100 0.1479 0.2242
0.0125 0.2371 0.3098
0.0150 0.3315 0.4091
0.0175 0.4499 0.4969
0.0200 0.5548 0.5663
0.0225 0.6246 0.6364
0.0250 0.7018 0.6956
0.0275 0.7712 0.7291
0.0300 0.7794 0.7547
0.0325 0.7879 0.7785
0.0350 0.8050 0.7803
0.0375 0.7879 0.7698
0.0400 0.7615 0.7662
0.0425 0.7549 0.7513
0.0450 0.7392 0.7238
0.0475 0.6995 0.7071
0.0500 0.6830 0.6923
0.0525 0.6774 0.6663
0.0550 0.6306 0.6475
0.0575 0.6037 0.6413
0.0600 0.6036 0.6266
0.0625 0.5850 0.6112
0.0650 0.5702 0.6125
0.0675 0.5849 0.6100
0.0700 0.5971 0.6003
0.0725 0.5890 0.6048
0.0750 0.6051 0.6128
0.0775 0.6308 0.6095
0.0800 0.6124 0.6122

164 Solving Differential Equations

Figure 9.10 shows approximations calculated by Euler’s method, the Runge–
Kutta method and the ode45 function of Matlab for a calculation step of ℎ =
= 0.0025.

Fig. 9.10 Comparison of the approximations achieved by the Euler’s method, the
Runge–Kutta method and the ode45 function for a calculation step of ℎ = 0.0025.

N

165

Chapter 10

Interpolation and Approximation

Objectives
ó

The aim of this chapter is to:
∙ explain the concepts of interpolation and approximation,
∙ apply basic algorithms for interpolation and approximation in engineering

tasks.

Examples of interpolation tasks include:

∙ given a function 𝑓𝑥, find the polynomial Φ𝑛(𝑥) of the 𝑛th degree which equals
𝑥𝑘 for 𝑛 + 1 arguments, where 𝑘 = 0, 1, . . . , 𝑛 is receives the same values as
the function 𝑓𝑥.

∙ given the function table of 𝑓𝑥 compiled for 𝑥 = 𝑥𝑘, approximate the values of
𝑓𝑥 using the polynomial Φ𝑛(𝑥) for points 𝑥 which are different from the nodal
points 𝑥𝑖.

If the given values of the function 𝑦𝑖 (𝑖 = 0, 1, . . . , 𝑛) at the nodal points 𝑥0, 𝑥1 až
𝑥𝑛 are not given exactly (and are obtained, e.g., by measurements which are always
imprecise to some degree), it is not important that the sought function coincides
with the function exactly at the nodal points, as in the case of interpolation. The
task of approximation is therefore to find a simpler and mathematically precisely
defined continuous approximation function 𝐹𝑥 in the interval ⟨𝑎, 𝑏⟩ which would best
fit the empirical points 𝑥0, 𝑥1, . . . , 𝑥𝑛.

10.1 Linear Interpolation
Linear interpolation makes it possible to replace the course of a function between two
points with coordinates 𝑥𝑘, 𝑦𝑘 and 𝑥𝑘+1, 𝑦𝑘+1 by a segment defined by the equation

166 Interpolation and Approximation

of a straight line:
𝑦(𝑥)− 𝑦𝑘

𝑥− 𝑥𝑘

= 𝑦𝑘+1 − 𝑦𝑘

𝑥𝑘+1 − 𝑥𝑘

. (10.1)

After adjusting (10.1), an equation which defines 𝑦(𝑥) based on the parameter
𝑥 can be obtained:

𝑦(𝑥) = 𝑦𝑘 · (𝑥− 𝑥𝑘+1)− 𝑦𝑘+1 · (𝑥− 𝑥𝑘)
𝑥𝑘 − 𝑥𝑘+1

. (10.2)

+

Example 10.1. Using linear interpolation for two points with coordinates [𝑥0, 𝑦0] =
= [1, 1.8] and [𝑥1, 𝑦1] = [2, 2.27], determine the value of the interpolation function
𝑦(𝑥 = 1.5).

Solution. A function for linear interpolation in the file lin_interpol.m could look,
e.g., as follows:
function y=lin_interpol(x,xy2)
y=(xy2(1,2)*(x-xy2(2,1))-xy2(2,2)*(x-xy2(1,1)))/(xy2(1,1)-xy2(2,1));

When calling the function y=lin_interpol(x,coords_xy_2p) with parameters
x=1.5 and coords_xy_2p=[1 1.8; 2 2.27], we obtain the following result:
y =

2.0350

This can also be represented graphically – see Fig. 10.1.

Fig. 10.1 Resulting linear interpolation for the point with coordinate 𝑥 = 1.5, marked
with a circle.

N

10.2 Lagrange Interpolation 167

10.2 Lagrange Interpolation
If 𝑓(𝑥) is a real function defined for the interval ⟨𝑎, 𝑏⟩, we can also consider the
following function:

Φ(𝑥) = 𝑎0 ·𝜙0(𝑥) + 𝑎1 ·𝜙1(𝑥) + 𝑎2 ·𝜙2(𝑥) + . . . + 𝑎𝑖 ·𝜙𝑖(𝑥) + . . . + 𝑎𝑛 ·𝜙𝑛(𝑥) , (10.3)

where 𝑎𝑖 are real coefficients and 𝜙𝑖(𝑥) is equal to 𝑥𝑖 for 𝑖 = 0, 1, . . . , 𝑛. The solution
is then the interpolation polynomial Φ(𝑥) for which it holds:

Φ(𝑥𝑖) = 𝑓(𝑥𝑖) , (10.4)

where 𝑥𝑖 is in the interval ⟨𝑎, 𝑏⟩ for 𝑖 = 0, 1, 2, . . . , 𝑛. This means that the sought
function of the interpolation polynomial Φ(𝑥) should attain identical values as the
given function 𝑓(𝑥) for 𝑛 + 1 input parameters 𝑥0, 𝑥1, 𝑥2, . . . , 𝑥𝑛.

