DISKRÉTNÍ MATEMATIKA
a
ÚVOD DO TEORIE GRAFŮ
Řešené příklady k procvičení

Petr Kovář
Úvodem

Tento text je koncepován jako pomůcka pro výuku i studium diskrétní matematiky a teorie grafů. Text je rozdělen do několika tématických okruhů, které odpovídají členění témat v předmětu Diskrétní matematika. Najdete zde jednak motivační příklady, při jejichž řešení se využívají postupy a metody diskrétní matematiky a jednak typové příklady, které mají studenta připravit na řešení klasických úloh. Do textu jsou zahrnuta i tématata z oblastí, která jsou zařazena do osnov předmětu až od roku 2019.

Na webu homel.vsb.cz/~kov16/predmety.php je navíc k dispozici celá řada interaktivních ukázků a dále na webu dim.vsb.cz jsou pak typové úlohy k dispozici v multimediální formě tzv. „pencastů“.

Chtěl bych poděkovat studentům a později kolegům Pavle Kabelíkové a Tomáši Kupkovi, kteří pomáhali s přípravou některých příkladů a také Michalu Kubesovi, který pozorově prošel část řešených příkladů. Poděkování patří i dalším studentům a kolegům: Martinu Čermákově, Oldřichu Vlachovi, Tereze Kovářové, Adamu Silberovi, Lukáši Rapantovi, Matěji Krbečkově a Jirkovi Fialovi, kteří odhalili celou řadu chyb a překlepů.

Řešené a neřešené příklady

Pro studenty jsou připraveny soubory dva. Jeden obsahuje pouze zadání příkladů a žádné výsledky, druhý soubor pak obsahuje větší část příkladů postup řešení, nebo alespoň číselný výsledek pro kontrolu. Při studiu doporučuji nejprve řešit především příklady ze souboru bez řešení a teprve vlastní postupy a výsledky srovnat s druhým souborem. Pro přehlednost je číslování příkladů v obou souborech totožné.

K použitým symbolům

Příklady označené „*“ patří k náročnějším. Jejich řešení obvykle vyžaduje delší výpočet nebo pečlivější rozbor. Při řešení příkladů označených „**“ je třeba nějaký nápad nebo výsledek z jiné oblasti matematiky. Zdůrazněme ale, že hvězdička neznamená nutně „to nikdy nevyřeším“.

Naproti tomu příklady označené „♡“ jsou tak lehké, že jejich řešení je možné zpaměti jen s užitím základních pojmů.

Obsah

0 Motivační příklady 5

I Základy diskrétní matematiky 7

1 Množiny, součty a součiny, zaokrouhlování 8
   1.1 Súmby a produkty 8
   1.2 Funkce horní a dolní celé části 8
   1.3 Množinové operace 8
   1.4 Příklady k procvičení 9

2 Výběry prvků s opakováním i bez opakování prvků 11
   2.1 Výběry bez opakování 11
   2.2 Výběry s opakováním 12
   2.3 Příklady k procvičení 12

3 Diskrétní pravděpodobnost 16
   3.1 Motivační příklady 16
   3.2 Konečný pravděpodobnostní prostor 16
   3.3 Disjunktní a nezávislé jevy 18
   3.4 Podmíněná pravděpodobnost 19
   3.5 Střední hodnota 19
   3.6 Náhodné výběry 20
   3.7 Příklady k procvičení 21

4 Důkazy v diskrétní matematice 23
   4.1 Motivační příklady 23
   4.2 Základní logické symbole 23
   4.3 Pojem matematického důkazu 23
   4.4 Princip matematické indukce 24
   4.5 Vztahy s kombinačními čísly 25
   4.6 Důkazy počítáním 26
   4.7 Příklady k procvičení 26

5 Relace a zobrazení 28
   5.1 Motivační příklady 28
   5.2 Pojem relace 29
   5.3 Uspořádání a ekvivalence 30
   5.4 Funkce a zobrazení 31
   5.5 Skládání zobrazení a permutace 31
   5.6 Příklady k procvičení 33

6 Princip inkluze a exkluze 34
   6.1 Užití principu inkluze a exkluze 34
   6.2 Příklady k procvičení 34

II Úvod do teorie grafů 35

1 Pojem grafu 36
   1.1 Motivační příklady 36
   1.2 Základní třídy grafů 36
   1.3 Stupně vrcholů v grafu 36
1.4 Podgrafy ................................................................. 38
1.5 Isomorfismus grafů ................................................... 39
1.6 Implementace grafů ................................................... 40
1.7 Příklady k procvičení ................................................. 40

2 Souvislost grafů .......................................................... 42
2.1 Souvislost a komponenty grafů ..................................... 42
2.2 Prohledávání grafů ..................................................... 43
2.3 Vyšší stupně souvislosti .............................................. 43
2.4 Příklady k procvičení ................................................ 44

3 Eulerovské a hamiltonovské grafy .................................. 45
3.1 Eulerovské grafy ....................................................... 45
3.2 Hamiltonovské grafy ................................................. 46
3.3 Příklady k procvičení ................................................ 46

4 Vzdálenost a metrika v grafu ......................................... 48
4.1 Motivační příklady .................................................... 48
4.2 Vzdálenost v grafu .................................................... 48
4.3 Vzdálenost v ohodnocených grafích .............................. 49
4.4 Nejkratší cesta v ohodnoceném grafu – Dijkstraův algoritmus ......................... 49
4.5 Příklady k procvičení ................................................ 50

5 Stromy ....................................................................... 51
5.1 Motivační příklady .................................................... 51
5.2 Základní vlastnosti stromů ........................................... 51
5.3 Kořenové a pěstované stromy ....................................... 52
5.4 Isomorfismus stromů .................................................. 53
5.5 Kostry grafů ............................................................. 54
5.6 Příklady k procvičení ................................................ 54

6 Barevnost a kreslení grafů ............................................ 56
6.1 Motivační příklady .................................................... 56
6.2 Vrcholové barvení grafů .............................................. 56
6.3 Rovinné kreslení grafu ............................................... 57
6.4 Rozpoznání rovinných grafů ........................................ 59
6.5 Barvení map a rovinných grafů .................................... 60
6.6 Příklady k procvičení ................................................ 60

7 Toky v sítích .................................................................. 61
7.1 Definice sítě ............................................................. 61
7.2 Hledání maximálního toku .......................................... 61
7.3 Zobecnění sítí a další aplikace .................................... 62
7.4 Příklady k procvičení ................................................ 63

Literatura ..................................................................... 64
0 Motivační příklady

V této části uvedeme několik typických příkladů, které se během semestru naučíme řešit. Ukazují, čím se diskretní matematika odlišuje od disciplín, se kterými se studenti už během studia setkali: od matematické analýzy, algebry a geometrie. Všimněte si, že pro řešení příkladů v této sekci sice používáme počty a diagramy, avšak nikoliv metody algebry, ani analýzy ani geometrie. Příklady tak vymezují diskretní matematiku vůči klasickým disciplínám.

0.0.1. Devět kamarádů si na Vánoce dalo dárky. Každý dal dárky třem svým kamarádům. Ukažte, že není možné, aby každý dostal dárky právě od těch tří kamarádů, kterým dárky sám dal.

0.0.2. „Tři domy a tři studny.“ Podle pověsti žily v Temném hvozdu tři čarodejnice. Každá bydlela ve své vlastní sluji a každá potřebovala k provozování své živnosti vodu ze tří studánk: s živou vodou, s mrtvou vodou a s pitnou vodou. Jenomže cestou ke studánkám se čarodejnice nesměla potkat, ani zlít vyššapanou cesticku jiné čarodejnice. Jak mohla vypadat mapa lesa se slujemi, studnami a cestickami? Pokud řešení neexistuje, pečlivě zdůvodněte.

0.0.3. „Sedm mostů města Královce“ Městem Královec (nyní Kaliningrad na území Ruska) teče řeka Pregola, která vytváří dva ostrovy. V 18. století byly ostrovy spojeny s oběma břehy i navzájem celkem sedmi mosty. Otázka zná, zda je možné v sechýn mosty přejít tak, aby ten, kdo se o to pokouší, vstoupil na každý most pouze jednou.

0.0.4. „Dokonalý kompresní algoritmus“ Najděte alespoň jeden příklad dokonalého bezztrátového kompresního a dekompresního algoritmu. (Máte najít dva algoritmy):

1. postup, jak z libovolné posloupnosti bajtů $b_1, b_2, \ldots, b_n$ sestavit kratší posloupnost $c_1, c_2, \ldots, c_m$, kde $m < n$, a současně
2. postup, jak z posloupnosti $c_1, c_2, \ldots, c_m$ sestavit zpět posloupnost $b_1, b_2, \ldots, b_n$.

Pokud takový algoritmus neexistuje, pečlivě zdůvodněte.

0.0.5. „Lámání čokolády“ Tabulka čokolády se skládá z $m \times n$ čtverčků. Chceme ji nalámat na jednotlivé čtverčky. Najděte (a dokážte) jaký je nejmenší počet žloumů, abychom čokoládu $m \times n$ rozdělili na jednotlivé čtverčky?

0.0.6. „Handshaking problem“ Máme skupinu $n$ lidí ($n \geq 2$) z nichž někteří si podali ruce. Ukažte, že ve skupině jsou alespoň dva lidé, kteří podali ruku stejném počtu lidí ve skupině.

0.0.7. „Krabice“ Mějme $n$ krabic poskládaných do jednoho vysokého sloupce. Nyní máme za úkol tento sloupec rozložit na menší hromádky, přičemž za každé rozložení sloupce o výškách $a$, $b$ dostávám $a \cdot b$ bodů. Postup končí, jakmile žádné dvě krabice neleží na sobě. Cílem je zvolit takový postup rozkládání sloupčů krabíc, aby součet bodů za všechny kroky byl co největší.
Kolik různých oblastí na obrázku najdete?
1 Množiny, součty a součiny, zaokrouhlování

Nejprve připomeneme, že známý vztah pro součet prvních \( n \) kladných celých čísel je

\[
\sum_{i=1}^{n} i = \frac{n(n + 1)}{2}.
\]  

(1)

Podrobněji si o základních kombinatorických pojmech přečtete v úvodní kapitole skript [ZDM].

1.1 Sumy a produkty

1.1.1. Vypočtěte \( \sum_{i=-3}^{4} \frac{3+i}{2} \).

1.1.2. Najděte obecný vztah pro součet prvních k lichých čísel.

1.1.3. Najděte obecný vztah pro součet prvních k sudých kladných čísel.

1.1.4. Zapište a zjednodušte součet \( 12 + \frac{12}{100} + \frac{12}{10000} + \frac{12}{100000} + \cdots \).

1.1.5. Ukažte, že aritmetický průměr libovolného sudého počtu po sobě jdoucích čísel není celé číslo.

1.2 Funkce horní a dolní celé části

1.2.1. Upravte na celočíselný zlomek \( \frac{31}{271} \).

1.2.2.* Zapište funkci \( \lceil \rceil \) pomocí \( \lfloor \rfloor \).

1.2.3.* Zapište funkci \( \lfloor \rfloor \) pomocí \( \lceil \rceil \).

1.2.4. Upravte na celočíselný zlomek \( \frac{1}{23} \).

1.2.5.* Ukažte, že \( \lceil 1.9 \rceil = 2 \).

1.2.6.* Ukažte, že \( \lceil 1.9 \rceil = 2 \).

1.2.7. Ukažte, že \( \lfloor \lceil x \rceil \rfloor = \lceil x \rceil \).

1.2.8. Jak vyjádříte klasické zaokrouhlení pomocí \( \lfloor \rfloor \)?

1.2.9.* Jak vyjádříte klasické zaokrouhlení pomocí \( \lceil \rceil \)?

1.2.10. Nakreslete graf funkcí \( \sin x \), \( \cos x \) a \( \tan x \).

1.2.11. Kolik prvků má \( 2^{(1,2,3,4)} \)? Rozepište.

1.3 Množinové operace

1.3.1. Určete doplněk množiny všech sudých čísel \( S \)

a) v množině \( N \),

b) v množině \( \mathbb{R} \). Doplněk \( \overline{S} = N \setminus S \) jsou všechna reálná čísla, která nejsou sudá čísla, tj. \( \overline{S} = \{ x : x \in \mathbb{R} \text{ a } x \neq 2k \} \), kde \( k \in \mathbb{N} \).

1.3.2. Rozepište potenciální množinu množiny \( B = \{1, 2, 3\} \).

1.3.3.\( \uparrow \) Máme dány množiny \( A = \{1, 2, 3\}, \ B = \{\circ, \ast\} \).

a) Kolik prvků má sjednocení \( A \cup B \)?

b) Kolik prvků má průnik \( A \cap B \)?

c) Kolik prvků má rozdíl \( A \setminus B \)?

d) Kolik prvků má kartézský součin \( A \times B \)?
e) Kolik prvků má součin $A \times 2^B$?
f) Rozepište kartézský součin $A \times B$.
g) Rozepište kartézský součin $B \times A$.
h) Rozepište rozdíl $A \setminus B$.
i) Rozepište rozdíl $B \setminus A$.
j) Rozepište součin $A \times 2^B$.

1.3.4. Určete doplněk množiny $B$ v množině $A$, kde $A = \mathbb{R}$, $B = \{x \in \mathbb{R} : |x| \geq 2\}$.

1.3.5. Určete průnik a sjednocení množin $A = \mathbb{N}$, $B = \{x \in \mathbb{Z} : |x| \geq 3\}$.

1.3.6. Určete rozdíly $A \setminus B$, $B \setminus A$, kde $A = \mathbb{N}$, $B = \{x \in \mathbb{Z} : |x| \geq -7\}$.

1.3.7. Kdy platí
   a) $A \cap B = A$?
   b) $A \cup B = A$?
   c) $A \cup B = A \cap B$?

1.3.8.* Dokažte matematickou indukci, že $|2^A| = 2^{|A|}$.

1.4 Příklady k procvičení

1.4.1. Vypočítejte následující sumy nebo produkty.
   a) Vypočtěte $\sum_{i=2}^{5} \frac{1}{2i}$.
   b) Vypočtěte $\sum_{j=2}^{5} \frac{1}{2j}$.
   c) Vypočtěte $\sum_{i=1}^{4} i^3$.
   d) Vypočtěte $\prod_{i=0}^{n} \frac{1}{i+1}$.
   e) Vypočtěte $\prod_{i=1}^{n} \frac{i}{i+1}$.

1.4.2. Existuje taková posloupnost $(a_i)_{i=1}^{n}$, že $\sum_{i=1}^{n} a_i < \sum_{i=1}^{n} (-a_i)$? Pokud ano, uveďte příklad!

1.4.3. Existuje taková posloupnost $(a_i)_{i=1}^{n}$, že $\sum_{i=1}^{n} a_i > 0$ a $\prod_{i=1}^{n} a_i < 0$? Pokud ano, uveďte příklad!

1.4.4. Existuje taková posloupnost kladných čísel $(a_i)_{i=1}^{n}$, že $\sum_{i=1}^{n} a_i > \prod_{i=1}^{n} a_i$? Pokud ano, uveďte příklad!

1.4.5. Zapište funkci součet prvků množiny $A = \{18, 25, 31, 67, 202, 301, 356\}$ pomocí sumy.

1.4.6. Vypočítejte
   a) $|2.7|$.
   b) $|-2.7|$.
   c) $|\frac{22}{11}|$.
   d) $|\frac{22}{11}|$.
   e) $|\frac{22}{11}|$.
   f) $|\frac{22}{11}|$.
g) $P = \left\lfloor \frac{n+1}{n} \right\rfloor$, pro $n \in \mathbb{N}$

1.4.7. Je některá množina podmnožinou každé množiny? Pokud ano, uveďte příklad.

1.4.8. Upravte, čemu se rovná

a) $A \cap (B \cup C) = ?$

b) $A \cup (B \cap C) = ?$

c) $\overline{A \cap B} = ?$ ($X$ značí doplněk množiny $X$)

1.4.9. Kdy je potenciální množina $2^A$

a) jednoprvková?

b) dvouprvková

c) tříprvková

d) prázdná

1.4.10. Kdy je kartézský součin dvou množin $A \times B$ prázdný?

1.4.11. Je možno najít dvě takové množiny $A, B$, aby současně platilo $A \subset B$ a $A \in B$?

1.4.12. Je možno najít dvě takové neprázdné množiny $A, B$, aby současně platilo $A \subset B$ a $A \in B$?

1.4.13. Dělové koule si dělili šestici stavěli do pyramid.

a) Pyramida byla měla čtvercovou základnu např. $4 \times 4$ koule, na ní dali vrstvu $3 \times 3$ koule, pak $2 \times 2$ koule a na vrchol 1 kouli. Tato pyramida měla celkem 30 koulí. Kolik celkem koulí by měla pyramida o základním $n \times n$ kouli?

b) Pyramida mohla mít založenou podstawu ve tvaru rovnoramenného trojúhelníku z 15 kouli, na ní byla další vrstva 10 koulí, další vrstva měla 6 koulí, pak 3 koule a na vrcholu byla 1 kouli. Celkem měla taková pyramida 35 koulí. Kolik celkem koulí by měla pyramida o základní hranou z $n$ kouli?
2 Výběry prvků s opakováním i bez opakování prvků

Podrobněji si o základních o kombinatorických výběrech přečtete ve skriptech [ZDM].

2.1 Výběry bez opakování

2.1.1. Pro jaké hodnoty \( n \) a \( k \) je více \( k \)-prvkových podmnožin z \( n \) prvkové množiny než \((n - k)\)-prvkových podmnožin?