This problem can be solved, for example, by successively substituting 𝑥 = 𝑥𝑖,
𝑖 = 0, 1, 2, . . . , 𝑛 into the equation (10.4), thus obtaining a system of 𝑛 + 1 linear
equations with unknown coefficients 𝑎𝑖:

𝑎0 · 𝜙(𝑥0) + 𝑎1 · 𝜙(𝑥0) + . . . + 𝑎𝑛 · 𝜙(𝑥0) = 𝑓(𝑥0)
𝑎0 · 𝜙(𝑥1) + 𝑎1 · 𝜙(𝑥1) + . . . + 𝑎𝑛 · 𝜙(𝑥1) = 𝑓(𝑥1)

...
𝑎0 · 𝜙(𝑥𝑛) + 𝑎1 · 𝜙(𝑥𝑛) + . . . + 𝑎𝑛 · 𝜙(𝑥𝑛) = 𝑓(𝑥𝑛)

. (10.5)

One of the ways to avoid solving the above-mentioned system of linear equati-
ons (10.5) when determining the interpolation polynomial Φ(𝑥𝑖) is the Lagrange
method.

Comment 10.2. Although the method is named after Joseph Louis Lagrange, who
published it in 1795, it was first discovered in 1779 by Edward Waring and its
implications partially published in 1783 by Leonhard Euler.

Given 𝑛 + 1 different nodal points 𝑥0, 𝑥1, 𝑥2, . . . , 𝑥𝑛 in the interval ⟨𝑎, 𝑏⟩ and the
function values 𝑦𝑖 = 𝑓(𝑥𝑖) for 𝑖 = 0, 1, . . . , 𝑛, then an interpolation polynomial of
degree at most 𝑛 can be constructed, for which it will hold:

Φ𝑛(𝑥) = 𝑃0(𝑥) + 𝑃1(𝑥) + . . . + 𝑃𝑛(𝑥) = 𝑦0 · 𝑙0(𝑥) + 𝑦1 · 𝑙1(𝑥) + . . . 𝑦𝑛 · 𝑙𝑛(𝑥) . (10.6)

For 𝑙𝑖(𝑥) it holds:

𝑙𝑖(𝑥𝑗) =
{︃

1 pro 𝑖 = 𝑗

0 pro 𝑖 ̸= 𝑗
. (10.7)

168 Interpolation and Approximation

The polynomial satisfies this condition:

𝑙𝑖(𝑥) =
𝑛∏︁

𝑗 = 0
𝑗 ̸= 𝑖

𝑥− 𝑥𝑗

𝑥𝑖 − 𝑥𝑗

=

= 𝑥− 𝑥0

𝑥𝑖 − 𝑥0
· 𝑥− 𝑥1

𝑥𝑖 − 𝑥1
· . . . · 𝑥− 𝑥𝑖−1

𝑥𝑖 − 𝑥𝑖−1
· 𝑥− 𝑥𝑖+1

𝑥𝑖 − 𝑥𝑖+1
· . . . · 𝑥− 𝑥𝑛

𝑥𝑖 − 𝑥𝑛

.

(10.8)

The resulting form of the Lagrange interpolation polynomial is then:

𝐿𝑛(𝑥) = 𝑦0 ·
(︂

𝑥− 𝑥1

𝑥0 − 𝑥1
· 𝑥− 𝑥2

𝑥0 − 𝑥2
· . . . · 𝑥− 𝑥𝑛

𝑥0 − 𝑥𝑛

)︂
+

+ 𝑦1 ·
(︂

𝑥− 𝑥0

𝑥1 − 𝑥0
· 𝑥− 𝑥2

𝑥1 − 𝑥2
· . . . · 𝑥− 𝑥𝑛

𝑥1 − 𝑥𝑛

)︂
+ . . .

+ 𝑦𝑖 ·
(︂

𝑥− 𝑥0

𝑥𝑖 − 𝑥0
· 𝑥− 𝑥1

𝑥𝑖 − 𝑥1
· . . . · 𝑥− 𝑥𝑖−1

𝑥𝑖 − 𝑥𝑖−1
· 𝑥− 𝑥𝑖+1

𝑥𝑖 − 𝑥𝑖+1
· . . . · 𝑥− 𝑥𝑛

𝑥𝑖 − 𝑥𝑛

)︂
+ . . .

+ 𝑦𝑛 ·
(︂

𝑥− 𝑥0

𝑥𝑛 − 𝑥0
· 𝑥− 𝑥1

𝑥𝑛 − 𝑥1
· . . . · 𝑥− 𝑥𝑛−1

𝑥𝑛 − 𝑥𝑛−1

)︂
.

(10.9)
A function that determines for the specified point with coordinate 𝑥 in the input

parameter par the value of the Lagrange interpolation polynomial, compiled for the
specified set of points with coordinates 𝑥 and 𝑦 stored in the input parameters with
vectors x and y, can be programmed in Matlab, e.g., using the lagrange.m script:

function s=lagrange(x,y,par)
n=length(x);
s=0;
for i=1:n

m=y(i);
for j=1:n

if ~(i==j)
m=m*(par-x(j))/(x(i)-x(j));

end
end
s=s+m;

end

+

Example 10.3. Use the Lagrange interpolation polynomial for three points with
coordinates [𝑥0, 𝑦0] = [0, 1], [𝑥1, 𝑦1] = [2, 2] and [𝑥2, 𝑦2] = [3, 4] to determine the
equation of the interpolation function 𝑦(𝑥).

10.2 Lagrange Interpolation 169

Solution. The given example can be solved in general by substituting the specified
coordinates of three points into the general equation of the interpolation polyno-
mial (10.9):

𝐿2(𝑥) = 𝑦0 ·
(𝑥− 𝑥1) · (𝑥− 𝑥2)

(𝑥0 − 𝑥1) · (𝑥0 − 𝑥2)
+ 𝑦1 ·

(𝑥− 𝑥0) · (𝑥− 𝑥2)
(𝑥1 − 𝑥0) · (𝑥1 − 𝑥2)

+

+ 𝑦2 ·
(𝑥− 𝑥0) · (𝑥− 𝑥1)

(𝑥2 − 𝑥0) · (𝑥2 − 𝑥1)
=

= 1 · (𝑥− 2) · (𝑥− 3)
(0− 2) · (0− 3) + 2 · (𝑥− 0) · (𝑥− 3)

(2− 0) · (2− 3) + 4 · (𝑥− 0) · (𝑥− 2)
(3− 0) · (3− 2) =

= 1
6 · (𝑥

2 − 5 · 𝑥 + 6) + 2 · −1
2 · (𝑥

2 − 3 · 𝑥) + 4 · 13 · (𝑥
2 − 2 · 𝑥) =

= 1
2 · 𝑥

2 − 1
2 · 𝑥 + 1 .

(10.10)
The correctness of the derived interpolation polynomial can be verified by sub-

stituting the coordinates of the specified points:

𝐿2(𝑥0) = 1
2 · 𝑥

2
0 −

1
2 · 𝑥0 + 1 = 1

2 · 0
2 − 1

2 · 0 + 1 = 1 , (10.11)

𝐿2(𝑥1) = 1
2 · 𝑥

2
1 −

1
2 · 𝑥1 + 1 = 1

2 · 2
2 − 1

2 · 2 + 1 = 2 , (10.12)

𝐿2(𝑥2) = 1
2 · 𝑥

2
2 −

1
2 · 𝑥2 + 1 = 1

2 · 3
2 − 1

2 · 3 + 1 = 4 . (10.13)

The constructed Lagrange interpolation polynomial can also be displayed gra-
phically – see Fig. 10.2.

N
+

Example 10.4. Using the Lagrange interpolation polynomial, determine the value
of the bending moment of the structure described in Exercise 3.1 for the point at the
coordinate 𝑥 = 𝑙/5 = 1.2 m. To construct the Lagrange interpolation polynomial,
use the values of the actual bending moments at three points with coordinates
[𝑥0, 𝑥1, 𝑥2] = [0, 𝑙/2, 𝑙] = [0, 3, 6] m.

Solution. First, of course, it is necessary to determine the values of the actual ben-
ding moments at the specified points, which for the given specification take on the
values 𝑀𝑦(𝑥0 = 0) = 0 kNm, 𝑀𝑦(𝑥1 = 3) = 9 kNm and 𝑀𝑦(𝑥2 = 6) = −18 kNm.
The creation of the Lagrange interpolation polynomial is possible with the already
created and previously described script lagrange.m. The entire calculation can be
performed, for example, by the following sequence of commands:

170 Interpolation and Approximation

Fig. 10.2 The resulting interpolation using the Lagrange interpolation polynomial
for points on coordinates [𝑥0, 𝑦0] = [0, 1], [𝑥1, 𝑦1] = [2, 2] and [𝑥2, 𝑦2] = [3, 4].

clc;
clear;
format short;
qz=4000;
l=6;
M=[0 3/8*qz*l -qz/2]/1000;
x=[0 l/2 l]; % 0 m, 3 m, 6 m
y=[horner(2,M,x(1)) horner(2,M,x(2)) horner(2,M,x(3))];
par=l/5;
res=lagrange(x,y,par)

The result of the entire solution is then the value at the point with the coordinate
𝑥 = 𝑙/5 = 1.2 m:

res =
7.9200

Due to the fact that the resulting Lagrange interpolation polynomial forms a 2nd
degree polynomial just like the course of the bending moments, one can observe
a complete match between this pair of functions – see Fig. 10.3.

N

10.3 Newton’s Interpolation 171

Fig. 10.3 The resulting interpolation of the course of bending moments on the
beam from Exercise 3.1 using the Lagrange interpolation polynomial for the points
𝑀𝑦(𝑥0 = 0) = 0 kNm, 𝑀𝑦(𝑥1 = 3) = 9 kNm and 𝑀𝑦(𝑥2 = 6) = −18 kNm marked
with an asterisk. The value of the bending moment at the specified point with the
coordinate 𝑥 = 𝑙/5 = 1.2 m is then indicated by a circle.

10.3 Newton’s Interpolation

The interpolation polynomial Φ𝑛(𝑥) can also be expressed as a function containing
differences:

Φ𝑛(𝑥) = 𝑎0 + 𝑎1 · (𝑥− 𝑥0) + 𝑎2 · (𝑥− 𝑥0) · (𝑥− 𝑥1)+
+ . . . + 𝑎𝑛 · (𝑥− 𝑥0) · (𝑥− 𝑥1) · . . . · (𝑥− 𝑥𝑛) .

(10.14)

The desired interpolation polynomial Φ𝑛(𝑥) must take values at points 𝑥𝑖:

Φ𝑛(𝑥𝑖) = 𝑓(𝑥𝑖) pro 𝑖 = 0, 1, . . . , 𝑛 . (10.15)

The solution to the problem is to determine the unknown coefficients 𝑎𝑘 for 𝑘 =
= 0, 1, . . . , 𝑛, which are contained in the relation (10.14). By successively substitu-
ting 𝑥 = 𝑥𝑖 for 𝑖 = 0, 1, . . . , 𝑛 into the polynomial Φ𝑛(𝑥) from (10.14) the following

172 Interpolation and Approximation

conditions can be obtained:

Φ0(𝑥0) = 𝑓(𝑥0) = 𝑎0

Φ1(𝑥1) = 𝑓(𝑥1) = 𝑎0 + 𝑎1 · (𝑥1 − 𝑥0)
Φ2(𝑥2) = 𝑓(𝑥2) = 𝑎0 + 𝑎1 · (𝑥1 − 𝑥0) + 𝑎2 · (𝑥1 − 𝑥0) · (𝑥2 − 𝑥0)

...

Φ𝑛(𝑥𝑛) = 𝑓(𝑥𝑛) = 𝑎0 + 𝑎1 · (𝑥1 − 𝑥0) + 𝑎2 · (𝑥1 − 𝑥0) · (𝑥2 − 𝑥0)+
+ . . . + 𝑎𝑛 · (𝑥1 − 𝑥0) · (𝑥2 − 𝑥0) · . . . · (𝑥𝑛 − 𝑥0) .

(10.16)

The sought coefficients 𝑎𝑘 can be gradually determined from the given equations,
e.g.:

𝑎0 = 𝑓(𝑥0)

𝑎1 = 𝑓(𝑥1)− 𝑎0

𝑥1 − 𝑥0

𝑎2 = 𝑓(𝑥2)− 𝑎0 − 𝑎1 · (𝑥1 − 𝑥0)
(𝑥1 − 𝑥0) · (𝑥2 − 𝑥0)

...