2.1.2. Pro jaké hodnoty \( n \) a \( k \) je více \( k \)-prvkových variací z \( n \) prvkové množiny než \((n - k)\)-prvkových variací?

2.1.3. Vyjádřete bez kombinačních čísel \( \binom{3n}{3} \)

2.1.4. Tenisový turnaj se hraje systémem každý s každým. Kolik se bude hrát zápasů, jestliže
   a) se turnaje z 8 hráčů?
   b) se turnaje z 21 hráčů?

2.1.5. Máme prázdnou množinu \( \emptyset \).
   a) Kolika způsoby můžeme seřadit prvky \( \emptyset \) do posloupnosti?
   b) Kolika způsoby můžeme vybrat \( \emptyset \) z nějaké množiny?
   c) Jak by se tyto počty změnily, kdyby \( 0! \neq 1 \)?

2.1.6. Tenisového turnaje se účastní 8 hráčů. Kolik je různých pořadí na stupních vítězů?

2.1.7. Upravte a porovnejte \( \binom{6n}{3} \) a \( \binom{3n}{6} \).

2.1.8. Kolik způsoby se může postavit pět artistů na sebe?

2.1.9. Kolika způsoby je možné napsat číslo \( k \) jako součet \( n \) sčítanců 1 a 2? (počet sčítanců \( n \) je pěvně dán)

2.1.10. Máme \( n \) lidí. Jak velké skupinky vybrat, aby byl počet možností co největší?

2.1.11. Ukažte několika způsoby, že \( \binom{n}{k} = \binom{n}{n-k} \)

2.1.12. Ukažte několika způsoby, že \( \binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1} \)

2.1.13.* Hokejový trenér má k dispozici 13 útočníků a 9 obránců. Kolika způsoby vybereme pětku (2 obránce + 3 útočníci), jestliže jeden konkrétní útočník může hrát i v obraně?

2.1.14. Určete počet všech pěticiferných přirozených čísel, v jejichž dekadickém zápisu se každá z deseti číslic vyskytuje nejvýše jednou. Kolik z nich je menších než 50 000?

2.1.15. Na konferenci vystoupí šest přednášejících: A, B, C, D, E, F. Určete počet
   a) všech možných pořadí jejich vystoupení;
   b) všech pořadí, v nichž vystoupí A po E;
   c) všech pořadí, v nichž vystoupí A ihned po E.

2.1.16. Kolika způsoby můžeme \( n \) lidí posadit
   a) do řady
   b) do řady, v níž je člověk A na kraji;
   c) do řady tak, aby lidé A a B neseděli vedle sebe;
d) kolem kulatého stolu (dvě rozesazení považujeme za různá, pokud se alespoň jednomu člověku změní soused po pravé či levé ruce).

2.1.17. Kolika způsoby můžeme ze sedmi mužů a čtyř žen vybrat šestičlennou skupinu, tak aby v ní byly
a) právě dvě ženy;
b) alespoň dvě ženy;
c) nejvýše dvě ženy;

2.1.18. Vlajka může být sestavena ze tří různobarevných vodorovných pruhů. K dispozici jsou látky barvy bílé, červené, modré, zelené a žluté.

a) Kolik různých vlajek můžeme sestavit?
b) Kolik z nich má modrý pruh?
c) Kolik jich má modrý pruh uprostřed?
d) Kolik jich nemá uprostřed červený pruh?

2.2 Výběry s opakováním

2.2.1. Kolika způsoby můžeme postavit šestíclenu na zemi, kdo v první vrstvě a kdo nahoře, ale už nerozlišujeme, komu stojí další řada na levém a komu na pravém rameni.

2.2.2. Kolik sestanců dostaneme po umocnění trojčlenu \((a + b + c)^7\)? Úlohu řešte kombinatorickou úvahou, nikoliv rozepisováním binomického rozvoje.
Pokud roznásobíme všechny 7 závorky a sečteme odpovídající členy, bude každý člen obsahovat sedm součinitelů, každý se může opakovat v libovolném počtu kopí (0 až 7). Nebude však hrát roli pořadí, v jakém bylo sedm součinitelů ze tří možností vybráno, proto počet členů je roven počtu kombinací tříprvkové množiny \(\{a, b, c\}\) s možností opakování. Existuje celkem \(C^s(3, 7) = \binom{7+3-1}{3-1} = \binom{9}{2} = \frac{9 \cdot 8}{2} = 36\) různých členů.

Poznámka:
Obdobně pro druhou mocninu dostaneme známý vztah \((a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ac\) se šesti členy, neboť \(C^s(3, 2) = \binom{2+3-1}{3-1} = \binom{4}{2} = 6\).

Poznámka:
Pokud rozlišujeme i všechny sčítance se stejnými členy, například členy \(a^4b^2c\) a \(a^3b^2ac\) považujeme za různé, tak se jedná o výber, kdy ze tří součinitelů vybíráme sedmkrát s možností opakování, přičemž rozlišujeme pořadí součinitelů. Takových sčítanců je \(V^s(3, 7) = 3^7 = 2187\).

2.2.3. Kolik existuje anagramů slova MISSISSIPPI?

2.2.4. Kolik existuje anagramů slova MISSISSIPPI, které neobsahují III?

2.2.5. Kolik existuje anagramů slova MISSISSIPPI, které neobsahují II?

2.2.6. Na patnáct stožárů v řadě budou pověšeny vlajky pěti zemí, každá třikrát. Kolik existuje možností?

2.3 Příklady k procvičení

2.3.1. Vypočítejte, kolika způsoby lze na klasické šachovnici \((8 \times 8\) polí) vybrat
a) trojici libovolných políček,
b) trojici políček tak, že žádné dvě neleží v témže sloupci,
c) trojici políček tak, že žádné dvě neleží v témže sloupci ani v téže řadě,
d) trojici políček, která jsou všechna téže barvy.

2.3.2. Kolika způsoby je možné napsat \( k \) jako součet \( n \) sčítanců? Předpokládáme, že rozlišujeme pořadí sčítanců.

2.3.3. Kolika způsoby je možné napsat \( 7 \) jako součet právě čtyř přirozených sčítanců? (dovolíme i nulové sčítance!) Předpokládáme, že rozlišujeme pořadí sčítanců.

2.3.4. Kolika způsoby je možné napsat \( 7 \) jako součet právě čtyř kladných přirozených sčítanců? Předpokládáme, že rozlišujeme pořadí sčítanců.

2.3.5. Kolika způsoby je možné napsat \( k \) jako součet právě \( k \) kladných sčítanců? Předpokládáme, že rozlišujeme pořadí sčítanců.

2.3.6. Kolika způsoby je možné napsat \( k \) jako součet \( n \) kladných sčítanců? Předpokládáme, že rozlišujeme pořadí sčítanců.

2.3.7. Máme 10 stejných figurek a čtyři různé barvy. Kolik existuje možností, jak všechny figurky obarvít?

2.3.8. Máme 7 různých figurek a tři různé barvy. Kolik existuje možností, jak všechny figurky obarvít?

2.3.9. Máme 10 stejných figurek a čtyři různé barvy. Kolik existuje možností, jak některé figurky obarvít?

2.3.10. Máme 10 stejných figurek a čtyři různé barvy. Kolik existuje možností, jak všechny figurky obarvít, přičemž od každé barvy by měla být alespoň jedna figurka?

2.3.11. Kolika způsoby můžeme posadit \( n \) lidí kolem kulatého stolu? Ve dvou rozdílných rozsazeních má některý člověk jiného sousedu po levé nebo po pravé ruce.

2.3.12. Kolika způsoby můžeme posadit \( n \) manželských páru kolem kulatého stolu tak, aby manželé seděli vždy vedle sebe? Ve dvou rozdílných rozsazeních má některý člověk jiného souseda po levé nebo po pravé ruce.

2.3.13. Dříve byly státní poznávací značky osobních automobilů tvořeny uspořádanou sedmicí, jejíž první tři členy byly písmena a další čtyři číslice. Kolik poznávacích značek bylo možno sestavit, jestliže pro první část značky bylo možno použít každé z 26 písmen (každá možnost povolena nebyla).

2.3.14. Určete počet všech \( nejvýše \ k \)-prvkových podmnožin \( n \)-prvkové množiny.

2.3.15. Kolik je všechn pěticiferných přirozených čísel? Kolik z nich je menších než 50 000?

2.3.16. Určete počet všech čtyřciferných přirozených čísel dělitelných 9, v jejichž dekadickém zapisu mohou být pouze číslice 0, 1, 2, 5, 7.

2.3.17. V sáčku jsou červené, modré a zelené kuličky (kuličky téže barvy jsou nerozlišitelné). Určete, kolika způsoby lze vybrat pět kuliček, jestliže v sáčku je

   a) aspoň pět kuliček od každé barvy;

   b) pět červených, čtyři modré a čtyři zelené kuličky.

2.3.18.* Kolika způsoby je možné napsat číslo \( k \) jako součet sčítanců 1 a 2? Předpokládáme, že rozlišujeme pořadí sčítanců.

2.3.19.* Jaký je počet všech trojúhelníků, z nichž žádné dva nejsou shodné a každá jejich strana má velikost vyjádřenou některým z čísel \( n+1, n+2, n+3, \ldots, 2n \), kde \( n \) je přirozené číslo.

2.3.20. Kolik přímků lze proložit 7 body, jestliže žádné tři body leží v přímce?

2.3.21. Kolik přímků lze proložit 7 body, jestliže právě tři body leží v přímce?

2.3.22. Máme dány dvě mimoběžky. Na jedné je \( m \) bodů, na druhé \( n \) bodů. Kolik lze sestrojit čtyřstěnné s vrcholy v daných bodech?
2.3.23. Kolika způsoby můžete seřadit v polici pět učebnic angličtiny, čtyři učebnice matematiky a dvě učebnice českého jazyka, jestliže mají zůstat rozděleny do skupin po jednotlivých předmětech?

2.3.24. Na hlídku půjdou 4 vojáci z čety. Kolika vojáků má četa, jestliže výběr je možno provést 210 způsoby?

2.3.25. Palindrom je slovo, které se píše stejně jako pozpátku. Anglická abeceda má 26 písmen. Kolik existuje palindromů (i nesmyslých) délky n z písmen anglické abecedy?

2.3.26. Házníme tři různé kostky. Kolik existuje takových možností, kdy v každém dalším hodu padají větší a větší čísla?

2.3.27. Byli jsme čtyři, seděli v baru a popijeli. Trápilo nás špatné svědomí, že místo abychom v životě dělali něco pořádného, jsme závisli na alkoholu. Tu k nám přistoupil rozjařený barman a namíchal nám sedm různých drinků tak, aby každý dostal alespoň jeden. Kolika způsoby to mohl provést, jestliže rozlišujeme pořadí drinků, které jsme vypili.

2.3.28. Počtač Kecálek ve filmu Rumburak dostal za úkol najít všechny dvojice slov složené z dvanácti písmen (mezeru nepočítáme). Kolik takových slov z 26 písmen existuje?

2.3.29. Zakládáme pro přesun do říše pohádek ve filmu Rumburak zní HUBERO KORORO. Kolik existuje anagramů tohoto zakládála složených ze dvou šestipísmených slov?

2.3.30. Zakládáme pro změnu počasí ve filmu Rumburak zní RABERA TAREGO. Kolik existuje anagramů tohoto zakládála složených ze dvou šestipísmených slov?

2.3.31. Na běžných dominantních kostkách se vyskytují oka v počtu 0, 1, 2, 3, 4, 5, 6. Každá dvojice počtu ok se s sadou vykryje na právě jedné kostce. Všechny kostky dominá je možné položit do jediné řady tak, aby navazující kostky sdílely stejný počet ok. Nyní n-dominé budeme rozumět takovou sadu kostek, která obsahuje všechny dvojice počtů ok z rozsahu 0, 1, 2, 3, 4, 5, 6. Pro jaká přirozená čísla n lze všechny kostky n-domín položit do jediné řady?

2.3.32. Máme čtverečkovanou síť m × n čtverečků. Kolik různých obdélníků najdeme v síti?

2.3.33. Keltský druíd Travedik vaří lektvary ze stáří různých bylin. Mezi nimi je i šalvěj třeskutá, což je druídova nejmcenější bylinka. Při vaření lektvarů může použít jednu, dvě, tři, či libovolný větší počet bylín. Kterých lektvarů je více, těch, které šalvěj třeskutou obsahují a nebo těch, které ji neobsahují?

2.3.34. Keltský druíd Travedik vaří lektvary ze stáří různých bylin. Mezi nimi jsou i šalvěj třeskutá a puchýřníček smradlavý, což jsou dvě Travedikovy nejmocnější bylinky. Při vaření lektvarů může použít jednu, dvě, tři, či libovolný větší počet bylín. Kterých lektvarů je více, těch, které obsahují šalvěj třeskutou a puchýřníček smradlavý a nebo těch, které alespoň jednu z těchto bylin neobsahují?

2.3.35. Hra Tic-tac-toe je hra s tužkou a papírem pro dva hráče X a O. Hráči strídavě zapisují krížky a kolečka do čtvercové sítě policík 3 × 3. Obvykle začíná X, jako na Obrázku 2.1. Hráč, který jako první umístí tři své symboly v jedné řadě, sloupci nebo diagonále, vyhraje.

Obrázek 2.1: Jedna hra Tic-tac-toe.

a) Kolik existuje různých rozmístění krížků a koleček (pět krížků a čtyři kolečka) na herním plánu?

b) Kolik existuje různých rozmístění krížků a koleček na herním plánu, jestliže rozlišujeme pořadí tahů, krížky a kolečka se strídají?

c) Kolik existuje různých her Tic-tac-toe, kdy vyhrají X v pátémahu?

d) Kolik existuje různých her Tic-tac-toe, kdy vyhrají O v šestémahu?

e) Kolik existuje různých her Tic-tac-toe, kdy vyhrají X v sedmémahu?
f) Kolik existuje různých her Tic-tac-toe, kdy vyhraje O v osmém tahu?

g)* Kolik existuje různých her Tic-tac-toe, kdy vyhraje X v devátém tahu?

h) Kolik existuje různých her Tic-tac-toe, které končí remízou?

i) Kolik existuje všech různých her Tic-tac-toe?
3 Diskrétní pravděpodobnost

Pokud není řečeno jinak, tak v příkladech této kapitoly předpokládáme, že balíček karet obsahuje 32 karet, od sedmičky po eso ve čtyřech různých barvách (srdce, piky, káry a kríže). Dále předpokládáme, že klasická šestistěnná kostka je vyrobená tak, že součet ok na protilehlých stěnách je vždy sedm.

Vážněte si, že i v případě, kdy máme zamíchaný celý balíček karet, nemusíme někdy uvažovat šech 32! pořadí. Pokud se zajímáme o nějaký výběr, stačí pracovat s nějakým náhodným výběrem.

Podrobněji si o diskrétní pravděpodobnosti můžete přečíst ve skriptech [ZDM].

3.1 Motivační příklady


3.2 Konečný pravděpodobnostní prostor

3.2.1. Hodíme kostkou.

a) Jaká je pravděpodobnost, že padne sudé číslo?
b) Jaká je pravděpodobnost, že padne prvočíslo?
c) Jaká je pravděpodobnost, že padne jednička nebo dvojka?
d) Jaká je pravděpodobnost, že součet horní a spodní stěny je 7?
e) Jaká je pravděpodobnost, že součet horní a spodní stěny je 3?

3.2.2. Hodíme kostkou, která není spravedlivá, různá čísla padají s různou pravděpodobností. Čísla 1, 2 padnou s pravděpodobností $\frac{1}{6}$, čísla 4, 5 a 6 padnou s pravděpodobností $\frac{1}{7}$. Pravděpodobnost čísla 3 není udána.

a) Jsou uvedené pravděpodobnosti konzistentní?
b) S jakou pravděpodobností padne číslo 3?
c) Jaká je pravděpodobnost, že padne sudé číslo?
d) Jaká je pravděpodobnost, že padne prvočíslo?
e) Jaká je pravděpodobnost, že padne jednička nebo dvojka?
f) Jaká je pravděpodobnost, že součet horní a spodní stěny je 7?
g) Jaká je pravděpodobnost, že součet horní a spodní stěny je 3?

3.2.3. Hodíme dvěma kostkami.

a) Je pravděpodobnější, a) že padne 5 a 6 nebo b) že padnou dvě 3?
b) Jaká je pravděpodobnost, že padne součin 12?
c) Jaká je pravděpodobnost, že padne součin 4?
d) Jaká je pravděpodobnost, že padne součin 14?
e) Jaká je pravděpodobnost, že padne součet 10?

3.2.4. Sestavte funkci $P(n)$, která bude udávat pravděpodobnost, že při současném hodu $n \geq 1$ kostkami
a) padne součet $n$.
b) padne součet 3.

3.2.5. Hodíme současně sedmi kostkami. Jaká je pravděpodobnost, že
a) padne součet $n$.
b) padne součet 3.

3.2.6. Hodíme $n$-těsnou kostkou očíslovanou 1, 2, ..., $n$. Jaká je pravděpodobnost, že padne liché číslo?

3.2.7. Hodíme $n$-těsnou prvočíselnou kostkou (stěny jsou očíslované užitím prvních $n$ prvočísel). Jaká je pravděpodobnost, že padne liché číslo?

3.2.8. Máme zamíchaný balíček 32 hrácích karet. Jaká je pravděpodobnost, že
a) první karta v balíčku je eso?
b) třetí karta v balíčku je desítká?
c) třetí karta v balíčku je desítká, víme-li, že první dvě karty jsou dáma a král?
d) třetí karta v balíčku je desítká, víme-li, že první dvě karty jsou sedmička a desítká?

3.2.9. Házieme dvěma kostkami: šestistěnnou a dvanáctistěnnou. Jaká je pravděpodobnost, že na obou padne stejné číslo?

3.2.10. Házieme třemi kostkami: šestistěnnou, šestistěnnou, desetistěnnou. Jaká je pravděpodobnost, že na všech padne stejné číslo?

3.2.11. Házieme třemi šestistěnnými kostkami.
a) Je lepší vsadit si, že nepadne žádná šestka, nebo že padne alespoň jedna šestka?
b) Jaká je pravděpodobnost, že padne právě jedna šestka?
c) Jaká je pravděpodobnost, že padnou alespoň dvě šestky?

3.2.12. Házieme desetistěnnou kostkou.
a) Hodíme jednou. Jaká je pravděpodobnost, že padne prvočíslo?
b) Házieme dvakrát. Jaká je pravděpodobnost, že padne lichý součet?
c) Házieme dvakrát. Jaká jsou pravděpodobnosti jednotlivých součtů?

3.2.13. Házieme čtyřikrát mincí. Jaká je pravděpodobnost, že
a) padne čtyřikrát za sebou hlava?
b) padne nejprve hlava, potom orel, znovu orel a nakonec hlava?
c) padne dvakrát hlava a dvakrát orel (v libovolném pořadí)?
d) padne alespoň jednou hlava?
   a) Jaká je pravděpodobnost, že padne 2, 4, 6?
   b) Jaká je pravděpodobnost, že padne 2, 4, 4?

3.2.15. Ve třídě je 25 žáků. Předpokládejme, že nikdo nemá narozeniny 29. února (v přestupném roce) a že každý den v roce se rodi přibližně stejně dětí. a) S jakou pravděpodobností budou alespoň dva spolužáci slavit narozeniny ve stejný den? b) Kolik nejméně musí být ve třídě žáků, aby byla pravděpodobnost společného data narozenin dvou spolužáků větší než \( \frac{1}{2} \)?

3.3 Disjunktní a nezávislé jevy

3.3.1. Dva hráči hází kostkou. Jsou jejich hody nezávislé? I když někdo hodí tři šestky za sebou?

3.3.2. Mějme dva různé elementární jevy.
   a) Jsou různé elementární jevy vždy disjunktní?
   b) Jsou různé elementární jevy vždy nezávislé?

3.3.3. Mějme dva disjunktní jevy.
   a) Mohou být dva disjunktní jevy nezávislé?
   b) Je prázdný jev nezávislý s libovolným jevem?

3.3.4. Udějte příklad dvou různých jevů, které nejsou disjunktní.

3.3.5. Hodíme dvěma kostkami.
   a) Jsou jevy \( A: \) padl součet 4 a \( B: \) padl součin 4 disjunktní?
   b) Jsou jevy \( A: \) padl součet 6 a \( B: \) padl součin 6 disjunktní?

3.3.6. Mějme tři jevy \( A, B, C \). Víme, že jevy \( A \) a \( B \) jsou nezávislé, jevy \( B \) a \( C \) jsou nezávislé a jevy \( A \) a \( C \) jsou nezávislé.
   a) Jsou jevy \( A, B, C \) nezávislé jako trojice?
   b) Mohou být ve speciálním případě nezávislé? Kdy?

3.3.7. Máme zamíchaný balíček 32 karet.
   a) Rozdáme dvěma hráčům po třech kartách. Jsou výběry karet nezávislé?
   b) Dáme prvnímu hráči tři karty a zbývající karty zamícháme. Potom druhý hráč dostane také tři karty. Jsou výběry karet nezávislé?
   c) Dáme prvnímu hráči tři karty. On si je zapamatuje a vrátí do balíčku. Potom karty zamícháme a druhý hráč dostane tři karty. Jsou výběry karet nezávislé?
   d) Hráč dostane pět karet, potom karty vrátí a po zamíchání dostane znovu pět karet. Jaká je pravděpodobnost, že měl pokračování fullhouse (3+2 stejné hodnoty)?
   e) Hráč dostane pět karet, schová si je dostane dalších pět karet. Jaká je pravděpodobnost, že měl královský pokerský pokus (4 esa a další karta stejné hodnoty) dvakrát za sebou?

3.3.9. Hodíme dvěma kostkami. Jsou jevy „padl součet 6“ a jev „padl součin 8“ nezávislé?

3.3.10. Mějme pravděpodobnostní prostor $\Omega = \{1, 2, 3, 4, 5, 6, 7, 8\}$ s uniformní pravděpodobností (házíme osmistěnnou kostkou). Jsou jevy $A = \{1, 2, 3, 4\}$ a $B = \{5, 6, 7, 8\}$ nezávislé?

3.3.11. Mějme pravděpodobnostní prostor $\Omega = \{1, 2, 3, 4, 5, 6\}$ s uniformní pravděpodobností (házíme šestistěnnou kostkou). Jsou jevy $A = \{1, 2, 3\}$ (padlo malé číslo) a $B = \{5, 6\}$ (padlo liché číslo) nezávislé?

3.3.12. Mějme pravděpodobnostní prostor $\Omega = \{1, 2, 3, 4, 5, 6, 7, 8\}$ s uniformní pravděpodobností (házíme osmistěnnou kostkou). Jsou jevy $A = \{1, 2, 3, 4\}$ (padlo malé číslo) a $B = \{5, 6\}$ (padlo liché číslo) nezávislé?

3.3.13. Házíme $n$-stěnnou kostkou. Nadešplňujeme jev $A$, že padne malé číslo $1, 2, \ldots, \lfloor \frac{n}{2} \rfloor$ a jev $B$, že padne liché číslo. Pro jaké $n$ jsou jevy $A$ a $B$ nezávislé?

3.4 Podmíněná pravděpodobnost

3.4.1. Jaká je pravděpodobnost při hodu klasickou kostkou, že padne číslo větší než 3 víme-li, že padlo liché číslo.

3.4.2. V krabici je 5 koulí, 3 jsou bílé a 2 černé. Vytahneme postupně dvě koule. Jaká je pravděpodobnost, že první je bílá a druhá černá?


3.4.4. V krabici je 5 koulí, 3 jsou bílé a 2 černé. Vytahneme postupně dvě koule. Poctejme: Všechny možnosti, jak může dopadnout losování je $\left(\begin{array}{c}5 \\ 2 \end{array}\right) = 10$. Příznivé jsou ty, kdy vybereme nejprve bílou a potom černou: Dostaneme pravděpodobnost $P = \frac{3}{10} \times \frac{1}{9} = \frac{3}{5}$. Srovnajte s řešením Příkladu 2. Co je špatné? Vysvětlete!

3.4.5. Z celkové produkce závodu jsou 4% zmetků. Z dobrých výrobků je 75% standardních. Určete pravděpodobnost, že náhodně vybraný výrobek je standardní.

3.5 Střední hodnota

3.5.1. Házíme kostkou, která není spravedlivá, různá čísla padají s různou pravděpodobností. Číslo 1, 2 padnou s pravděpodobností $\frac{1}{5}$, číslo 4, 5 a 6 padnou s pravděpodobností $\frac{1}{7}$. Pravděpodobnost čísła 3 není udána. Jaký je střední počet počtu ok, která na kostce padnou?

3.5.2. Jaký je střední hodnota počtu šestek, které padnou při hodu pěti kostkami?

3.5.3. Máme šestistěnnou kostku.

a) Jaký je průměrný součet čísel na horní a spodní straně kostky vyrobené tak, že 1 je naproti 6, 2 naproti 5 a 3 naproti 4?

b) Jaký je průměrný součet čísel na horní a spodní straně kostky vyrobené tak, že 1 je naproti 2, 3 naproti 4 a 5 naproti 6?

3.5.4. Máme dva sáčky s kuličkami. V prvním sáčku jsou dvě kuličky s číslem 2 a tři kuličky s číslem 3. Ve druhém sáčku jsou 3 kuličky s číslem 4 a 2 kuličky s číslem 5. Taháme z obou sáčků po jedné kuličce. Jaký je průměrný součet tažených čísel?

3.5.5. Uměli byste rozmístit čísla 1 až 6 na spravedlivou kostku tak, aby střední hodnota součtu horní a spodní stěny byla jiná než 7?
3.5.6. Najděte vhodná čísla $a_1, a_2, \ldots, a_6$ a rozmístěte je na spravedlivou kostku tak, aby střední hodnota součtu horní a spodní stěny byla jiná než průměr hodnot $a_1$ až $a_6$ vynásobený dvěma.

3.5.7. Najděte vhodná celá čísla $a_1, a_2, \ldots, a_6$ a rozmístěte je na spravedlivou kostku tak, aby střední hodnota součtu horní a spodní stěny byla jiná než průměr hodnot $a_1$ až $a_6$ umocněný na druhou.

3.5.8.* Najděte vhodná různá celá čísla $a_1, a_2, \ldots, a_6$ a rozmístěte je na spravedlivou kostku tak, aby střední hodnota součtu horní a spodní stěny byla stejná jako průměr hodnot $a_1$ až $a_6$ umocněný na druhou.

3.5.9. Kolik je třeba průměrné hod u mincí, aby vyšly dva stejné výsledky?

3.5.10.* Kolik je třeba průměrné hod u mincí, kde hlava má pravděpodobnost $p$ ($p$ nemusí být $\frac{1}{2}$), aby vyšly dva stejné výsledky?

3.5.11.* Kolik je třeba průměrné hod u mincí, aby padla první hlava?

3.5.12.* Kolik je třeba průměrné hod u mincí, kde hlava má pravděpodobnost $p$ ($p$ nemusí být $\frac{1}{2}$), aby padla druhou?

3.5.13. Jak je střední hodnota počtu políček, o které se vaše figurka přesune v jednom kole hry „Člověče, nezlob se!“, pokud se

a) po třetí šestce za sebou již znovu neházi?

b) opakovaně hází dokud padají šestky?

3.5.14. Při objednávání obědů u terminálu vedle jídelny nevíte, která jídla jsou k dispozici a která ne. Jestliže tři z pěti jídel již není možné objednat. Jaký je střední počet pokusů než si objednáme jídlo, které se ještě vaří?

3.5.15. Při objednávání obědů u terminálu vedle jídelny nevíte, která jídla jsou k dispozici a která ne. Je-li v menu výběr z $n$ jídel a jestliže $k \leq n$ je počet jídel z pěti, která je možno objednat, jaký je střední počet pokusů než si objednáme jídlo, které se ještě vaří?

3.6 Náhodné výběry

3.6.1. Máme sedmiprvkovou mnozинu $A$.

a) S jakou pravděpodobností vybereme náhodně jednu konkrétní pětiprvkovou podmnozínu mezi všemi pětiprvkovými podmnožinami?

b) S jakou pravděpodobností vybereme náhodně jednu konkrétní pětiprvkovou podmnožinu mezi všemi podmnožinami?

c) S jakou pravděpodobností vybereme náhodně některou pětiprvkovou podmnožinu mezi všemi podmnožinami?

3.6.2. S jakou pravděpodobností vybereme náhodné jednu $k$-prvkovou podmnožinu $n$-prvkové množiny?

3.6.3. S jakou pravděpodobností vybereme náhodné $k$-prvkovou podmnožinu mezi všemi podmnožinami $n$-prvkové množiny?

3.6.4. Jaká je pravděpodobnost, že náhodná podmnožina $n$-prvkové množiny obsahuje jeden pevně zvolený prvek?

3.6.5. Máme náhodnou posloupnost čtyř bitů.

a) S jakou pravděpodobností se jedná o „0011“?

b) S jakou pravděpodobností obsahuje dvě jedničky a dvě nuly?

3.6.6. S jakou pravděpodobností obsahuje více jedniček než nul?
3.6.7. Máme náhodnou permutaci pěti prvků množiny.

a) Jakou pravděpodobnost má jedna náhodná permutace?
b) Jakou pravděpodobnost má permutace, kde číslo 1 následuje bezprostředně za číslem 2?
c) Jakou pravděpodobnost má permutace, kde číslo 1 následuje za číslem 2?
d) Jakou pravděpodobnost má permutace, kde čísla 1, 2 jsou vedle sebe?

3.7 Příklady k procvičení

3.7.1. Házíme opakovaně spravedlivou mincí.

a) Jaká je pravděpodobnost, že při šesti hodech mincí padne hlava i orel stejněkrát?
b) Jaká je pravděpodobnost, že při n hodech mincí padne hlava i orel stejněkrát?


a) obě karty budou esa?
b) obě karty budou devítka a desítková (v tomto pořadí)?
c) obě karty budou devítka a desítková (v libovolném pořadí)?
d) ani jedna karta nebude král?
e) obě karty budou stejné barvy?

3.7.3. Kuchař upustil omylem do polévky dva různé prsteny. Všechna polévka byla rozdělena mezi 25 hostů, z toho 8 žen. Jaká je pravděpodobnost, že

a) oba prsteny dostane jedna osoba?
b) prsteny budou mít v polévce dva muži?
c) prsteny nebude mít v polévce žádný muž?
d) prsteny budou mít v polévce jeden muž a jedna žena?
e) prsteny budou mít v polévce dvě ženy?
f) Jak se pravděpodobnosti změní, jestliže prsteny budou stejné?

3.7.4. Hodíme dvěma šestistěnnými kostkami. Jaká je pravděpodobnost, že větší číslo bude m?

3.7.5. V šupíku máme rozházených po 6 ponožkách od každé z barev černá, šedá a bílá. Kolik ponožek musíme průměrně vytáhnout (postupně a poslepu), abychom dostali jednobarevný pár? Nerozlišujeme levou a pravou ponožku.


3.7.7.* Magnet má dva póly, které se přitaňují. Barevné dětské magnetky mají na sobě umělomotnou čepičku. Čepička zakrývá celý jeden pól magnetu, proto přitaňovat se mohou pouze jedním pólem. Magnetky jsou balené po 40 kusech, 10 od každé ze čtyř barev. Předpokládejme, že zakrýté póly těchto magnetků jsou zvoleny náhodně s pravděpodobností $\frac{1}{4}$. Jaká je pravděpodobnost, že těchto 40 magnetků lze pospojovat do $5 \times 4$ stejnobarevných dvojic tak, že každá dvojice se navzájem přitaňuje opačnými nezakrýtými póly?

3.7.8. Hra Tic-tac-toe je hra s tužkou a papírem pro dva hráče X a O, kteří střídavě zapisují křížky a kolečka do čtvercové sítě políček $3 \times 3$, viz Čvičení 2.3.35. Při řešení využijte výsledku Čvičení 2.3.35.
a) Jaká je střední hodnota počtu tahů do vítězství, jestliže remízy nebudeme uvažovat (předpokládáme, že remíza nemůže nastat). Předpokládejme, že každá hra má stejnou pravděpodobnost (což nemusí být pravda).

b) Jaká je střední hodnota počtu tahů do prvního vítězství, jestliže remízy započítáme jako 9 tahů a další hra pokračuje dalším (desátým) tahem. Předpokládejme, že každá hra má stejnou pravděpodobnost (což nemusí být pravda).


a) S jakou pravděpodobností by se dal sestavit vláček s vagónky v libovolném pořadí, pokud by v továrně orientaci magnetů přiřazovali náhodně?

b)* Uměli byste předchozí úlohu zobecnit pro n vagónků?

c) S jakou pravděpodobností by se dal sestavit vláček s vagónky v alespoň jednom pořadí, pokud by v továrně orientaci magnetů přiřazovali náhodně?

b)* Uměli byste předchozí úlohu zobecnit pro n vagónků?

3.7.10. V balíčku je 8 karet, dvě od každé barvy. Balíček pečlivě rozmícháme. S jakou pravděpodobností dostaneme takové rozmíchání, ve kterém nejsou žádné dvě karty stejné barvy vedle sebe?

3.7.11. Jaký je střední počet hodů šestistěnovou kostkou než padne každá stěna alespoň jednou?

3.7.12. Čtyřicet sportovců bude rozděleno na čtyři stejné početné skupiny. Jaká je pravděpodobnost, že dva konkrétní sportovci A a B budou ve stejné skupině?

3.7.13. S jakou pravděpodobností bude přijato binární slovo délky 8 znaků, které obsahuje čtyři nuly, jestliže zdroj signálu generuje 7krát více nul než jedniček?


4 Důkazy v diskrétní matematice

Podrobněji si o důkazech můžete přečíst ve skriptech [ZDM].

4.1 Motivační příklady

4.1.1. Tabulka čokolády se skládá z \( m \times n \) čtvereců. Chceme ji nalámat na jednotlivé čtverceky. Najděte a dokážte jaký je nejméně počet zlomů, abychom čokoládu \( m \times n \) rozdělili na jednotlivé čtverců?

4.1.2. Dokážte, že pro každé \( n \in \mathbb{N} \) platí, že \( n \) přímek rozdělí rovinu na nejvýše \( \frac{1}{2}n(n+1) + 1 \) oblastí.

4.1.3. Máme sloupec \( n \) krabic. Budeme hrat následující hru (pro jednoho/libovolný počet hráčů):


Z jednom kroku vždy rozdělíme nějaký sloupec \( k \) krabic \((z \geq 2)\) na dva menší sloupce s \( x \) a \( y \) krabicemi. Za tento krok získáme počet bodů, který je dán součinem \( x \cdot y \).