𝑎𝑛 = 𝑓(𝑥𝑛)− 𝑎0 − 𝑎1 · (𝑥1 − 𝑥0)− . . .− 𝑎𝑛−1 · (𝑥1 − 𝑥0) · . . . · (𝑥𝑛−1 − 𝑥0)
(𝑥1 − 𝑥0) · (𝑥2 − 𝑥0) · . . . · (𝑥𝑛 − 𝑥0)

.

(10.17)
The equation (10.16) for 𝑘 = 1, . . . , 𝑛 can alternatively be expressed using the

following relation:

Φ𝑘(𝑥𝑘) = 𝑓(𝑥𝑘) = Φ𝑘−1(𝑥𝑘) + 𝑎𝑘 · (𝑥1 − 𝑥0) · (𝑥2 − 𝑥0) · . . . · (𝑥𝑘 − 𝑥0) , (10.18)

which can also be used to generalize the calculation of unknown coefficients 𝑎𝑘:

𝑎𝑘 = 𝑓(𝑥𝑘)− Φ𝑘−1(𝑥𝑘)
(𝑥1 − 𝑥0) · (𝑥2 − 𝑥0) · . . . · (𝑥𝑘 − 𝑥0)

. (10.19)

This problem can also be described using so-called divided differences:

𝑓 [𝑥𝑘] =𝑓(𝑥𝑘)

𝑓 [𝑥𝑘 𝑥𝑘+1] =𝑓 [𝑥𝑘+1]− 𝑓 [𝑥𝑘]
𝑥𝑘+1 − 𝑥𝑘

𝑓 [𝑥𝑘 𝑥𝑘+1 𝑥𝑘+2] =
𝑓 [𝑥𝑘+1 𝑥𝑘+2]− 𝑓 [𝑥𝑘 𝑥𝑘+1]

𝑥𝑘+2 − 𝑥𝑘

𝑓 [𝑥𝑘 𝑥𝑘+1 𝑥𝑘+2 𝑥𝑘+3] =
𝑓 [𝑥𝑘+1 𝑥𝑘+2 𝑥𝑘+3]− 𝑓 [𝑥𝑘 𝑥𝑘+1 𝑥𝑘+2]

𝑥𝑘+3 − 𝑥𝑘

... .

(10.20)

10.3 Newton’s Interpolation 173

These numbers correspond to the coefficients 𝑎𝑘 for 𝑘 = 0, 1, . . . , 𝑛 of Newton’s
interpolation polynomial, which can be defined in the final form:

𝑁𝑛(𝑥) = 𝑓 [𝑥1] + 𝑓 [𝑥1 𝑥2] · (𝑥− 𝑥1)
+ 𝑓 [𝑥1 𝑥2 𝑥3] · (𝑥− 𝑥1) · (𝑥− 𝑥2)
+ 𝑓 [𝑥1 𝑥2 𝑥3 𝑥4] · (𝑥− 𝑥1) · (𝑥− 𝑥2) · (𝑥− 𝑥3)
+ . . . +
+ 𝑓 [𝑥1 · · · 𝑥𝑛] · (𝑥− 𝑥1) · . . . · (𝑥− 𝑥𝑛−1) ,

(10.21)

or for 𝑘 = 1, . . . , 𝑛:

𝑁𝑘(𝑥) = 𝑁𝑘−1(𝑥) + 𝑓 [𝑥1 · · · 𝑥𝑘] · (𝑥− 𝑥1) · . . . · (𝑥− 𝑥𝑘−1) . (10.22)

The calculation of Newton’s interpolation polynomial can be expressed algori-
thmically, e.g., using Algorithm 23.

Input : 𝑥 = [𝑥1 · · · 𝑥𝑛], 𝑦 = [𝑦1 · · · 𝑦𝑛], 𝑧
Output: 𝑁𝑛(𝑧)
for 𝑗 ← 1, 2, . . . , 𝑛 do

𝑓 [𝑥𝑗]← 𝑦𝑗

end
for 𝑖← 2, 3, . . . , 𝑛 do

for 𝑗 ← 1, 2, . . . , 𝑛 + 1− 𝑖 do

𝑓 [𝑥𝑗 · · · 𝑥𝑗+𝑖−1]← 𝑓 [𝑥𝑗+1 · · · 𝑥𝑗+𝑖−1]− 𝑓 [𝑥𝑗 · · · 𝑥𝑗+𝑖−2]
𝑥𝑗+𝑖−1 − 𝑥𝑗

end
end

𝑁𝑛(𝑧)←
𝑛∑︀

𝑖=1
𝑓 [𝑥1 · · · 𝑥𝑖] · (𝑥− 𝑥1) · . . . · (𝑥− 𝑥𝑖−1)

Algorithm 23: Determining the value of Newton’s interpolation polynomial
𝑁𝑛(𝑥).

𝑥1 𝑓 [𝑥1]
𝑓 [𝑥1 𝑥2]

𝑥2 𝑓 [𝑥2] 𝑓 [𝑥1 𝑥2 𝑥3]
𝑓 [𝑥2 𝑥3]

𝑥3 𝑓 [𝑥3]

Tab. 10.1 Divided differences of Newton’s interpolation polynomial for three points.

For the recursive expression of the divided differences of Newton’s interpolation
polynomial, a tabular expression is used (for three points, see Table 10.1). The

174 Interpolation and Approximation

coefficients of Newton’s interpolation polynomial (10.22) can then be subtracted
from the upper edge of the displayed triangle.

+

Example 10.5. Using Newton’s interpolation polynomial, determine the equation
of the interpolation function 𝑦(𝑥) for the three points from Exercise 10.3 with coor-
dinates [𝑥0, 𝑦0] = [0, 1], [𝑥1, 𝑦1] = [2, 2] and [𝑥2, 𝑦2] = [3, 4].