Hra končí, jakmile máme \( n \) sloupce každý s jedinou krabicí. Začínáme s nulovým počtem bodů a chtěli bychom dosáhnout co největšího počtu bodů. Hráč s největším počtem bodů vyhrál.

a) Jakou strategii zvolit, abychom zvýšili co největší skóre?

b) Dokážte, že žádná jiná strategie nevede k vyššímu skóre.

4.1.4. Dva zloději ukradli náhrdelník. Náhrdelník je sestaven z drahokamů (rubínů a diamantů) pořadí spojených řetězkem do kruhu. Svuž lup by si chtěli rozdělit tak, aby každý dostal stejný počet diamantů i rubínů. Ukážte, že pokud náhrdelník obsahuje sudý počet diamantů \( 2d \) a sudý počet rubínů \( 2r \), je vždy možné rozdělit náhrdelník na dvě části tak, aby každá část obsahovala polovinu rubínů i polovinu diamantů.

4.2 Základní logické symboly

4.2.1. Sestavte negaci výroku „Všechna auta jsou červená.“

4.2.2. Sestavte negaci výroku „Každý student u zkoušky uspíje.“

4.2.3. Sestavte negaci výroku „Jednou jsem vyhrál ve sportce.“

4.2.4. Sestavte negaci výroku „Kdo neskáče, není Čech.“

4.2.5. Sestavte negaci výroku \( \forall n : 2^n > n^2 \).

4.2.6. Sestavte negaci výroku \( \forall x : x^2 > x \).

4.2.7. Sestavte negaci výroku \( \exists x \in \mathbb{R} \setminus \{0\} : \ln |x| < 0 \).

4.2.8. Pokud je to možné, zapište všechny možné různé binární operátory užitím negace, konjunkce a disjunkce.

4.2.9. Pokud je to možné, zapište všechny možné různé binární operátory užitím negace, konjunkce a XOR.

4.2.10. Pokud je to možné, zapište všechny možné různé binární operátory užitím NAND a XOR.

4.2.11. Víme, že výrok \( A \) a jeho negace \( \neg A \) nemohou být současně pravdivé nebo současně nepravdivé. Označme \( A \) výrok „Tato věta neobsahuje zápor,“ který je nepravdivý. Avšak jeho negace „Tato věta obsahuje zápor“ je také nepravdivá. Vysvětlete!

4.2.12.* Najděte podobné věty jako v předchozím příkladu tak, aby obě tvrzení \( A \) a \( \neg A \) byly pravdivé.

4.2.13. Kolik různých binárních operátorů existuje (může existovat)? Sestavte jejich pravdivostní tabulky.

4.3 Pojem matematického důkazu

Celé číslo \( a \) se nazývá sudé, existuje-li \( k \in \mathbb{Z} \) tak, aby \( a = 2k \). V opačném případě se číslo \( a \) nazývá liché.

4.3.1. Dokážte že pro \( \forall a \in \mathbb{Z} \), je-li \( a \) liché, potom \( a^2 \) je liché.

4.3.2. Najděte chybu v následujícím důkazu. Ukážeme, že 13 je prvočíslo. Předpokládejme, že všechna lichá čísla jsou prvočísla. Protože \( 13 = 2 \cdot 6 + 1 \) je liché číslo, tak 13 je prvočíslo.
4.3.3. Najděte chybu v následujícím důkazu. Mějme výrok \( V \), který říká \( \forall x \in \mathbb{R} : x^2 > x \). Protože jistě 0 > -1, tak přičtemén \( x \) dostaneme \( x > x - 1 \). Nyní z nerovností \( x^2 > x > x - 1 \) dostaneme \( x^2 > x - 1 \). Nerovnice \( x^2 - x + 1 > 0 \) má řešení pro všechna reálná čísla (vyřešte si podrobně sami), proto nás předpoklad je pravdivý pro všechna reálná čísla.

4.3.4. Najděte chybu v následujícím důkazu. Mějme celé číslo \( a \). Jistě platí \( a = a \). Umocněním předpokladu \( a = a \) dostaneme \( a^2 = a^2 \), neboli \( 0 = a^2 - a^2 = (a + a)(a - a) \). Nyní \( 0 \cdot (a - a) = 0 = (a + a)(a - a) \) a zkrácením výrazem \( a - a \) dostaneme \( a + a = 0 \), tj. \( a = -a \).

4.3.5. Najděte chybu v následujícím důkazu. Mějme celá čísla \( a, b \). Pokud platí \( a = b \), tak umocněním dostaneme \( a^2 = b^2 \), neboli \( 0 = a^2 - b^2 = (a + b)(a - b) \). Nyní zkrácením výrazem \( a - b \) dostaneme \( 0 = a + b \), tj. \( a = -b \).

4.3.6. Dokažte, že pro \( \forall a \in \mathbb{Z} \), je-li \( a^2 \) liché, potom \( a \) je liché.

4.4 Princip matematické indukce

4.4.1. Dokažte matematickou indukci, že součet prvních \( n \) lichých čísel je \( n^2 \).

4.4.2. Dokažte kombinatoricky (jinak ne z přímého nebo indukčního), že součet prvních \( n \) lichých čísel je \( n^2 \).

4.4.3. Dokažte přímo (jinak než indukční nebo kombinatoricky), že součet prvních \( n \) lichých čísel je \( n^2 \).

4.4.4. Máme šachovnici o rozměrech \( 2^n \times 2^n \) políček \((n \geq 1)\), na které chybí jedno (libovolné) políčko. K dispozici máme neomezený počet dílků, z nich každý sestává ze tří políček šachovnice ve tvaru \( L \). Ukažte, že šachovnici je možno pokrýt dílkou tak, aby se žádné dílky nepřekrývaly a přitom byla celá šachovnice (až na chybějící políčko) pokrytá.

Obrázek 4.1: Dílek se třemi políčky šachovnice ve tvaru \( L \).

4.4.5. Ukažte, že každě poštovně větší nebo rovno 12 Kč může být zaplaceno užitím známek v hodnotě 4 Kč a 5 Kč.

4.4.6. Dokažte, \( \sum_{i=1}^{n} i^2 = \frac{1}{6}n(n+1)(2n+1) \).

Základ indukce: Pro \( i = 1 \) je tvrzení splněné:

\[
\sum_{i=1}^{1} i^2 = 1^2 = 1 = \frac{1}{6} \cdot 1 \cdot 2 \cdot 3 = \frac{1}{6}(1+1)(2+1).
\]

Indukční krok: Dále předpokládáme platnost pro \( 1, 2, \ldots, n \), tj.

\[
\sum_{i=1}^{n} i^2 = \frac{1}{6}n(n+1)(2n+1).
\]

Pro \( n + 1 \) chceme ukázat, že platí

\[
\sum_{i=1}^{n+1} i^2 = \frac{1}{6}(n+1)(n+2)(2n+3).
\]

Pro \( n + 1 \) dostaneme

\[
\sum_{i=1}^{n+1} i^2 = \sum_{i=1}^{n} i^2 + (n + 1)^2 = \frac{1}{6}n(n+1)(2n+1) + (n+1)^2 = \frac{1}{6}n(n+1)(2n+1+6(n+1)) = \frac{1}{6}(n+1)(2n^2+7n+6) = \frac{1}{6}(n+1)(n+2)(2n+3).
\]
4.4.7. Dokažte \( \sum_{i=1}^{n} i^3 = \left( \frac{n+1}{2} \right)^2 \).

4.4.8. Najděte chybu v následujícím důkazu. Indukční podle \( n \) dokážeme, že každých \( n \) císel je sobě rovných: \( x_1 = x_2 = \ldots = x_n \). Pro \( n = 1 \) platí \( x_1 = x_1 \). Nechť tvrzení platí pro obecně \( n \). Ukážeme, že platí i pro \( n + 1 \) císel: \( x_1, x_2, \ldots, x_n, x_{n+1} \). Dle indukčního předpokladu je \( x_1 = x_2 = \ldots = x_n \), a současně \( x_2 = \ldots = x_n = x_{n+1} \). Nyní z tranzitivity rovnosti vyplyvá \( x_1 = x_2 = \ldots = x_n = x_{n+1} \).

4.4.9. Najděte chybu v následujícím důkazu. Indukční podle \( n \) dokážeme, že každých \( n \geq 2 \) různoběžných přímků má právě jeden společný bod. Pro \( n = 2 \) tvrzení jistě platí: dvě různoběžky \( p_1 \) a \( p_2 \) mají společný právě jeden bod. Nechť tvrzení platí pro \( n \) přímků. Ukážeme, že platí i pro \( n + 1 \) přímků: \( p_1, p_2, \ldots, p_n, p_{n+1} \). Dle indukčního předpokladu mají přímků \( p_1, p_2, \ldots, p_n \) jediný společný bod, a současně přímků \( p_2, \ldots, p_n, p_{n+1} \) mají jediný společný bod. Označíme \( P \) společný bod přímek \( p_2 \) a \( p_3 \). Podle indukčního předpokladu je tento bod společný pro prvních \( n \) přímek i pro posledních \( n \) přímek a je proto společný pro všechny \( n + 1 \) přímků.

4.4.10. Ukažte, že každé početové nebo rovně 
\( (h_1 - 1)(h_2 - 1) \) Kč může být získáno užitím známek v hodnotě 
\( h_1 \) Kč a \( h_2 \) Kč.

4.4.11. Dokažte Bernoulliho nerovnost: Pro každé přirozené \( n \) a reálné \( x > -1 \) platí nerovnost 
\( (1 + x)^n \geq 1 + nx \).

4.4.12. Dokažte, že \( \forall n \in \mathbb{N}: \sum_{i=1}^{n} i \cdot i! = (n + 1)! - 1 \)

4.4.13. Ukažte matematickou indukci, že pro každé přirozené čísla \( n \) platí rovnost 
\( \sum_{i=1}^{n} i(i + 1) = \frac{1}{3} n(n + 1)(n + 2) \)

4.4.14. Ukažte matematickou indukci, že pro všechna přirozená čísla platí nerovnost 
\( a_n \leq 2^{n-1} \), kde \( a_n \) je 
\( n \)-tý člen posloupnosti určené rekurentně: \( a_1 = 1, a_2 = 2, a_3 = 3 \) a pro \( n \geq 4 \) je 
\( a_n = a_{n-1} + a_{n-2} + a_{n-3} \).

4.5 Vztahy s kombinačními čísly

4.5.1. Upravte výraz \( \binom{2n}{n-2} + \binom{2n}{n+3} \) na jediné kombinační číslo.

4.5.2. Upravte výraz \( \binom{n}{0} + \binom{n+1}{1} + \binom{n+2}{2} + \binom{n+3}{3} + \binom{n+4}{4} \) na jediné kombinační číslo.

4.5.3.* Upravte výraz \( \sum_{i=0}^{k} \binom{n+i}{i} \) na jediné kombinační číslo.

4.5.4. Pro jaké \( n \) platí \( C(n - 1, 3) + C(n + 2, 3) + 10 = P(n, 3) \)?

4.5.5. Ukažte, že platí 
\( \binom{n}{0}^2 + \binom{n}{1}^2 + \binom{n}{2}^2 + \cdots + \binom{n}{n}^2 = \binom{2n}{n} \).

4.5.6. Ukažte, že platí 
\( \binom{n}{1} + 6 \binom{n}{2} + 6 \binom{n}{3} = n^3 \).

4.5.7. Zdůvodněte (kombinatoricky, bez výpočtu kombinačních čísel), že platí 
\( \binom{2n}{2} = 2 \binom{n}{2} + n^2 \).

4.5.8.* Sečtěte \( 1 + 2(n) + \cdots + (k + 1)(n) + \cdots + (n + 1)(n) \).

4.5.9.* Ukažte, že platí 
\( \binom{n}{1} + 3 \binom{n}{3} + 5 \binom{n}{5} + \cdots = 2 \binom{n}{2} + 4 \binom{n}{4} + 6 \binom{n}{6} + \cdots \).
4.5.10. Vypočejte
\[ 1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + 3 \cdot 4 \cdot 5 + \cdots + (n - 2) \cdot (n - 1) \cdot n \]

4.5.11. Vypočejte \( \sum_{k=1}^{n} (k^2 + 1)k! \)
4.5.12. Vypočejte \( \sum_{k=1}^{n} 2^{n-k}k(k+1)! \)
4.5.13. Vypočejte \( \sum_{k=0}^{n} \binom{2n-k}{n} k^k \) kde \( k \leq n \)

4.6 Důkazy počítáním

4.6.1. Existují na VŠB–TUO dva studenti se stejným posledním čtyřčíslným rodného čísla?
4.6.2. Ukažte, že na Zemi žijí dva lidé se stejným počtem vlasů.
4.6.4. Máte 4 různá čísla od 1 do \( n \) (\( n \geq 4 \)). Ukažte, že některá dvě dávají sudý součet. Kolik nejméně čísel zaručí sudý součet?
4.6.5. Máte 4 různá čísla od 1 do \( n \) (\( n \geq 4 \)). Ukažte, že na rozdíl od Příkladu 4 nemusí žádná dvě dávat lichý součet.
4.6.6. Máte \( k \) různých čísel od 1 do \( n \) (\( n \geq k \geq 2 \)). Pro jaké nejmenší \( k \) máme zaručeno, že některá dvě dávají lichý součet.
4.6.8. V Plzni se v městský dopravních prostředcích štípají lístky. Po Plzni jezdí 150 tramvají, 90 trolejbusů a 120 autobusů. Ukažte, že pokud se stípe vždy 3, 4 nebo 5 políček z devíti, tak musí být v některých vozech stejná kombinace.
4.6.9.* Ukažte, že vyrůzněme-li z šachovnice dva protilehlé rohy, potom není možné šachovnicí pokrýt dominovými kostkami.
4.6.10.* Ze šachovnice odebereme dvě políčka různé barvy. Ukažte, že je možné pokrýt dominem.
4.6.11. Ukažte, že neexistuje univerzální beztrátový kompresní algoritmus, tj. taková kompresní funkce, která libovolnou posloupnost \( n \) bajtů zkompresuje na posloupnost délky menší než \( n \).

4.7 Příklady k procvičení

4.7.1. Dokažte, že pro každé přirozené \( n \) je číslo \( n^3 - n \) dělitelné šesti.
4.7.2. Dokažte, že platí
\[ \binom{r}{r} + \binom{r+1}{r} + \binom{r+2}{r} + \cdots + \binom{n-1}{r} + \binom{n}{r} = \binom{n+1}{r+1}. \]

4.7.3. Dokažte, že pro všechna přirozená \( n \geq 1 \) platí
\[ \sum_{i=1}^{n} (2i-1) \cdot 3^i = (n-1) \cdot 3^{n+1} + 3. \]

4.7.4. Najděte všechna řešení nerovnice \( \binom{n}{2} > \binom{n}{3} \).
4.7.5. * Dokažte, že platí 

\[ n^{n/2} \leq n! \leq \left( \frac{n+1}{2} \right)^n \]

4.7.6. Ukažte, že aritmetický průměr dvou nezáporných reálných čísel je nejvýše roven geometrickému průměru, tj. \( \sqrt{x \cdot y} \leq \frac{x+y}{2} \).

4.7.7. Ukažte, že při hodu \( n \geq 1 \) kostkami je stejná pravděpodobnost, že součet bude sudý nebo lichý.

4.7.8. Ukažte, že počet všech zobrazení \( m \) prvkové množiny do \( n \) prvkové je \( n^m \).

4.7.9. Ukažte, že \( \sqrt{2} \) není racionální číslo.

4.7.10. Hra Tic-tac-toe je hra s tužkou a papírem pro dva hráče X a O, kterí střídavě zapisují křížky a kolečka do čtvercové sítě políček \( 3 \times 3 \), viz Čvičení 2.3.35.

   a) Existuje vitézná strategie pro prvního hráče? Pokud ano, najděte ji, pokud ne, dokažte to.

   b) Existuje vitézná strategie pro druhého hráče, jestliže první tah prvního hráče nesmí být na prostředním pole? Pokud ano, najděte ji, pokud ne, dokažte to.

4.7.11. Ukažte indukčně, že k kružnic delí povrch koule na nejvýše \( k^2 - k + 2 \) částí.

4.7.12. Ukažte průměrně, že k kružnic delí povrch koule na nejvýše \( k^2 - k + 2 \) částí.

4.7.13. Máme řetěz s \( n \) očky v řadě. Najděte a dokažte jaký je nejmenší počet oček řetízku, které je třeba cviknut, aby potom bylo možno bez dalšího cviknutí odpočítat (ne nutně spojit) libovolný počet oček od 1 do \( n \).

4.7.14. Ukažte, že pro libovolných \( n + 1 \) přirozených čísél z množiny \([1, 2n]\) existují taková dvě čísla, že jedno je násobek druhého.

4.7.15. Matematickou indukci ukažte, že pro každé celé číslo \( n \geq 3 \) existuje \( n \) takových různých přirozených čísel \( x_1, x_2, \ldots, x_n \) že rovnice \( \frac{1}{x_1} + \frac{1}{x_2} + \cdots + \frac{1}{x_n} = 1 \).

4.7.16. Ukažte, že \( \frac{1}{2^3} + \frac{1}{3^3} + \cdots + \frac{1}{(n+1)(n+2)} = \frac{n}{2(n+2)} \).

4.7.17. Z aritmetické posloupnosti 1, 4, 7, 10, \ldots, 100 vybereme libovolně 19 členů. Dokažte, že mezi nimi existují dvě čísla, jejichž součet je 104.