Solution. Using the procedure (10.21) for constructing Newton’s interpolation po-
lynomial, we can compile Table 10.2 whose individual terms are determined using
Eq. (10.20):

𝑓 [𝑥1 𝑥2] = 𝑓 [𝑥2]− 𝑓 [𝑥1]
𝑥2 − 𝑥1

= 2− 1
2− 0 = 1

2 , (10.23)

𝑓 [𝑥1 𝑥2 𝑥3] =
𝑓 [𝑥2 𝑥3]− 𝑓 [𝑥1 𝑥2]

𝑥3 − 𝑥1
=

2− 1
2

3− 0 = 1
2 , (10.24)

𝑓 [𝑥2 𝑥3] = 𝑓 [𝑥3]− 𝑓 [𝑥2]
𝑥3 − 𝑥2

= 4− 2
3− 2 = 2 . (10.25)

𝑥1 = 0 𝑓 [𝑥1] = 1
𝑓 [𝑥1 𝑥2] = 1

2
𝑥2 = 2 𝑓 [𝑥2] = 2 𝑓 [𝑥1 𝑥2 𝑥3] = 1

2
𝑓 [𝑥2 𝑥3] = 2

𝑥3 = 3 𝑓 [𝑥3] = 4

Tab. 10.2 Divided differences of Newton’s interpolation polynomial for three points
from Exercise 10.3.

As already said, the coefficients of the sought Newton’s interpolation polynomial
according to (10.22) can then be subtracted from Table 10.2 from the upper edge of
the displayed triangle:

𝑁3(𝑥) = 𝑓 [𝑥1] + 𝑓 [𝑥1 𝑥2] · (𝑥− 𝑥1) + 𝑓 [𝑥1 𝑥2 𝑥3] · (𝑥− 𝑥1) · (𝑥− 𝑥2) =

= 1 + 1
2 · (𝑥− 0) + 1

2 · (𝑥− 0) · (𝑥− 2) = 1
2 · 𝑥

2 − 1
2 · 𝑥 + 1 .

(10.26)
From the resulting equation of the relation of Newton’s interpolation polyno-

mial (10.26) it is clear that the same second-order polynomial as in the case of
Exercise 10.3 was achieved. N

10.3 Newton’s Interpolation 175

A function that determines for the specified point with the coordinate 𝑥 in the
input parameter par the value of Newton’s interpolation polynomial, compiled for
the specified set of points with coordinates 𝑥 and 𝑦 stored in the input parameters
with the vectors x and y, can be coded in Matlab, e.g., via the script newton.m:

function s=newton(x,y,par)
n=length(x);
for j=1:n

tab(j,1)=y(j);
end
for i=2:n

for j=1:n+1-i
tab(j,i)=(tab(j+1,i-1)-tab(j,i-1))/(x(j+i-1)-x(j));

end
end
s=tab(1,1);
for i=2:n

m=tab(1,i);
for j=1:i-1

m=m*(par-x(j));
end
s=s+m;

end

The script can be slightly modified so that it is possible to effectively determine
the values of Newton’s interpolation polynomial even for a vector containing the 𝑥
coordinates of several points in the input parameter par (the script is also functional
for one coordinate).

function s=newton(x,y,par)
n=length(x);
for j=1:n

tab(j,1)=y(j);
end
for i=2:n

for j=1:n+1-i
tab(j,i)=(tab(j+1,i-1)-tab(j,i-1))/(x(j+i-1)-x(j));

end
end
num=length(par);
for k=1:num

tot=tab(1,1);
for i=2:n

m=tab(1,i);

176 Interpolation and Approximation

for j=1:i-1
m=m*(par(k)-x(j));

end
tot=tot+m;

end
s(k)=tot;

end

+

Example 10.6. Using Newton’s interpolation polynomial, determine the value of
the bending moment according to the instructions in Exercise 10.6.

Comment 10.7. It is also possible to construct Newton’s interpolation polynomial
via a rather interesting script – shown below – which allows you to enter the in-
dividual points needed to construct the interpolation polynomial directly from the
graph by clicking the left mouse button. One can observe how the order of the inter-
polation polynomial increases with increasing points. The procedure is terminated
by a right click of the mouse.
xmin=-3;
xmax=3;
x_p=xmin:.01:xmax;
ymin=-3;
ymax=3;
plot([xmin xmax],[0 0],’k’,[0 0],[ymin ymax],’k’);
grid on;
x=[];
y=[];
button=1;
k=0;
title(’\fontsize{12}Newton’’s Interpolation’);
while ~(button==3)

[x_new,y_new,button]=ginput(1);
if button==1

k=k+1;
x(k)=x_new;
y(k)=y_new;
y_p=newton(x,y,x_p);
plot(x,y,’o’,x_p,y_p,[xmin xmax],[0,0],’k’,[0 0],...

[ymin ymax],’k’);
title(’\fontsize{12}Newton’’s Interpolation’);
axis([xmin xmax ymin ymax]);
grid on;

end
end

10.4 Approximation by the Method of Least Squ-
ares 177

10.4 Approximation by the Method of Least Squ-
ares

When interpolating by one of the previous methods, it was assumed that the in-
terpolated function is specified by a table with values 𝑥𝑖 and 𝑓(𝑥𝑖) = 𝑦𝑖, where
𝑖 = 0, 1, . . . , 𝑛. In the case of approximation, the task is not to find a function that
coincides at the specified points with the sought-after function, but rather to iden-
tify an approximation function 𝐹 (𝑥) that would best fit the 𝑛+1 specified empirical
points [𝑥0, 𝑦0], [𝑥1, 𝑦1] to [𝑥𝑛, 𝑦𝑛].

In the method of least squares, the sum of the squares of the differences between
the values of the approximation function 𝐹 (𝑥𝑖) and the measured values 𝑦𝑖 is used
as the goodness-of-fit criterion:

𝑄 =
𝑛∑︁

𝑖=0

(𝐹 (𝑥𝑖)− 𝑦𝑖)2 . (10.27)

The function 𝐹 (𝑥) can generally be defined as:

𝐹 (𝑥) = 𝑎0 · 𝑓0(𝑥) + 𝑎1 · 𝑓1(𝑥) + . . . + 𝑎𝑚 · 𝑓𝑚(𝑥) , (10.28)

where 𝑓0, 𝑓1, . . . , 𝑓𝑚 are suitably chosen linearly independent functions and 𝑎0, 𝑎1 až
𝑎𝑚 are unknown real coefficients, which are determined so that the value of 𝑄 in the
relation (10.27) is minimal. It must therefore hold that:

𝜕𝑄

𝜕𝑎𝑘

= 2 ·
𝑛∑︁

𝑖=0

(𝐹 (𝑥𝑖)− 𝑦𝑖) ·
𝜕𝐹 (𝑥𝑖)

𝜕𝑎𝑘

= 0 , (10.29)

where 𝑘 = 0, 1, . . . , 𝑚.
When choosing

𝜕𝐹 (𝑥𝑖)
𝜕𝑎𝑘

= 𝑓𝑖(𝑥𝑖) , (10.30)

it must hold that:

𝜕𝑄

𝜕𝑎𝑘

= 2 ·
𝑛∑︁

𝑖=0

[𝑎0 · 𝑓0(𝑥𝑖) + 𝑎1 · 𝑓1(𝑥𝑖) + . . . + 𝑎𝑚 · 𝑓𝑚(𝑥𝑖)− 𝑦𝑖] · 𝑓𝑘(𝑥𝑖) = 0 . (10.31)

Relation (10.31) can be further modified as follows:

𝑛∑︁
𝑖=0

[𝑎0 · 𝑓𝑘(𝑥𝑖) · 𝑓0(𝑥𝑖) + 𝑎1 · 𝑓𝑘(𝑥𝑖) · 𝑓1(𝑥𝑖) + . . . + 𝑎𝑚 · 𝑓𝑘(𝑥𝑖) · 𝑓𝑚(𝑥𝑖)] =

=
𝑛∑︁

𝑖=0

𝑓𝑘(𝑥𝑖) · 𝑦𝑖 ,

(10.32)

178 Interpolation and Approximation

i.e.,

𝑎0 ·
𝑛∑︁

𝑖=0

𝑓𝑘(𝑥𝑖) · 𝑓0(𝑥𝑖) + 𝑎1 ·
𝑛∑︁

𝑖=0

𝑓𝑘(𝑥𝑖) · 𝑓1(𝑥𝑖) + . . . + 𝑎𝑚 ·
𝑛∑︁

𝑖=0

𝑓𝑘(𝑥𝑖) · 𝑓𝑚(𝑥𝑖) =

=
𝑛∑︁

𝑖=0

𝑓𝑘(𝑥𝑖) · 𝑦𝑖 ,

(10.33)
where 𝑘 = 0, 1, . . . , 𝑚.

Relation (10.33) can also be expressed in matrix form:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑛∑︀
𝑖=0

𝑓 2
0 (𝑥𝑖)

𝑛∑︀
𝑖=0

𝑓0(𝑥𝑖) · 𝑓1(𝑥𝑖) . . .
𝑛∑︀

𝑖=0
𝑓0(𝑥𝑖) · 𝑓𝑚(𝑥𝑖)

𝑛∑︀
𝑖=0

𝑓1(𝑥𝑖) · 𝑓0(𝑥𝑖)
𝑛∑︀

𝑖=0
𝑓 2

1 (𝑥𝑖) . . .
𝑛∑︀

𝑖=0
𝑓1(𝑥𝑖) · 𝑓𝑚(𝑥𝑖)

...
...

. . .
...

𝑛∑︀
𝑖=0

𝑓𝑚(𝑥𝑖) · 𝑓0(𝑥𝑖)
𝑛∑︀

𝑖=0
𝑓𝑚(𝑥𝑖) · 𝑓1(𝑥𝑖) . . .

𝑛∑︀
𝑖=0

𝑓 2
𝑚(𝑥𝑖)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
·

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑎0
𝑎1
...

𝑎𝑚

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑛∑︀
𝑖=0

𝑓0(𝑥𝑖) · 𝑦𝑖

𝑛∑︀
𝑖=0

𝑓1(𝑥𝑖) · 𝑦𝑖

...
𝑛∑︀

𝑖=0
𝑓𝑚(𝑥𝑖) · 𝑦𝑖

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

(10.34)

10.4.1 Linear Approximation
In linear approximation, the relationship between the variables 𝑥 and 𝑦 is:

𝐹 (𝑥) = 𝑎 · 𝑥 + 𝑏 , (10.35)

where 𝑎, 𝑏 are unknown parameters that can be determined from the condition ac-
cording to (10.27):

𝑄 =
𝑛∑︁

𝑖=0

(𝑎 · 𝑥𝑖 + 𝑏− 𝑦𝑖)2 = min . (10.36)

Solving the problem given by (10.28) leads to a system of two equations:

𝜕𝑄

𝜕𝑎
= 0 (10.37)

and
𝜕𝑄

𝜕𝑏
= 0 . (10.38)

10.4 Approximation by the Method of Least Squ-
ares 179

After adjusting both equations according to (10.31) to (10.33), their resulting
form can be obtained:

𝑛 · 𝑏 +
(︃

𝑛∑︁
𝑖=0

𝑥𝑖

)︃
· 𝑎 =

𝑛∑︁
𝑖=0

𝑦𝑖(︃
𝑛∑︁

𝑖=0

𝑥𝑖

)︃
· 𝑏 +

(︃
𝑛∑︁

𝑖=0

𝑥2
𝑖

)︃
· 𝑎 =

𝑛∑︁
𝑖=0

𝑥𝑖 · 𝑦𝑖 ,

(10.39)

which can be expressed as a matrix:⎡⎢⎣ 𝑛
𝑛∑︀

𝑖=0
𝑥𝑖

𝑛∑︀
𝑖=0

𝑥𝑖

𝑛∑︀
𝑖=0

𝑥2
𝑖

⎤⎥⎦ ·{︂ 𝑏
𝑎

}︂
=

⎧⎪⎨⎪⎩
𝑛∑︀

𝑖=0
𝑦𝑖

𝑛∑︀
𝑖=0

𝑥𝑖 · 𝑦𝑖

⎫⎪⎬⎪⎭ . (10.40)

10.4.2 Approximation by 𝑚-th Degree Polynomial
If a polynomial of the 𝑚-th degree is chosen as the approximation function:

𝐹𝑚(𝑥) = 𝑎0 · 𝑥0 + 𝑎1 · 𝑥1 + 𝑎2 · 𝑥2 + . . . + 𝑎𝑚 · 𝑥𝑚 , (10.41)

after simplifying (10.29) to (10.33), a system of 𝑚 + 1 equations can be obtained by
substituting 𝑘 = 0, 1, . . . , 𝑚 in 𝑓𝑘(𝑥) = 𝑥𝑘:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑛∑︀
𝑖=0

(𝑥0
𝑖)2

𝑛∑︀
𝑖=0

𝑥0
𝑖 · 𝑥1

𝑖 . . .
𝑛∑︀

𝑖=0
𝑥0

𝑖 · 𝑥𝑚
𝑖

𝑛∑︀
𝑖=0

𝑥1
𝑖 · 𝑥0

𝑖

𝑛∑︀
𝑖=0

(𝑥1
𝑖)2 . . .

𝑛∑︀
𝑖=0

𝑥1
𝑖 · 𝑥𝑚

𝑖

...
...

. . .
...

𝑛∑︀
𝑖=0

𝑥𝑚
𝑖 · 𝑥0

𝑖

𝑛∑︀
𝑖=0

𝑥𝑚
𝑖 · 𝑥1

𝑖 . . .
𝑛∑︀

𝑖=0
(𝑥𝑚

𝑖)2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
·

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑎0
𝑎1
...

𝑎𝑚

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑛∑︀
𝑖=0

𝑥0
𝑖 · 𝑦𝑖

𝑛∑︀
𝑖=0

𝑥1
𝑖 · 𝑦𝑖

...
𝑛∑︀

𝑖=0
𝑥𝑚

𝑖 · 𝑦𝑖

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

(10.42)
The system of equations (10.42) with unknown coefficients 𝑎0, 𝑎1, . . . , 𝑎𝑚 can

then be further adjusted to the form:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑛 + 1
𝑛∑︀

𝑖=0
𝑥𝑖

𝑛∑︀
𝑖=0

𝑥2
𝑖 . . .

𝑛∑︀
𝑖=0

𝑥𝑚
𝑖

𝑛∑︀
𝑖=0

𝑥𝑖

𝑛∑︀
𝑖=0

𝑥2
𝑖

𝑛∑︀
𝑖=0

𝑥3
𝑖 . . .

𝑛∑︀
𝑖=0

𝑥𝑚+1
𝑖

...
...

. . .
...

𝑛∑︀
𝑖=0

𝑥𝑚
𝑖

𝑛∑︀
𝑖=0

𝑥𝑚+1
𝑖

𝑛∑︀
𝑖=0

𝑥𝑚+2
𝑖 . . .

𝑛∑︀
𝑖=0

𝑥2·𝑚
𝑖

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
·

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑎0
𝑎1
...

𝑎𝑚

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑛∑︀
𝑖=0

𝑦𝑖

𝑛∑︀
𝑖=0

𝑥𝑖 · 𝑦𝑖

...
𝑛∑︀

𝑖=0
𝑥𝑚

𝑖 · 𝑦𝑖

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

(10.43)

180 Interpolation and Approximation

+

Example 10.8. Perform a linear approximation as well as a 2nd degree polynomial
approximation for the data contained in Table 10.3. For both cases, determine the
sum of the squares (squares) of the differences between the values of the approxi-
mation function 𝐹 (𝑥𝑖) and the measured values 𝑦𝑖.

𝑥 1 2 3 4 5
𝑦 0 2 2 5 4

Tab. 10.3 Input data for calculating the approximation in Exercise 10.8.

Solution. The computation of the linear approximation with the 𝑚-th degree po-
lynomial including the sum of the squares of the differences between the values of
the appropriate approximation function 𝐹 (𝑥𝑖) and the measured values of 𝑦𝑖 can be
performed via the following sequence of commands:

clear;
clc;
x0=[1 2 3 4 5];
y0=[0 2 2 5 4];
m=2;
for i=1:m+1

for j=i:m+1
A(i,j)=sum(x0.^((i-1)+(j-1)));
if ~(i==j)

A(j,i)=A(i,j);
end

end
b(i)=sum((x0.^(i-1)).*y0);

end
c=A\b’;
x=0:.1:6;
for j=1:length(x)

s=c(1);
for i=1:m

s=s+c(i+1)*x(j)^(i);
end
y(j)=s;

end
hold on
plot(x,y,’g-’,’LineWidth’,2);
plot(x0,y0,’k*’);

10.4 Approximation by the Method of Least Squ-
ares 181

title(’\fontsize{12}Approximation by the Method of Least Squares’);
xlabel(’x’);
ylabel(’y(x)’);
hold off
sum_squares=0;
for j=1:length(x0)

s=c(1);
for i=1:m

s=s+c(i+1)*x0(j)^(i);
end
sum_squares=sum_squares+(s-y0(j))^2;

end
sum_squares

For the case of linear approximation, it is possible to obtain a straight line –
as shown in Fig. 10.4 – with the sum of the squares of the differences between the
values of the respective approximation function 𝐹 (𝑥𝑖) and the measured values of
𝑦𝑖 being equal to 3.1. In the case of approximation by a polynomial of the 2nd
degree (see Fig. 10.5) the sum of the squares of the differences between the values
of the respective approximation function 𝐹 (𝑥𝑖) and the measured values 𝑦𝑖 is equal
to 2.4571.

Fig. 10.4 Linear approximation for the points specified in Exercise 10.8.

182 Interpolation and Approximation

Fig. 10.5 Approximation by a polynomial of the 2nd degree for the points specified
in Exercise 10.8.

N

+

Example 10.9. Select the most appropriate degree of polynomial to approximate
the measured values of cubic compressive strength of concrete depending on the
days of maturation of the concrete mixture, which are shown in Table 10.4. Use the
sum of squares of the differences between the values of the approximation function
𝐹 (𝑥𝑖) and the measured values 𝑦𝑖 as the goodness-of-fit criterion.