4.7.18. Ukažte, že v množině libovolných \( k + 1 \) celých čísel existuje alespoň jedna dvojice čísel, jejichž rozdíl je dělitelný číslem \( k \).

4.7.19. Je daných 33 čísel, jejichž prvočíselné dělitory jsou z množiny \{2, 3, 5, 7, 11\}. Dokažte, že můžeme z nich vybrat dvě taková čísla, že jejich součin je čtverec.
5 Relace a zobrazení

Připomeňme některé vlastnosti (binární) relací na množině \( A \). Navíc zavedeme i některé nové pojmy.

- **reflexivní** pokud \( \forall x \in A : (x, x) \in R \),
- **ireflexivní** pokud \( \forall x \in A : (x, x) \notin R \),
- **symetrická** pokud \( \forall x, y \in A : (x, y) \in R \Leftrightarrow (y, x) \in R \),
- **antisymetrická** pokud \( \forall x, y \in A : (x, y) \in R \Rightarrow y \neq x \),
- **transitivní** pokud \( \forall x, y, z \in A : (x, y) \in R \wedge (y, z) \in R \Rightarrow (x, z) \in R \),
- **lineární (úplná)** pokud \( \forall x, y \in A : (x, y) \in R \vee (y, x) \in R \).

Podrobněji si o relacích a permutacích můžete přečíst ve skriptech [ZDM].

5.1 Motivační příklady

Na první pohled se může pojem relace, který je zaveden jako podmnožina kartézské mocniny (kartézkého součinu), zdát nezajímavý. Zkuste si však spočítat, kolik různých relací na konečné množině je možno definovat. Uvidíme, že formalizace pojmu relace je nezbytná i pro velmi malé množiny (na čtyřech, na deseti prvcích), neboť relaci je příliš mnoho na to, abychom mohli všechny vypsat.

5.1.1. Kolik existuje relací na konečné \( n \) prvkové množině \( X \)?

5.1.2. Máme strojek na míchání karet. Když do strojeku vložíme seřazený balíček karet v pořadí \( 1, 2, \ldots, 32 \), balíček zamíří tak, že vloží sudé karty mezi liché. Došaneme pořadí \( 1, 17, 2, 18, 3, 19, \ldots, 16, 32 \). Jaký je řád permutace, neboli po kolika nejméně opakovaných mícháních dostaneme opět seřazený balíček?

5.1.3. Nápověda při hledání geokeší (geocaching.cz) bývá často zašifrována následující jednoduchou šifrou:

\[
\begin{array}{cccccccccccccccccccc}
A & B & C & D & E & F & G & H & I & J & K & L & M \\
N & O & P & Q & R & S & T & U & V & W & X & Y & Z \\
\end{array}
\]

(písmena nad čarou odpovídají písmenům pod čarou a naopak)

Popište tuto šifru pomocí relace \( g \). Jaký je řád relace \( g \)? Jak se liší permutace pro zašifrování a dešifrování nápovědy?

5.1.4. Patnáctka, známá také jako Loydova patnáctka\(^1\), je hlavolam, který obsahuje patnáct kamenů s čísly 1 až 15. Kameny máme za úkol seřadit posouváním kamenů.

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12 \\
13 & 14 & 15 \\
\end{array}
\]

Obrázek 5.1: Loydova patnáctka.

a) Ukažte, že není možné u klasické patnáctky posouváním sestavit čísla tak, aby byla prohozena dvě sousední čísla.

b) Kolik existuje různých rozmíchání hlavolamu patnáctka (užitím legálních tahů) s prázdným políčkem v pravém dolním rohu?

---

\(^1\)Loydova patnáctka se nazývá podle jejího popularizátora Sama Loyda. Loyd vypsal odměnu $1000 tomu, kdo jako první úkol vyřeší. Loyd věřil, že úloha nemá řešení a na prodeji hlavolamu vydělal nemalé peníze.
5.2 Pojem relace

5.2.1. Kolik existuje relace na konečné prvkové množině, které jsou
   a) symetrické?
   b) antisymetrické?
   c) asymetrické?

5.2.2. Kolik existuje relace na konečné prvkové množině X takových, které jsou symetrické i antisymetrické současně?

5.2.3. Jaké vlastnosti má relace \( R = \{(1,1), (1,2), (2,2), (2,3), (3,3), (3,1)\} \) definovaná na množině \( A = \{1,2,3\} \)?

5.2.4. Která z následujících tvrzení jsou pravdivá?
   a) Relace, která není symetrická, je antisymetrická.
   b) Relace, která není antisymetrická, je symetrická.
   c) Relace, která není symetrická, je asymetrická.
   d) Relace, která je asymetrická, je antisymetrická.
   e) Relace, která je antisymetrická, je asymetrická.
   f) Relace je asymetrická, právě když je antisymetrická a ireflexivní.
   g) Relace, pro kterou platí \( \forall x, y \in A : ((x, y) \in R \land (y, x) \notin R) \lor ((x, y) \notin R \land (y, x) \in R) \), je antisymetrická.
   h) Relace, která je symetrická i antisymetrická, je také reflexivní.
   i) Relace, která je lineární, je také reflexivní.

5.2.5. Sestavte na množině \( \{1,2,3,4\} \) relace
   a) rovnosti \( R \),
   b) menší \(<\),
   c) menší nebo rovno \( \leq \).

5.2.6. Jaké vlastnosti má relace \( R = \{(1,1), (1,2), (2,2), (2,3), (3,3), (3,1)\} \) definovaná na množině \( A = \{1,2,3,4\} \)?

5.2.7. Jaké vlastnosti má relace \( R = \{(1,1), (1,2), (1,4), (2,2), (2,4), (3,3), (3,4), (4,4)\} \) na množině \( A = \{1,2,3,4\} \)?

5.2.8. Jaké vlastnosti má relace soudelnosti \( R \) na \( N \) (dva prvky jsou v relaci, jestliže jejich největší společný dělitel je větší než 1)?

5.2.9. Může na konečné množině existovat relace, která
   a) je symetrická i antisymetrická?
   b) není symetrická ani antisymetrická?
   c) není symetrická ani asymetrická?
   d) je symetrická i antisymetrická?
   e) není symetrická, antisymetrická ani asymetrická?

5.2.10. Je relace dělitelnosti na \( Z \) antisymetrická?
5.3 Uspořádání a ekvivalence

5.3.1. Nakreslete hasseovský diagram relace podmnožin množiny $A = \{1, 2, 3, 4\}$. Najděte všechny minimální, maximální, největší a nejmenší prvky.

5.3.2. Sestavte relaci $R_\equiv$ kongruence podle modulu 4 na množině $\{1, 2, \ldots, 10\}$. Je $R_\equiv$ relací ekvivalence? Pokud ano, sestavte třídy rozkladu.

5.3.3. Vezmeme systémem všech tříprvkových podmnožin množiny $A = \{1, 2, 3, 4, 5, 6, 7\}$. Definujeme relaci $XPY$, jestliže mají stejný největší prvek. Ověřte, zda se jedná o ekvivalenci. Pokud ano, kolik má třída rozkladu a která třída má největší prvky?

5.3.4. Máme dánu množinu $A = \{2, 3, 4, 5, 6, 7\}$ s relací dělitelnosti $|$. a) Nakreslete hasseovský diagram relace $|$ na množině $A$. Najděte všechny minimální, maximální, největší a nejmenší prvky. b) Jaký prvek $a \in \mathbb{N}$ je třeba přidat do $A$, aby relace dělitelnosti měla nejmenší prvek? c) Jaký prvek $a \in \mathbb{N}$ stačí přidat do $A$, aby relace dělitelnosti měla největší prvek? d) Jaký nejmenší prvek $a \in \mathbb{N}$ je třeba přidat do $A$, aby relace dělitelnosti měla největší prvek? e) Jaké nejmenší číslo $a \in \mathbb{Z}$ stačí přidat do $A$, aby relace dělitelnosti měla největší prvek?

5.3.5. Popíšte všechny relace na množině $A$, které jsou současně relacemi ekvivalence i uspořádáním.

5.3.6. Mějme $R$ a $S$ libovolné relace ekvivalence na množině $A$. Které následující relace jsou také nutné ekvivalence? a) $R \cap S$ b) $R \cup S$ c) $R \setminus S$

5.3.7. Mějme $R$ a $S$ libovolné relace částečného uspořádání na množině $A$. Které následující relace jsou také nutné částečného uspořádání? a) $R \cap S$ b) $R \cup S$ c) $R \setminus S$

5.3.8. Kolik uspořádaných dvojic na množině $A = \{1, 2, 3, 4, 5\}$ patří do relace $\bowtie$? a) rovnosti? b) menší?

5.3.9. Kolik uspořádaných dvojic na množině $A = [1, n]$, kde $1 \leq n \in \mathbb{N}$, patří do relace a) rovnosti? b) menší?

5.3.10. Je relace dělitelnosti relací částečného uspořádání a) na $\mathbb{N}$? b) na $\mathbb{Z}$? c) na $[a, b]$, kde $a, b \in \mathbb{N} \land a < b$?

5.3.11. Má smysl kreslit hasseovský diagram relace $R$, kde pro dva různé prvky platí $(x, y) \in R$ a $(y, x) \in R$?
5.4 Funkce a zobrazení

5.4.1. Rozhodněte, zda následující funkce \( f : \mathbb{R} \rightarrow \mathbb{R} \) jsou injekce, surjekce, bijekce nebo žádná z nich.

a) \( f : y = x^4 \)
b) \( g : y = \ln x \)
c) \( h : y = e^x \)
d) \( k : y = \tan x \)
e) \( k : y = \arctan x \)
f) \( l : y = x^3 - x \)
g) \( m : y = (x - 1)^3 \)

5.4.2. Najděte příklad funkce \( f : \mathbb{R} \rightarrow \mathbb{R} \), která je

a) injekce, ale není surjekcí
b) surjekce, ale není injekcí
c) (netriviální) bijekce

5.4.3. Najděte příklad funkce \( f : \mathbb{N} \rightarrow \mathbb{N} \), která je

a) injekce, ale není surjekcí
b) surjekce, ale není injekcí
c) (netriviální) bijekce

5.4.4. Je-li \( g \circ f \) surjekce,

a) musí být \( g \) surjekcí?
b) musí být \( f \) surjekcí?

5.4.5. Je-li \( g \circ f \) prostá,

a) musí být \( g \) prostá?
b) musí být \( f \) prostá?

5.4.6. Je-li \( g \circ f \) prostá, musí být \( g \) prostá? Musí být \( f \) prostá?

5.4.7. Ukažte, že přirozených čísel i celých čísel je stejně, tj. že platí \( |\mathbb{N}| = |\mathbb{Z}| \).

5.5 Skládání zobrazení a permutace

5.5.1. Ukažte, že zobrazení \( \rho \) přidrazující číslu \( x \) z množiny \( \{0, 1, \ldots, 6\} \) číslo \( 3 \cdot x \mod 7 \) je permutace (zbytek čísla \( 3x \) po dělení 7). Zapište permutaci \( \rho \) pomocí a) matice, b) pomocí cyklů. Jaký je řád této permutace?

5.5.2. Pro permutaci \( R \) na množině \( A \) definujeme symbol \( R^n \) takto: \( R^1 = R \), \( R^{n+1} = R \circ R^n \).

a) Ukažte, že je-li \( A \) konečná množina, tak musí existovat taková \( r, s \in \mathbb{N}, r < s, \) že platí \( R^r = R^s \).
b) Najděte takovou permutaci \( R \) na konečné množině \( A \), že \( R^{r+1} \neq R^r \) pro každé \( n \in \mathbb{N} \).

5.5.3. Určete řád permutace \( \sigma \), je-li
a) \( \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 3 & 1 & 5 & 4 & 7 & 8 & 9 & 6 \end{pmatrix} \)

b) \( \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 6 & 4 & 1 & 3 & 5 & 9 & 8 & 7 & 2 \end{pmatrix} \)

c) \( \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 6 & 4 & 1 & 8 & 2 & 5 & 3 & 7 \end{pmatrix} \)

d) \( \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 5 & 7 & 4 & 2 & 8 & 1 & 6 \end{pmatrix} \)

5.5.4. Najděte inverzní permutaci \( \pi^{-1} \), je-li

a) \( \pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 3 & 1 & 5 & 4 & 7 & 8 & 9 & 6 \end{pmatrix} \)

b) \( \pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 6 & 4 & 1 & 8 & 2 & 5 & 3 & 7 \end{pmatrix} \)

c) \( \pi = (147)(2685)(3) \)

d) \( \pi = (13742685) \)

5.5.5. Kolik existuje permutací množiny \( \{1,2,\ldots,n\} \) s jediným cyklem?

5.5.6. Najděte složenou permutaci \( \sigma \circ \pi \), je-li

a) \( \pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 3 & 6 & 2 & 5 & 4 \end{pmatrix}, \quad \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 4 & 5 & 3 & 6 \end{pmatrix} \)

b) \( \pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 6 & 4 & 3 & 1 & 5 \end{pmatrix}, \quad \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 1 & 4 & 3 & 6 & 2 \end{pmatrix} \)

c) \( \pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 3 & 6 & 2 & 5 & 4 \end{pmatrix}, \quad \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 4 & 5 & 3 \end{pmatrix} \)

d) \( \pi = (134)(2675), \quad \sigma = (136)(47)(25) \)

e) \( \pi = (1243)(675), \quad \sigma = (1342)(576) \)

5.5.7. Jakého nejvyššího řádu najdete permutaci na množině \( A \), je-li

a) \( A = [1,9] \)

b) \( A = [1,10] \)

c) \( A = [1,13] \)

5.5.8. Máme dánou permutaci \( \pi = (17485)(263) \). Určete \( \underbrace{\pi \circ \pi \circ \ldots \circ \pi}_{542 \text{ krát}} \)

5.5.9.* Máme stroječek na míchaní karet. Navrhněte takovou permutaci karet, aby počet různých rozmíchání, která dostaneme opakovaným použitím stroječku byl co největší.

5.5.10.** Máme stroječek na míchaní karet. Když do stroječku vložíme seřazený balíček karet v pořadí \( 1,2,\ldots,n = 2t \), balíček zamíchá tak (udělá takovou permutaci karet), že na sudé pozici po řadě vmiích karty z druhé poloviny. Dostaneme pořadí \( 1,t+1,t+2,t+3,19,\ldots,t,2t \). Jaký je řád permutace, neboli po kolika nejméně opakovaných míchaních dostaneme opět seřazený balíček?

5.5.11.** Máme stroječek na míchaní karet. Když do stroječku vložíme seřazený balíček karet v pořadí \( 1,2,\ldots,n \), balíček zamíchá tak (udělá takovou permutaci karet), že vloží sudé karty mezi liché. Dostaneme
pořadí $1, \left\lceil \frac{n}{2} \right\rceil + 1, 2, \left\lceil \frac{n}{2} \right\rceil + 2, 3, 19, \ldots, n, \left\lceil \frac{n}{2} \right\rceil$. Jaký je řád permutace, neboli po kolika nejméně opakovaných mícháních dostaneme opět seřazený balíček?

5.5.12. Označme $r(n)$ funkci, která každému číslu $n$ přiřadí největší řád permutace na $n$-prvkové množině. Ukažte, že $r(n)$ je neklesající funkce.

5.5.13. Je dána permutace $\rho$ a známe složenou permutaci $\sigma \circ \rho$. Můžete určit, jak vypadá permutace $\sigma$?

5.5.14. Jsou dány dvě permutace $\rho$ a $\sigma$. Můžete určit, jak vypadá každá permutace $\rho$ a $\sigma$, jetlíže vité, jak vypadá $\rho \circ \sigma$ a $\sigma \circ \rho$?

5.6 Příklady k procvičení

5.6.1. Najděte příklad dvojice takových tranzitivních relací $R_1$ a $R_2$, že a) $R_1 \cup R_2$, b) $R_1 \setminus R_2$ ani c) $R_1 \Delta R_2$ tranzitivní nejsou.

5.6.2. Mámí množinu $X = \{ (a, b) : a, b \in \mathbb{Z}, b \neq 0 \}$. Ukažte, že relace $R$ definovaná tak, že $(a, b) R (c, d)$ právě tehdy, když $ad = bc$ je relací ekvivalence na množině $X$. Jakou známou množinou tvoří třídy ekvivalence?

5.6.3. Mámí dva stroječky na míchání karet: jeden dělá vždy permutaci $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 1 & 2 & 5 & 7 & 8 & 4 & 6 \end{pmatrix}$, druhý vždy permutaci $\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 2 & 7 & 1 & 3 & 8 & 5 & 6 \end{pmatrix}$. Budeme střídavě míchat $\alpha$, $\beta$, $\alpha$, … Kolik různých rozmíchání dostaneme?

5.6.4. Ukažte, že hasseovský diagram nemůže obsahovat trojúhelník.
6 Princip inkluze a exkluze

Podrobněji si o principu inkluze a exkluze můžete přečíst ve skriptech [ZDM].

6.1 Užití principu inkluze a exkluze

6.1.1. Kolik čísel zůstane v množině čísel \{1, 2, \ldots, 1000\} po vyškrtání všech násobků 2, 3, 5?

6.1.2. Kolik čísel zůstane v množině čísel \{1, 2, \ldots, 1000\} po vyškrtání všech násobků 2, 3, 5, 7?

6.1.3. Kolika způsoby je možno vybrat pět karet z balíčku 52 karet tak, aby mezi nimi byla od každé barvy alespoň jedna karta?

6.1.4. Na večírku se sešly 3 manželské páry. Kolika různými způsoby lze posadit těchto 6 lidí kolem kulatého stolu tak, aby manželé neseděli vedle sebe?

6.1.5. Na večírku se sešly 4 manželské páry. Kolika různými způsoby lze posadit těchto 8 lidí kolem kulatého stolu tak, aby manželé neseděli vedle sebe?

6.1.6.* Na večírku se sešlo \( n \) manželských párů. Kolika různými způsoby lze posadit těchto \( 2n \) lidí kolem kulatého stolu tak, aby manželé neseděli vedle sebe? Ve dvou rozdílných rozesazeních má některý člověk jiného souseda po levé nebo po pravé ruce.

6.1.7.* Na plese se sešlo \( n \) manželských pářů. Kolika různými způsoby může spolu tančit vždy všech \( 2n \) lidí tak, aby žádný manželský pár netančil spolu?

6.1.8.* (Problém šatnárky) Na shromáždění přišlo \( n \) hostů, všichni v kloboucích, a odložili si své klobouky do šatny. Při odchodu dostávají své klobouky náhodně. Jaká pravděpodobnost, že žádný pán nedostane svůj klobouk zpět?

6.1.9. Na shromáždění přišlo 5 hostů, všichni v kloboucích, a odložili si své klobouky do šatny. Při odchodu dostávají své klobouky náhodně. Jaká pravděpodobnost, že žádný pán nedostane svůj klobouk zpět?


6.1.11. Kolika způsoby rozmiříme \( r \) objektů do \( p \) pěti schránk tak, aby alespoň jedna byla prážná?

6.1.12. Kolik existuje \( n \) prvkových posloupností čísel 0, 1, \ldots, 9 takových, které obsahují vždy čísla 1, 2 a 3? Číslo se mohou opakovat.

6.2 Příklady k procvičení

6.2.1. Kolik nul na konci má

a) číslo 50!?

b) číslo 1234!?

6.2.2. Pomocí vhodné kombinatorické interpretace a použitím principu inkluze a exkluze spočítejte nasledující sumu pro \( n, m, j \) přirozená taková, že \( n \geq j \geq (m + n) \), t.j. vyjádřete tuto sumu jako nějaký výraz, který už bude bez sumy:

\[
\sum_{i=0}^{n} (-1)^i \binom{n}{i} \binom{m+n-i}{j-i}
\]
Část II
Úvod do teorie grafů

Stavový graf hlavolamu „hanojské věže“.
1 Pojem grafu

Základní grafové pojmy jsou podrobně zavedeny ve skriptech [UTG].

1.1 Motivační příklady


1.1.2. Máme 6 házenkářských týmů, které mají odehrát 15 zápasů, každý s každým. Je možné odehrát celý turnaj během pěti hracích dnů, kdy probíhají současně vždy 3 zápasy?

1.1.3. Máme 7 házenkářských týmů, které mají odehrát 21 zápasů, každý s každým. Ukažte, že není možné odehrát celý turnaj během šesti hracích dnů, kdy probíhají současně vždy 3 zápasy.

1.2 Základní třídy grafů

1.2.1. Nakreslete graf $G = (V; E)$, je-li dano

a) $V = \{a, b, c, d\}$ a $E = \{ab, ac, ad\}$.

b) $V = \{k, l, m, n, o\}$ a $E = \{kl, mn, mo, ln, ko\}$.

c) $V = \{k, l, m, n, o, p\}$ a $E = \{kl, mn, mp, lo, ok, np\}$.

d) $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$ a $E = \{12, 13, 14, 25, 26, 57, 68\}$

1.2.2. Kolik hran a kolik vrcholů má $P_n$ (dle značení ve skriptech [UTG])?

1.2.3. Kolik hran a kolik vrcholů má $K_n$?

1.2.4. Kolik hran a kolik vrcholů má $K_{m,n}$?

1.2.5. Srovnajte grafy $K_6$; $7$ a $K_{10}$.

a) Který má více vrcholů?

b) Který má více hran?

1.2.6. Srovnajte grafy $K_{5,12}$ a $K_{12}$.

a) Který má více vrcholů?

b) Který má více hran?

1.2.7. Pro jaké $n$ je $K_n$ cyklem?

1.3 Stupně vrcholů v grafu

1.3.1. Jaký je největší a nejmenší stupeň vrcholu v grafu

a) $P_n$

b) $C_n$?

c) $K_n$?

d) $K_{m,n}$?

1.3.2. Napište stupňovou posloupnost grafu
1.3.3. Kolik existuje různých grafů na \( n \) vrcholech. Rozlišujeme pojmenování vrcholů, tj. například pro \( V = \{1, 2, 3\} \) rozlišíme grafy s \( E_1 = \{12\} \) a s \( E_2 = \{23\} \).

1.3.4. Kolik existuje různých bipartitních grafů na \( m + n \) vrcholech. Rozlišujeme pojmenování vrcholů!

1.3.5. Pro jaké \( n \) je \( K_n \) cestou?

1.3.6. Pro jaké \( n \) je \( K_{m,n} \) cyklem?

1.3.7. Pro jaké \( m, n \) je \( K_{m,n} \) cestou?

1.3.8. Kolik hran má graf
   
a) s deseti vrcholy stupně 5?
   
b) s 11 vrcholy stupně 5?
   
c) se stupňovou posloupností \( (1, 1, 1, 2, 3, 3, 5, 6, 6, 7) \)
   
d) se stupňovou posloupností \( (1, 1, 1, 2, 3, 3, 5, 6, 6, 7) \)
   
e) se stupňovou posloupností \( (1, 1, 2, 3, 3, 5, 6, 6, 7) \)

1.3.9. Kolik vrcholů má graf, který má 15 hran, 3 vrcholy stupně 4 a zbývající vrcholy stupně 3?

1.3.10. Určete stupňovou posloupnost grafu \( G \) na Obrázku 1.1. Je to jediný graf s touto stupňovou posloupností?

1.3.11. Nakreslete graf se stupňovou posloupností
   
a) \( (1, 2, 3, 4, 5, 6, 7, 8, 9) \)
   
b) \( (1, 1, 1, 2, 2, 5) \)
   
c) \( (0, 0, 1, 1, 2, 2, 3, 3, 4, 4) \)
   
d) \( (2, 2, 3, 3, 3, 4, 4, 5) \)
   
e) \( (1, 1, 3, 3, 3, 4, 6, 7) \)
   
f) \( (1, 1, 1, 1, 1, 1, 1, 5, 5) \)
   
g) \( (1, 1, 1, 1, 1, 1, 5, 5) \)
   
h) \( (1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 5) \)
1.3.12. Najděte velikost největší nezávislé množiny vrcholů v grafu $K_{5,5}$.
1.3.13. Najděte velikost největší nezávislé množiny vrcholů v grafu na Obrázku 1.2.

Obrázek 1.2: *Cirkulant $C_{10}(1, 2, 5)$.*

1.4 Podgrafy

Mějme dána kladná celá čísla $a_1, a_2, \ldots, a_k$. Cirkulantem $C_n(a_1, a_2, \ldots, a_k)$ rozumíme graf $G = (V, E)$ na $n$ vrcholech $v_0, v_1, \ldots, v_{n-1}$, kde hranová množina je
\[ E = \{v_i v_{(i+j) \mod n} : 0 \leq i \leq n - 1 \land 1 \leq j \leq k\}. \]

Příklad cirkulantu $C_{10}(1, 2, 5)$ je na Obrázku 1.8.

1.4.1. Mějme graf $G$ na Obrázku 1.3.

Obrázek 1.3: *Graf G.*

a) Jaký je nejdelší cyklus obsažený jako podgraf v grafu $G$?
b) Jaký je nejkratší cyklus obsažený jako podgraf v grafu $G$?
c) Jaká je nejdelší cesta obsažená jako podgraf v grafu $G$?
d) Jaký je nejkratší indukovaný cyklus v grafu $G$?
e)* Jaký je nejdelší indukovaný cyklus v grafu $G$?
f)* Jaká je nejdelší indukovaná cesta v grafu $G$?
g) Jaká je velikost největší nezávislé množiny vrcholů grafu $G$?
h) Existuje nějaký neisomorfní graf se stejnou stupňovou posloupností?
i) Ukažte, že graf $G''$ na Obrázku 1.4 je isomorfní s grafiem $G$. 

Obrázek 1.4: *Graf $G''$.*
1.4.2. Mějme grafy $G$ a $H$ na Obrázku 1.5.

a) Jaká je nejdelší indukovaná cesta v grafu $G$?

b) Jaký je nejdelší indukovaný cyklus v grafu $G$?

c) Jaká je nejdelší indukovaná cesta v grafu $H$?

d) Jaký je nejdelší indukovaný cyklus v grafu $H$?

1.5 Isomorfismus grafů

1.5.1. Kolik existuje neisomorfních 2-pravidelných grafů

   a) na 5 vrcholech?

      b) na 6 vrcholech?

1.5.2. Jsou isomorfní grafy $K_7 - C_7$ a $K_7 - (C_3 \cup C_4)$?

1.5.3. Jsou následující dva grafy $G$ a $H$ isomorfní?

1.5.4. Jsou isomorfní $K_{5,5}$ a cirkulant $C_{10}(1, 2, 5)$ na Obrázku 1.8?
1.5.5. Kolik existuje neisomorfních 5-pravidelných grafů na osmi vrcholech?

1.5.6. Existují dva neisomorfní grafy se stupňovou posloupností

   a) $(3, 3, 3, 3, 3)$? Najděte je nebo ukažte, že takové grafy neexistují.

   b) $(2, 2, 3, 3)$? Najděte je nebo ukažte, že takové grafy neexistují.

1.5.7. Najděte mezi grafy $G_1, G_2, G_3$ a $G_4$ na Obrázku 1.9 všechny isomorfní dvojice. Pečlivě zdůvodněte.

1.5.8. Najděte v sechny neisomorfní jednoduché grafy na čtyřech vrcholech.

1.6 Implementace grafů

1.6.1.* Naprogramujte algoritmus, jak rozmístit 8 královen na šachovnici tak, aby se navzájem neohrožovaly.

1.6.2. Naprogramujte algoritmus, který vygeneruje všechny grafy na $n$ vrcholech, jestliže rozlišujeme pojmenování vrcholů, tj. například pro $V = \{1, 2, 3\}$ rozlišíme grafy s $E_1 = \{12\}$ a s $E_2 = \{23\}$.

1.7 Příklady k procvičení

1.7.1.♡ Srovnejte grafy $K_{6,6}$ a $K_9$.

   a) Který má více vrcholů?

   b) Který má více hran?

1.7.2. Srovnejte grafy $K_{20,20}$ a $K_{29}$.

   a) Který má více vrcholů?

   b) Který má více hran?

1.7.3. Kolik hran a kolik vrcholů má $C_n$?

1.7.4. Pro jaké $m, n$ neobsahuje $K_{m,n}$ žádný cyklus?

1.7.5.♡ Kolik hran musíme odebrat z grafu $K_6$, abychom dostali $K_{3,3}$?

1.7.6. Pro která $n$ je následující stupňová posloupnost grafová?

   a) $(1, 2, \ldots, n)$

   b) $(0, 1, \ldots, n - 1)$

   c) $(1, 1, 2, 3, 3, \ldots, n, n)$
1.7.7. Pro které hodnoty $n$ a $r$ existuje grafu na $n$ vrcholech, kde každý vrchol je stupně $r$? Dokažte.

1.7.8. Jsou grafy $K_{3,3}$ a církulant $C_5(1,3)$ isomorfní?

1.7.9. Jsou grafy $K_{4,4}$ a církulant $C_5(1,2)$ isomorfní?

1.7.10. Jsou následující dva grafy $G$ a $H$ isomorfní?

Obrázek 1.10: Grafy $G$ a $H$.

1.7.11.* Na jakém nejmenším počtu vrcholů najdete dva neisomorfní grafy se stejnou stupňovou posloupností?

1.7.12.* Stmý graf má pouze triviální automorfismus. Najdete stmý graf s co nejmenším počtem vrcholů.

1.7.13. Kolik existuje grafů se sedmi vrcholy stupně 2?

1.7.14. Kolik existuje grafů s deseti vrcholy stupně 2?
2 Souvislost grafu
Souvislost grafu je zavedena ve skriptech [UTG].

2.1 Souvislost a komponenty grafu

2.1.1. Kolik komponent souvislosti má souvislý graf?
2.1.2. Kolik komponent souvislosti má nesouvislý graf?
2.1.3. Kolik komponent souvislosti má graf na Obrázku 2.1? Je souvislý?

Obrázek 2.1: Graf G.

2.1.4. Kolik komponent souvislosti má graf G na Obrázku 2.2? Je souvislý?

Obrázek 2.2: Graf G.

2.1.5. Kolik komponent souvislosti má graf na Obrázku 2.3? Je souvislý?

Obrázek 2.3: Graf G.

2.1.6. Kolik komponent souvislosti má cirkulant $C_{12}(3,6)$?
2.1.10. Kolik komponent má graf s patnácti vrcholy stupně 5? Dokažte.
2.1.11. Kolik komponent může mít graf s deseti vrcholy stupně 2? Dokažte.
2.1.12. Kolik nejvýše může mít graf na deseti vrcholech, který má dvě komponenty? Najdete takový graf?
2.1.13. Kolik nejvýše může mít graf na deseti vrcholech, který má dvě komponenty a žádný vrchol stupně většího než 3? Najdete takový graf?
2.1.14. Kolik nejméně může mít graf na deseti vrcholech, který má dvě komponenty?
2.1.15. Kolik nejméně může mít graf na \( n \) vrcholech, který má \( k \) komponent?

2.2 Prohledávání grafu

2.2.1. Jaká je složitost algoritmu (uvedeného na přednášce) pro prohledávání do šířky?
2.2.2. Jaká je složitost algoritmu (uvedeného na přednášce) pro prohledávání do hloubky?

2.3 Vyšší stupně souvislosti

2.3.1. Mějme kompletní bipartitní graf \( K_{m,n} \).
   a) Jaký je hranový stupeň souvislosti \( K_{m,n} \)?
   b) Jaký je vrcholový stupeň souvislosti \( K_{m,n} \)?

2.3.2. Mějme cyklus \( C_n \).
   a) Jaký je hranový stupeň souvislosti \( C_n \)?
   b) Jaký je vrcholový stupeň souvislosti \( C_n \)?

2.3.3. Víte, že minimální stupeň grafu \( G \) je 5.
   a) Co můžete říci o hranové souvislosti grafu \( G \)?
   b) Co můžete říci o vrcholové souvislosti grafu \( G \)?

2.3.4. Máme dánu graf \( K_{3,3} \) bez jedné hrany, viz Obrázek 2.4.

![Obrázek 2.4: Graf \( K_{3,3} - e \).](image)

   a) Kolik hran musíme z grafu vynechat, aby neexistovala cesta mezi vrcholy \( a, b \)? Zdůvodněte!
   b) Kolik hran musíme z grafu vynechat, aby neexistovala cesta mezi vrcholy \( x, y \)? Zdůvodněte!

2.3.5. Kolik musíme přidat hran do grafu \( P_5 \), aby byl 2-souvislý?
2.3.6. Kolik musíme přidat hran do grafu \( P_6 \), aby byl 3-souvislý?
2.3.7. Najděte příklad grafu, kde každý vrchol je stupně \( r \) a hranová i vrcholová souvislost je 1.
2.3.8. Najděte příklad grafu, kde každý vrchol je stupně \( r \) a hranová i vrcholová souvislost je 2.
2.3.9. Najděte příklad grafu, kde každý vrchol je stupně \( r \) a hranová i vrcholová souvislost je \( k \leq r \).
2.3.10. Mějme libovolná přirozená čísla \( a \leq b \leq c \). Najděte příklad grafu, kde každý vrchol je stupně \( c \) a hranová souvislost je \( b \) a vrcholová souvislost je \( a \).
2.3.11. Najděte příklad souvislého grafu, jehož vrcholová souvislost je menší než hranová souvislost.
2.3.12. Najděte příklad souvislého grafu, jehož hranová souvislost je menší než vrcholová souvislost.
2.3.13. Nakreslete 2-souvislý graf na co nejmenším počtu vrcholů tak, aby z něj přidáním jediné hrany vznikl 3-souvislý graf.
2.3.14.* Dokážete nakreslit 2-souvislý graf na co nejmenším počtu vrcholů a nejvýše dvěma vrcholy stupně dva tak, že přidáním jediné hrany nevznikne 3-souvislý graf?