𝑥 [dny] 0 0 0 7 7 7 14 14 14 28 28 28
𝑦 [MPa] 0 0 0 21.5 22.2 21.2 30.7 31.4 30.5 40.1 43.4 41.5

Tab. 10.4 Input data for calculating the approximation function in Exercise 10.9.

183

Literature

[1] Algorithm. Website focused on the creation of algorithms. [on-line].
<https://www.programming-algorithms.net>. (Cited on page 50.)

[2] Eaton, J.W. Octave. Programming software for performing
mathematical calculations. Freeware, verze 4.2.1. [on-line].
<http://www.gnu.org/software/octave>. University of Wisconsin, Department
of Chemical Engineering, 1998-2017. (Cited on page 1.)

[3] Kučera, R. Numerical methods. Study textbook. VSB – Technical University of
Ostrava. (152 p). ISBN 80-248-1198-7. (in Czech)

[4] Materna, A. — Štěpánek, P. — Teplý, B. Automation of engineering tasks.
Textbook. Brno University of Technology, 1985. (132 p). (in Czech)

[5] Matlab. Programming system for performing mathematical
calculations. Commercial software, version R2023b. [on-line].
<http://www.mathworks.com>. The MathWorks, January 2024. (Cited
on page 1.)

[6] Mika, S. Numerical methods of algebra. Math for Technical Universities. 2𝑛𝑑 edi-
tion. SNTL – Publishing company of technical literature, Prague, 1985. (176 p).
(in Czech) (Cited on page 35.)

[7] OctaveOnline. Programming software for performing mathematical calculations
– on-line version. [on-line]. <https://octave-online.net>. (Cited on page 1.)

[8] Olehla, M. — Tišer, J. Practical use of Fortran. 2𝑛𝑑 edited edition. Publishing
company of transport and connections, Prague, 1979. (432 p). (in Czech) (Cited
on page 47 and 120.)

[9] Ralston, A. Fundamentals of numerical mathematics. 1𝑠𝑡 edition. Academia,
Prague, 1973. (635 p). (in Czech)

[10] Rektorys, K. An overview of applied mathematics. 4𝑡ℎ edition. SNTL – Pub-
lishing company of technical literature, Prague, 1981. (1140 p). (in Czech)

https://www.programming%2dalgorithms.net
http://www.gnu.org/software/octave
http://www.mathworks.com
https://octave%2donline.net

184 Literature

[11] Sauer T. Numerical Analysis. George Mason University. Pearson Education,
Inc., 2006. (669 p). ISBN 0-321-26898-9. (Cited on page 16.)

[12] Sigmon, K. Matlab Primer. Electronic textbook of
Matlab with demonstration examples. 2𝑛𝑑 edition. [on-line].
<https://web.archive.org/web/20050315101013/http://artax.karlin.mff.cuni.c
z/%7ebeda/cz/matlab/primer/matlab-primer.html>. Department of Mathe-
matics, University of Florida, 1989, 1992. (Cited on page 12.)

[13] Wikipedia. Free-content online encyclopedia. Website. [on-line].
<http://en.wikipedia.org>. (Cited on page 13.)

[14] Wirth N. Algorithms and data structures. 1𝑠𝑡 edition. Alfa, publishing com-
pany of technical and economic literature, Bratislava, 1988. (488 p). (in Slovak)
(Cited on page 55.)

https://web.archive.org/web/20050315101013/http://artax.karlin.mff.cuni.cz/%7ebeda/cz/matlab/primer/matlab%2dprimer.html
https://web.archive.org/web/20050315101013/http://artax.karlin.mff.cuni.cz/%7ebeda/cz/matlab/primer/matlab%2dprimer.html
http://en.wikipedia.org

	Title-page
	Copyright
	Introduction
	Table of Contents
	Matlab
	Entering Variables
	Vectors and Matrices
	Access to Matrices and Vectors
	Matrix Operations

	Managing Variables in MATLAB
	Using the Graphics Output
	Creating Graphs for Functions

	Creating Scripts
	Loop Commands
	Logical Conditions

	Fundamentals of Algorithmization
	Properties of Algorithms
	Elementary Algorithms
	Swapping the Contents of Two Variables

	Calculation of Function Values
	Calculating the Value of a Polynomial
	Tabulated Functions
	Drawing the Graph of a Targeted Function
	Examples to Practice
	Determining the Maximum of a Discretized Function
	Examples to Practice

	Solving Nonlinear Algebraic Equations
	Iteration
	Taylor Series
	Loop Terminating Condition
	Recurring Pattern

	Iterative Methods of Solving Non-linear Algebraic Equations
	Simple Iteration
	Bisection Method (Interval Halving)
	Regula Falsi Method
	Secant Method
	Newton's Method (Tangent Method)
	Examples to Practice

	Methods for Sorting a Set of Elements
	Sorting Algorithms
	Bubble Sort
	Select Sort
	Insert Sort
	Quick Sort (Recursive)
	Shell Sort

	Working with Text Files

	Systems of Linear Equations
	Direct Methods of Solving Systems of Linear Equations
	Solving a Triangular System of Linear Equations
	Examples to Practice
	The Gaussian Elimination Method
	The Gauss-Jordan Method
	Examples to Practice
	The LU Decomposition
	The Cholesky Method (Decomposition)

	Iterative Methods of Solving Systems of Linear Equations
	The Jacobi Iteration
	Gauss-Seidel Iteration Method
	Sparse and Band Matrix
	The Conjugate Gradient Method

	Numerical Integration of a Definite Integral
	Rectangle Method
	Trapezoid Method
	Simpson's Method
	Examples to Practice

	Romberg's Method
	Adaptive Integration
	Gaussian Method

	Numerical Derivation
	Finite Difference Method
	Examples to Practice

	Numerical Differentiation with a Variable Difference
	Partial Derivatives

	Solving Differential Equations
	Ordinary Differential Equations of the First Order
	Euler's Method
	Runge--Kutta Method
	Leapfrog Method

	Ordinary Differential Equations of the Second Order

	Interpolation and Approximation
	Linear Interpolation
	Lagrange Interpolation
	Newton's Interpolation
	Approximation by the Method of Least Squ-\ares
	Linear Approximation
	Approximation by m-th Degree Polynomial

	Literature