2.4 Příklady k procvičení

2.4.1. ☐ Může existovat souvislý graf, který má více vrcholů než hran? Pokud ano, najděte příklad, pokud ne, dokažte.
2.4.2. Najděte všechny souvislé grafy, které mají více vrcholů než hran.
2.4.3. Může existovat souvislý graf, který má n vrcholů a méně než n – 1 hran? Pokud ano, najděte příklad, pokud ne, dokažte.
2.4.4. Ukažte, že není možné putovat koněm po celé šachovnici 3 × 3.
2.4.5. Kolik nejvíce hran může mít graf s n ≥ 2 vrcholy a 2 komponentami?
2.4.6.* Kolik nejvíce hran může mít graf s n vrcholy a k komponentami? Předpokládáme, že k ≤ n.
2.4.7. Kolik nejméně hran musí mít 3-souvislý graf
   a) na 6 vrcholech?
   b) na 12 vrcholech?
   c) na 9 vrcholech?
2.4.8. Definujme graf Z_2(n) jako graf, jehož vrcholy jsou všechny dvouprvkové podmnožiny nějaké n prvkové množiny, n ≥ 2. Dva vrcholy jsou sousední, jestliže odpovídající vrcholy jsou disjunktní.
   a) Pro která n je graf Z_2(n) souvislý?
   b) Je graf Z_2(n) pravidelný?
   c) Jaký je stupeň souvislosti grafu Z_2(n)?
2.4.9. Definujme graf Z^*_2(n) jako graf, jehož vrcholy jsou všechny dvouprvkové podmnožiny nějaké n prvkové množiny, n ≥ 2. Dva vrcholy jsou sousední, jestliže odpovídající vrcholy nejsou disjunktní.
   a) Pro která n je graf Z_2(n) souvislý?
   b) Je graf Z_2(n) pravidelný?
   c) Jaký je stupeň souvislosti grafu Z_2(n)?
2.4.10.* Na množině čtyř vrcholů konstruujeme náhodný jednoduchý neorientovaný graf (bez smyček) tak, že každou dvojici vrcholů spojíme hranou s pravděpodobností p. Určete pravděpodobnost, že výsledný graf bude obsahovat a) alespoň jeden izolovaný vrchol, b) alespoň jeden trojúhelník.
2.4.11. Pat a Mat hrají hru: Mají daný souvislý graf G a buď Pat odstraní p vrcholů nebo mat odstraní m hran. Kdo odstraní méně objektů (vrcholů nebo hran), vyhrál. Kdo vyhraje, jestliže
   a) G = P_n?
   b) G = K_n?
   c) G = C_n?
   d) G = K_{m,n}?
3 Eulerovské a hamiltonovské grafy

Eulerovské a hamiltonovské grafy jsou zavedeny ve skriptech [UTG].

3.1 Eulerovské grafy


3.1.2. Je graf na Obrázku 3.2 eulerovský? Pokud ano, najděte uzavřený eulerovský tah.

3.1.3. Je graf na Obrázku 3.3 eulerovský? Pokud ano, najděte uzavřený eulerovský tah.

3.1.4. Máme dán graf $K_{3,3}$ bez jedné hrany, viz Obrázek 3.4.

Obrázek 3.1: Graf $G$.

Obrázek 3.2: Graf $G$.

Obrázek 3.3: Graf $G$.

Obrázek 3.4: Graf $K_{3,3} - e$. 
a) Je možno graf $K_{3,3} - e$ nakreslit jedním uzavřeným tahem? Nakreslete nebo zdůvodněte, proč to není možné.

b) Je možno graf $K_{3,3} - e$ nakreslit jedním otevřeným tahem? Nakreslete nebo zdůvodněte, proč to není možné.

c) Je možno graf $K_{3,3} - e$ nakreslit dvěma otevřenými tahy? Nakreslete nebo zdůvodněte, proč to není možné.

d) Kolik nejméně hran je třeba přidat do grafu $K_{3,3} - e$, aby jej bylo možno nakreslit jedním otevřeným tahem?

e) Kolik nejméně hran je třeba přidat do grafu $K_{3,3} - e$, aby jej bylo možno nakreslit jedním uzavřeným tahem?

3.1.5. Je cirkulant $C_{6}(1,2)$ s vrcholovou množinou $V = \{v_i : i = 1, 2, \ldots, 6\}$ eulerovský? Pokud ano, najděte uzavřený eulerovský tah.

3.1.6. Je cirkulant $C_{6}(1,3)$ s vrcholovou množinou $V = \{v_i : i = 1, 2, \ldots, 6\}$ eulerovský? Pokud ano, najděte uzavřený eulerovský tah.

3.1.7. Je cirkulant $C_{8}(1,2)$ s vrcholovou množinou $V = \{v_i : i = 1, 2, \ldots, 8\}$ eulerovský? Pokud ano, najděte uzavřený eulerovský tah.

3.1.8. Pro která $n$ je možno $K_{n}$ nakreslit jedním uzavřeným tahem?

3.1.9. Pro která $n$ je možno $K_{n}$ nakreslit jedním otevřeným a nikoli uzavřeným tahem?

3.1.10. Pro která $m, n$ je možno $K_{m,n}$ nakreslit jedním uzavřeným tahem?

3.1.11. Pro která $n$ je možno $K_{m,n}$ nakreslit jedním otevřeným tahem?

3.1.12. Dokažte, že eulerovský graf neobsahuje most.


a) Vysvětlete, proč tomu tak je, s využitím teorie grafů?

b) Je možno podobně sestavit cyklus pro domino s čísly 0 až 9?

3.1.14. Ukažte, že pro nesouvislé grafy nemusí platit, že graf s $2t$ vrcholy lichého stupně je možno nakreslit $t$ otevřenými eulerovskými tahy.

3.2 Hamiltonovské grafy

3.2.1. Nechť $V(G)$ grafu $G$ je množina všech dvoupřvkových podmnožin množiny $[1,5]$ a nechť hrana $XY \in E(G)$ právě tehdy, když jsou dvoupřvkové podmnožiny $X, Y$ disjunktní ($X \cap Y = \emptyset$). Nakreslete graf.

3.2.2. Je Petersenův graf hamiltonovský? Své tvrzení dokažte.

3.3 Příklady k procvičení

3.3.1. Je graf $K_{4,4}$ eulerovský? Pokud ano, najděte uzavřený eulerovský tah.

3.3.2. Je graf $K_{4,6}$ eulerovský? Pokud ano, najděte uzavřený eulerovský tah.

3.3.3. Pro které $n$ je graf $K_{2,n}$ eulerovský? Pokud ano, najděte uzavřený eulerovský tah.

3.3.4. Najděte příklad souvislého grafu, který má dva vrcholy lichého stupně a všechny ostatní vrcholy sudého stupně a do kterého
a) stačí přidat jedinou hranu tak, aby byl eulerovský. Jaký je nejmenší takový graf?

b) není možné přidat jedinou hranu tak, aby byl eulerovský. Jaký je nejmenší takový graf?

3.3.5. Pro každé t najdete příklad souvislého grafu, který

a) je souvislý, obsahuje 2t vrcholů lichého stupně a je možno jej nakreslit t otevřenými tahy.

b) není souvislý, obsahuje 2t vrcholů lichého stupně a je možno jej nakreslit t otevřenými tahy.

c) je souvislý, obsahuje 2t vrcholů lichého stupně a je možno jej nakreslit t otevřenými tahy, ale není možné přidáním t hran získat eulerovský graf.

d)* je souvislý, obsahuje 2t vrcholů lichého stupně a je možno jej nakreslit t otevřenými tahy, a přidáním t hran je možné získat eulerovský graf.

3.3.6. Pro libovolné sudé r a libovolné n > r najdete příklad r-pravidelného eulerovského grafu na n vrcholech.

3.3.7. Máme dán graf $G$ na Obrázku 3.5.

![Obrázek 3.5: Graf $G$.](image)

a) Je graf $G$ eulerovský?

b) Jak přidat hrany pouze mezi vrcholy v množině $U$ nebo pouze mezi vrcholy v množině $W$ tak, aby vznikl eulerovský graf? Pokud to není možné, dokažte!

c) Jestliže dovolíme, aby alespoň jedna přidaná hrana měla jeden koncový vrchol v množině $U$ a druhý v množině $W$, může přidáním hran vzniknout eulerovský graf? Jestliže ano, kolik nejméně hran je třeba přidat? Pokud to není možné, dokažte!

3.3.8. Ukažte, že souvislý graf s 2t vrcholy lichého stupně je možno nakreslit t otevřenými eulerovskými tahy.
4 Vzdálenost a metrika v grafu

Pojem vzdálenosti v grafu je popsán ve skriptech [UTG].

4.1 Motivační příklady

4.1.1.* Hlavolam známý jako „Hanojské věže“ má tři kolíky a sadu osmi disků různých velikostí. Na začátku je všech osm disků seřazeno podle velikosti na prvním kuli. Úkolem je přemístit všechny disky na jiný kuli za dodržení následujících podmínek:

1. vždy se přesunuje pouze jeden disk,
2. nikdy nesmí ležet větší disk na menším.

Namodelujte úlohu užitím grafu a pro tři disky najděte nejkratší možné řešení.

4.1.2. Máme osmi litrovou nádobu s vínem a dvě prázdné nádoby – pětitřovou a třilitrovou. Rozdělte osm litrů na čtyři a čtyři litry jen s užitím těchto nádob, bez použití odměrky. Úloha namodelujte grafem a najděte nejkratší řešení a popište všechna přípustná řešení.


4.2 Vzdálenost v grafu

4.2.1.♡ Jaká je největší možná vzdálenost dvou vrcholů v grafu $K_4$?
4.2.2.♡ Jaká je největší možná vzdálenost dvou vrcholů v grafu $K_4$?
4.2.3.♡ Jaká je největší možná vzdálenost dvou vrcholů v grafu $C_7$?
4.2.4.♡ Jaká je největší možná vzdálenost dvou vrcholů v grafu $K_{7,8}$?
4.2.5. Jaká je největší možná vzdálenost dvou vrcholů v grafu $G$ na Obrázku 4.1?

Obrázek 4.1: Graf $G$.

4.2.6. Jaká je největší možná vzdálenost dvou vrcholů v grafu $K_n$?
4.2.7.♡ Jaká je největší možná vzdálenost dvou různých vrcholů v grafu $P_n$?
4.2.8. Jaká je největší možná vzdálenost dvou různých vrcholů v grafu $K_{m,n}$?
4.2.9. Jaká je největší možná vzdálenost dvou různých vrcholů v grafu $C_n$?
4.2.10. Najděte příklad grafu na osmi vrcholech, ve kterém je minimální i maximální vzdálenost dvou různých nesousedních vrcholů 2.
4.2.11. Najděte graf s co nejmenším počtem hran na osmi vrcholech, ve kterém je minimální i maximální vzdálenost dvou různých nesousedních vrcholů 2.
4.2.12. Najděte graf s co největším počtem hran na osmi vrcholech, ve kterém je minimální i maximální vzdálenost dvou různých nesousedních vrcholů 2.

---

*Hanojské věže vymyslel v roce 1883 Francouzský matematik Édouard Lucas.
4.2.13. Najdete graf s co největším počtem vrcholů, ve kterém je maximální vzdalost dvou různých nesousedních vrcholů 2 a nejvyšší stupň vrcholu je 3.
4.2.14. Jak je největší možná vzdalost dvou vrcholů v grafu $W_n$?
4.2.15. Vypočítejte metriku (matrici udávající vzdalosti mezi vrcholy) grafu $K_4 - e$ na Obrázku 4.2.

Obrázek 4.2: Graf $K_4$ bez jedné hrany.

4.3 Vzdalost v ohodnocených grafech

4.3.1. Máme dán graf $G$ na Obrázku 4.3. Jak je největší možná vážená vzdalost mezi vrcholy v grafu $G$?

Obrázek 4.3: Graf $G$.

4.3.2. Máme dán graf $G$ na Obrázku 4.4. Jak je největší možná vážená vzdalost mezi vrcholy v grafu $G$?

Obrázek 4.4: Graf $G$.

4.3.3. Jaká největší možná vážená vzdalost může být mezi dvěma vrcholy v cyklu délky 9, který je ohodnocený všemi čísly 1, 2, ..., 9, každým právě na jedné hraně v libovolném pořadí.

4.4 Nejkratší cesta v ohodnoceném grafu – Dijkstrův algoritmus

4.4.1. Máme dán graf jako na Obrázku 4.5.

Obrázek 4.5: Graf $G$. 

49
a) Jaké jsou vzdálenosti všech vrcholů od vrcholu \( v_1 \)?

b) V jakém pořádku budou zpracovány vrcholy při běhu Dijkstraho algoritmu s výchozím vrcholem \( v_1 \)?

c) Jaké jsou vzdálenosti všech vrcholů od vrcholu \( v_3 \)?

b) V jakém pořádku budou zpracovány vrcholy při běhu Dijkstraho algoritmu s výchozím vrcholem \( v_3 \)?

d) Jaké jsou vzdálenosti všech vrcholů od vrcholu \( v_5 \)?

e) V jakém pořádku budou objeveny vrcholy při běhu Dijkstraho algoritmu s výchozím vrcholem \( v_5 \)?

f) Které dva vrcholy jsou nejvzdálenější? Jaká je jejich vzdálenost?

g) Ze kterého vrcholu je největší vzdálenost do všech ostatních vrcholů nejmenší?

h) Ze kterého vrcholu je maximální vzdálenost do všech ostatních vrcholů nejmenší?

4.4.2. Ve kterém místě selze Dijkstraův algoritmus, jestliže připustíme i záporná ohodnocení hran?

4.5 Příklady k procvičení

Hyperkrychle řádu \( n \) budeme rozumět takový graf \( G(V, E) \) na \( 2^n \) vrcholech, jehož vrcholovou množinu tvoří všechny binární vektory délky \( n \)

\[
V = \{(a_1, a_2, \ldots, a_n) : a_i \in \{0, 1\}, i = 1, 2, \ldots, n\}
\]

a hrana je mezi každými dvěma vrcholy, jejichž vektory se liší v jediné souřadnici

\[
E = \{(a_1, a_2, \ldots, a_n)(b_1, b_2, \ldots, b_n) : (a_1, a_2, \ldots, a_n), (b_1, b_2, \ldots, b_n) \in V \land \sum_{i=1}^{n} |a_i - b_i| = 1\}.
\]

Hyperkrychle řádu \( n \) se značí \( Q_n \).

4.5.1. Mějme graf \( Q_3 \) (hyperkrychle řádu 3). Kolik nejméně hran musíme přidat, aby největší možná vzdálenost mezi vrcholy grafu byla 2?

4.5.2. O Jaká je největší možná vzdálenost dvou vrcholů v grafu \( Q_n \)? Dokažte

4.5.3.* Jak převést úlohu hledání nejkratší cesty i pro grafy s ohodnocenými vrcholy?

4.5.4. Kolik nejvíce vrcholů může mít graf, který má největší možnou vzdálenost mezi dvěma vrcholy rovnou 2?

4.5.5. Kolik nejvíce vrcholů může mít 3-pravidelný graf, který má největší možnou vzdálenost mezi dvěma vrcholy rovnou 2? Nakreslete příklad takového grafu.

4.5.6. V jednom okrese je 15 velkých měst a každé město je spojeno silnicí s alespoň sedmi jinými.

a) Dokažte, že z libovolného města do libovolného jiného se dá dostat buď přímou cestou nebo přes jedno jiné město.

b) Jak by se úloha změnila, kdyby každé město mělo být spojeno silnicí s právě sedmi jinými?
5 Stromy

Stromy a jejich základní vlastnosti jsou popsány ve skriptech [UTG].

5.1 Motivační příklady

5.1.1. Můžeme algoritmus hledání centra použít i pro jiné grafy než stromy? Najdete alespoň jeden takový graf? Vysvětlete!

5.2 Základní vlastnosti stromů

5.2.1. Kolik neisomorfních lesů existuje na čtyřech vrcholech?
5.2.2. Kolik neisomorfních stromů existuje na pěti vrcholech?
5.2.3. Najděte centra následujících stromů.
   a) Strom $T$ na Obrázku 5.1.

   ![Obrázek 5.1: Strom $T$.]

   b) Strom $T$ na Obrázku 5.2.

   ![Obrázek 5.2: Strom $T$.]

   c) Strom $T$ na Obrázku 5.3.

   ![Obrázek 5.3: Strom $T$.]

5.2.4. Najděte takový graf se dvěma kružnicemi, že vynecháním jediné hrany vznikne strom.
5.2.5. Kolik hran je třeba vynechat z kompletního grafu $K_n$, aby zůstala kostra?
5.2.6. Máme dán strom se 17 vrcholy.
   a) Kolik odebereme vrcholů (dle algoritmu z přednášky), než najdeme centrum?
   b) Kolik nejméně nastane takových kroků, kdy odstraňujeme listy?
   c) Kolik nejvíce nastane takových kroků, kdy odstraňujeme listy?
5.2.7. Máme dán strom se 4 vrcholy. Kolik odebereme vrcholů (dle algoritmu z přednášky), než najdeme centrum?

5.2.8. Strom má 56 hran. Kolik může mít vrcholů?

5.2.9. Acyklický graf má 70 vrcholů a 60 hran. Kolik má komponent?

5.2.10. Acyklický graf má 60 vrcholů a 70 hran. Kolik má komponent?

5.2.11. Najděte graf se dvěma kružnicemi, ze kterého vynecháním dvou hran vznikne strom.

5.2.12. Najděte graf se dvěma kružnicemi, ze kterého vynecháním tři hran vznikne strom.

5.2.13. Najděte graf se třemi kružnicemi, ze kterého vynecháním tří hran vznikne strom.

5.2.14. Najděte graf se třemi kružnicemi, ze kterého vynecháním dvou hran vznikne strom.

5.3 Kořenové a pěstované stromy

5.3.1. Najděte a zapište kód kořenového stromu \((T, r)\) na Obrázku 5.4.

Obrázek 5.4: Kořenový strom \((T, r)\).

5.3.2. Najděte a zapište kód kořenového stromu \((T, r)\) na Obrázku 5.5.

Obrázek 5.5: Kořenový strom \((T, r)\).

5.3.3. Najděte a zapište kód kořenového stromu \((T, r)\) na Obrázku 5.6.

Obrázek 5.6: Kořenový strom \((T, r)\).

5.3.4. Najděte a zapište kód kořenového stromu \((T, s)\) na Obrázku 5.7.

Obrázek 5.7: Kořenový strom \((T, s)\).

5.3.5. Máme dán strom \(T\) na Obrázku 5.8.

Obrázek 5.8: Kořenový strom \((T, s)\).
a) Najděte a zapište kód kořenového stromu \((T, r)\).

b) Najděte a zapište minimální kód kořenového stromu \((T, r)\).

c) Najděte a zapište kód kořenového stromu \((T, s)\).

d) Najděte a zapište minimální kód kořenového stromu \((T, s)\).

5.3.6. Nakreslete pěstovaný kořenový strom daný následujícím kódem.

a) 000000000111111111

b) 000101100110010111

c) 000010110100111000110111

d) 00010110010011001101

e) 0001011011001100111011

5.3.7. Je kód pěstovaného kořenového stromu daného následujícím kódem minimální?

a) 000000000111111111.

b) 00010110010110010111

c) 000110010110010010111

d) 00010110011001010111

e) 00011011011000101011

f) 000101101001100110011011

5.4 Isomorfismus stromů

5.4.1. Kolik existuje neisomorfních lesů na pěti vrcholech?

5.4.2. Které kořenové stromy mají jednoznačně určený kód i když nejsou pěstované?

5.4.3. Rozhodněte, které z následujících stromů na Obrázku 5.9 jsou isomorfní.

Obrázek 5.9: Stromy \(T\), \(S\) a \(R\).
5.5 Kostry grafů

5.5.1. Kolik koster má následující graf $W_4$? Předpokládejme, že rozlišujeme vrcholy.

![Obrázek 5.10: Graf $W_4$.]

5.5.2. Máme dán graf $G$ na Obrázku 5.11.

![Obrázek 5.11: Graf $G$.]

a) Najděte minimální kostru grafu $G$ pomocí Kruskalova (hladového) algoritmu. Jaká je váha minimální kostry?

b) Najděte minimální kostru grafu $G$ pomocí Jarníkova (Primova) algoritmu. Výchozí vrchol je $v_1$. Jaká je váha minimální kostry?

c) Najděte minimální kostru grafu $G$ pomocí Borůvkova algoritmu. Jaká je váha minimální kostry?

5.5.3. Jaké vlastnosti musí mít ohodnocení grafů, aby všechny tři algoritmy (Borůvkův, Jarníkův/Primův i Kruskalův (hladový)) našly vždy stejnou kostru?

5.5.4. Mějme dán kompletí graf $K_n$, jehož množina vrcholů je $V = [1, n]$. Každou hranu $uv$ ohodnotíme součtem $u + v$. Jak vypadá minimální kostra takto ohodnoceného kompletího grafu?

5.5.5. Mějme dán kompletí graf $K_n$, jehož množina vrcholů je $V = [1, n]$. Každou hranu $uv$ ohodnotíme součtem $2u + 5v$, kde $u < v$. Jak vypadá minimální kostra takto ohodnoceného kompletího grafu?

5.6 Příklady k procvičení


5.6.2. Kolik různých neisomorfních koster má cyklus $C_n$? Předpokládejme, že nerozlišujeme vrcholy.

5.6.3. Máme graf $K_4$.

a) Kolik různých neisomorfních koster má graf $K_4$?

b) Kolik různých koster má graf $K_4$?

5.6.4. Máme graf $K_5$.

a) Kolik různých koster má graf $K_5$?

b) Kolik různých neisomorfních koster má graf $K_5$?
5.6.5. Máme graf $K_6$.
   
a) Kolik různých koster má graf $K_6$?
   
b) Kolik různých neisomorfních koster má graf $K_6$?

5.6.6. Kolik hran je třeba vynechat z kompletního bipartitního grafu $K_{m,n}$, aby zůstala kostra?

5.6.7. Kolik nejméně vrcholů musí mít graf, který má dvě hranové disjunktní kostry? Najdete takový graf?

5.6.8. Najděte příklad souvislého grafu, který má 1001 koster.

5.6.9. Zavedeme pojem inverzního kódu. Máme strom $T$ a nějaký jeho kód $C$. Inverzní kód $C'$ dostaneme tak, že zaměníme 0 a 1 a napíšeme kód v opačném pořadí. Najděte takový netriviální strom $T$, který má
   
a) stejný kód i inverzní kód,
   
b) různý kód a inverzní kód, přičemž strom $T'$ příslušný inverznímu kódu je isomorfní se stromem $T$,
   
c) různý kód a inverzní kód, přičemž strom $T'$ příslušný inverznímu kódu není isomorfní se stromem $T$,
   
d) inverzní kód stejný jako minimální kód.

5.6.10. Máme strom $T$ a jeho kód $C$. Cestou ve stromu $T$ budeme rozumívat podgraf, který je isomorfní s cestou. Co můžeme říci o nejdelší cestě ve stromu $T$, je-li v kódu $C$ pět po sobě jdoucích nul?

5.6.11. Máme strom $T$ a jeho minimální kód $C$. Cestou ve stromu $T$ budeme rozumívat podgraf, který je isomorfní s cestou. Co můžeme říci o nejdelší cestě ve stromu $T$, je-li v kódu $C$ pět po sobě jdoucích nul?
6 Barevnost a kreslení grafů

Pojmy barevnosti grafu a rovinného zakreslení grafu jsou popsány ve skriptech [UTG].

6.1 Motivační příklady


6.1.2. Kolik nejméně barev je potřeba na obarvení 15 biliárových koulí v trojúhelníkovém postavení tak, aby žádné dvě dotýkající se koule nebyly obarveny stejnou barvou?

Obrázek 6.1: Biliárové koule v trojúhelníkovém postavení.

6.2 Vrcholové barvení grafů

6.2.1. Jaké je chromatické číslo (barevnost) následujících grafů?

a) Graf $W_8$, viz Obrázek 6.2?

b) Graf $W_7$, viz Obrázek 6.2?

c) Grafu pravidelného čtyřúhelníku, viz Obrázek 6.3.

d) Grafu pravidelného šestibokého, viz Obrázek 6.3.

e) Grafu pravidelného osmistěného, viz Obrázek 6.3.
6.2.2. Jaké je chromatické číslo (barevnost) grafu $G$ na Obrázku 6.4?

Obrázek 6.4: Graf $G$.

6.2.3. Jaké je chromatické číslo (barevnost) cirkulantu $C_{10}(1, 2, 5)$ na Obrázku 6.5?

Obrázek 6.5: Cirkulant $C_{10}(1, 2, 5)$.

6.2.4. Kolik nejméně musíme vynechat hran z grafu $W_8$ (viz Obrázek 6.2), aby jeho chromatické číslo bylo 2?

6.2.5. Kolika nejvýše barvami obarvíme kompletí bipartitní graf s alespoň třemi vrcholy, jestliže mu přidáme jednu hranu?

6.2.6. Kolika nejvýše barvami obarvíme kompletí bipartitní graf, jestliže mu přidáme dvě hrany?

6.2.7. Kolika barvami lze obarvit strom.

6.2.8. Kolik barev je potřeba na obarvení (jaká je barevnost) $K_n - e$?

6.2.9. Kolik barev je potřeba na obarvení (jaká je barevnost) $C_n$ s jednou přidanou hranou $v_1v_i$, $i \in [1, n]$?

6.2.10. Mám dán graf $G$. Co můžeme říci o barvenosti grafu $G$, jestliže známe $\Delta(G)$?

6.3 Rovinné kreslení grafu

6.3.1. Pokud je to možné, nakreslete graf $G$ na Obrázku 6.6 tak, aby se hrany neprotínaly.

Obrázek 6.6: Graf $G$.

6.3.2. Pokud je to možné, nakreslete graf $G$ na Obrázku 6.7 tak, aby se hrany neprotínaly.
6.3.3. Ukažte, že po přidání libovolné hrany do grafu na Obrázku 6.7 výsledný graf již nebude rovinný.
6.3.4. Pokud je to možné, nakreslete rovinný graf pravidelného čtyřstěnu.
6.3.5. Pokud je to možné, nakreslete rovinný graf pravidelného šestistěnu (krychle).
6.3.6. Pokud je to možné, nakreslete rovinný graf pravidelného osmistěnu.
6.3.7. Nakreslete rovinný graf pravidelného dvanáctistěnu.
6.3.8. Nakreslete rovinný graf pravidelného dvacetistěnu.
6.3.9. Nakreslete rovinný graf osmistěnu a najděte odpovídající duální graf.
6.3.10. Nakreslete rovinný graf dvanáctistěny a najděte odpovídající duální graf.
6.3.11. Máme nějaké rovinné nakreslení pravidelného osmistěnu. Stěny pravidelného osmistěnu jsou trojúhelníky.
   a) Kolik má oblastí?
   b) Kolik má hran?
   c) Kolik má vrcholů?
   d) Kolik dalších hran můžeme do roviného nakreslení osmistěnu přidat tak, aby graf zůstal rovinný?
6.3.12. Máme nějaké rovinné nakreslení pravidelného šestistěnu (krychle).
   a) Kolik má oblastí?
   b) Kolik má hran?
   c) Kolik má vrcholů?
   d) Kolik dalších hran můžeme do roviného nakreslení krychle přidat tak, aby graf zůstal rovinný?
   a) Kolik má oblastí?
   b) Kolik má hran?
   c) Kolik má vrcholů?
   d) Kolik dalších hran můžeme do roviného nakreslení dvanáctistěnu přidat tak, aby graf zůstal rovinný?
   a) Kolik má oblastí?
   b) Kolik má hran?
   c) Kolik má vrcholů?
   d) Kolik dalších hran můžeme do roviného nakreslení dvacetistěnu přidat tak, aby graf zůstal rovinný?
6.3.15. Kolik má souvislý rovinný graf stěn, víte-li že má
   a) 20 vrcholů a 25 hran?
b) 16 vrcholů a 15 hran?
c) 25 vrcholů a 22 hran?
d) 5 vrcholů a 10 hran?

6.3.16. Nakreslete graf $K_4$ tak, aby
   a) se hrany neprotínaly
   b) a navíc aby byly úsečky.

6.3.17. Nakreslete graf $K_5 - e$ tak, aby
   a) se hrany neprotínaly
   b) a navíc aby byly úsečky.

6.3.18. Nakreslete graf $K_{3,3} - e$ tak, aby
   a) se hrany neprotínaly
   b) a navíc aby byly úsečky.


6.3.20.* Najdete nekonečně mnoho neisomorfních souvislých rovinných grafů, které mají nejmenší stupeň vrcholů 5.

6.3.21. Do rovinného nakreslení stromu přidáme dvě hrany, které se navzájem nekříží a nekříží ani žádnou původní hrany stromu. Kolik bude mít výsledný graf oblast (stěn)?

6.4 Rozpoznání rovinných grafů

6.4.1.♡ Pro která $n$ je graf $K_n$ rovinný? Zdůvodněte.

6.4.2.♡ Pro která $m,n$ je graf $K_{m,n}$ rovinný? Zdůvodněte.

6.4.3. Existuje rovinné nakreslení pro $K_6 - C_3$? Zdůvodněte.

6.4.4. Nakreslete nějaký rovinný graf s 12 hranami a 8 sténami.

6.4.5. Nakreslete nějaký rovinný graf s 21 hranami a 16 sténami.

6.4.6.* Je graf $G$ na Obrázku 6.8 rovinný? Zdůvodněte.


V roviném grafu podle Kuratovského věty neexistuje podgraf isomorfní s $K_5$ a proto (podle předchozího zdůvodnění) na obarvení rovinného grafu budou stačit vždy čtyři barvy.
6.5 Barvení map a rovinných grafů

6.5.1. Kolik nejméně barev je třeba na dobré vrcholové barvení rovinného nakreslení grafů?
   a) $K_5 - e$
   b) $K_{3,3} - e$

6.5.2. Najdete rovinný graf, na jehož obarvení je potřeba alespoň 5 barev? Zdůvodněte.

6.5.3. Kolik barev je třeba na dobré obarvení hyperkrychle $Q_n$?

6.5.4. Najdete graf s největším stupněm 2 na jehož dobré vrcholové barvení jsou potřeba alespoň 3 barvy? Zdůvodněte.

6.5.5. Najděte graf s největším stupněm $r$ na jehož dobré vrcholové barvení je potřeba alespoň $r + 1$ barev.

6.5.6. Najděte graf s největším stupněm 3 na jehož dobré vrcholové barvení je potřeba minimálně 5 barev? Zdůvodněte.


6.6 Příklady k procvičení

6.6.1. Máme dánou hyperkrychli řádu $n$, značíme ji $Q_n$ (viz strana 50).
   a) Jaký je počet vrcholů $Q_n$?
   b) Jaký je stupeň vrcholů v grafu $Q_n$?
   c) Jaký je počet hran $Q_n$?
   d) Jaké je chromatické číslo $Q_n$?
   e) Pro které hodnoty $n$ je graf $Q_n$ rovinný?

6.6.2. Podle předpisů se káva nesmí skladovat společně s rýží, rýže s moukou, mouka s jablkami a jablka se nesmí skladovat společně s tropickým ovocem. Kolik nejméně místností je potřeba pro uskladnění všech druhů zboží?

6.6.3. Máme za úkol pronajmout skladové prostory, ve kterých se budou skladovat broskve, kukuřice, papriky, pšenice, rajčata, švestky a konzervy. Podle předpisů se obiloviny nesmí skladovat společně s ovocem, rajčata ani papriky se nesmí skladovat s pšenicí nebo kukuřicí a broskve se nesmí skladovat s rajčaty. Kolik nejméně místností je třeba pronajmout pro uskladnění všech druhů zboží?

6.6.4. Kolik hrán stačí přidat do cyklu $C_n$, aby výsledný graf nebyl rovinný?

6.6.5. Máme dány hyperkrychli $Q_4$ (viz strana 50). Je $Q_4$ rovinný graf?
7 Toky v sítích

Pojem sítě a definice toku v síti jsou popsány ve skriptech [UTG].

7.1 Definice sítě

7.1.1. Pro které vrcholy sítě neplatí zákony kontinuity?
7.1.2. Jak v síti namodelovat neorientovanou hranu?
7.1.3. Může pro (jediný) zdroj platit zákon kontinuity?
7.1.4. Může v síti něco přitékat do zdroje?
7.1.5. Může být tok na hranách vycházející ze zdroje větší, než tok na hranách přitékajících do stoku?

7.2 Hledání maximálního toku

7.2.1. Máme danou síť \( S = (G, z, s, w) \) na Obrázku 7.1.

\[ \begin{array}{c}
\text{Obrázek 7.1: Síť } (G, z, s, w). \\
\end{array} \]

a) Jaká je hodnota největšího toku v síti \( S \)? Najděte jej!

b) Jaká je kapacita minimálního řezu v síti \( S \)? Najděte minimální řez.

c) Jak vypadá množina \( U \) po skončení algoritmu?

7.2.2. Máme danou síť \( S = (G, z, s, w) \) na Obrázku 7.2.

\[ \begin{array}{c}
\text{Obrázek 7.2: Síť } (G, z, s, w). \\
\end{array} \]

a) Jaká je hodnota největšího toku v síti \( S \)? Najděte jej!

b) Jaká je kapacita minimálního řezu v síti \( S \)? Najděte minimální řez.

c) Jak vypadá množina \( U \) po skončení algoritmu?

7.2.3. Máme danou síť \( S = (G, z, s, w) \) na Obrázku 7.3.

\[ \begin{array}{c}
\text{Obrázek 7.3: Síť } (G, z, s, w). \\
\end{array} \]
a) Jaká je hodnota největšího toku v sítě $S$? Najděte jej!

b) Jaká je kapacita minimálního řezu v sítě $S$? Najděte minimální řez.

c) Jak vypadá množina $U$ po skončení algoritmu?

7.2.4. Máme danou síť $S = (G, z, s, w)$ na Obrázku 7.4.

![](image1)

**Obrázek 7.4: Síť $(G, z, s, w)$.

a) Jaká je hodnota největšího toku v sítě $S$? Najděte jej!

b) Jaká je kapacita minimálního řezu v sítě $S$? Najděte minimální řez.

c) Jak vypadá množina $U$ po skončení algoritmu?

7.2.5. Máme danou síť $S = (G, z, s, w)$ na Obrázku 7.5.

![](image2)

**Obrázek 7.5: Síť $(G, z, s, w)$.

a) Jaká je hodnota největšího toku v sítě $S$? Najděte jej!

b) Jaká je kapacita minimálního řezu v sítě $S$? Najděte minimální řez.

c) Jak vypadá množina $U$ po skončení algoritmu?

7.3 Zobecnění sítí a další aplikace

7.3.1. Najděte největší párování v následujícím grafu. Zdůvodněte, proč neexistuje větší párování.
7.3.2. Existuje systém různých reprezentantů pro následující systém množin? Pokud ano, najděte ho, pokud ne, dokažte to.

\[ M_1 = \{1, 2, 4\}, M_2 = \{1, 3, 7\}, M_3 = \{1, 5, 6\}, M_4 = \{2, 6, 7\}, M_5 = \{2, 3, 5\}, M_6 = \{3, 4, 6\}, M_7 = \{4, 5, 7\} \]

7.3.3. Existuje systém různých reprezentantů pro následující systém množin? Pokud ano, najděte ho, pokud ne, dokažte to.

\[ M_1 = \{1, 4, 5\}, M_2 = \{1, 4, 6\}, M_3 = \{1, 5, 6\}, M_4 = \{2, 3, 5\}, M_5 = \{4, 5, 6\}, M_6 = \{4, 5, 7\}, M_7 = \{4, 6, 7\} \]

7.4 Příklady k procvičení

7.4.1. Najděte příklad sítě, kde kapacity hran jsou celočíselné a maximální tok není celočíselný.
Reference


