
1 / 43

Discrete mathematics

Petr Ková̌r
petr.kovar@vsb.cz

VŠB – Technical University of Ostrava

Winter term 2021/2022
DiM 470-2301/02, 470-2301/04, 470-2301/06

The translation was co-financed by the European Union and the Ministry of Education, Youth and Sports from the Operational
Programme Research, Development and Education, project “Technology for the Future 2.0”, reg. no.

CZ.02.2.69/0.0/0.0/18 058/0010212.

This work is licensed under a Creative Commons “Attribution-ShareAlike 4.0 International” license.

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

2 / 43

About this file

This file is meant to be a guideline for the lecturer. Many important pieces
of information are not in this file, they are to be delivered in the lecture:
said, shown or drawn on board. The file is made available with the hope
students will easier catch up with lectures they missed.

For study the following resources are better suitable:

Meyer: Lecture notes and readings for an
http://ocw.mit.edu/courses/electrical-engineering-and-

computer-science/6-042j-mathematics-for-computer-science

-fall-2005/readings/”(weeks 1-5, 8-10, 12-13), MIT, 2005.

Diestel: Graph theory http://diestel-graph-theory.com/

(chapters 1-6), Springer, 2010.

See also http://homel.vsb.cz/~kov16/predmety dm.php

3 / 43

Course number: 470-2301/02, 470-2301/04*, 470-2301/06
Credits: 6 credits (2/2/2), *5 credits (2/2/1)
Warrant: Petr Ková̌r
Lecturer: Petr Ková̌r/Tereza Ková̌rová

Web: am.vsb.cz/kovar
Email: Petr.Kovar@vsb.cz
Office: EA536

4 / 43

Classification

Tests

every week (starting with the third week)

2–10 minutes

evaluation 0/1/2 (no/almost correct/completely correct)

every other week one additional teoretical question

we take 4 best 2-point scores and 4 best 3-point scores among 10

total up to 20 points

if a student skips a test: 0 points

Typical assignments available at http://am.vsb.cz/kovar (in Czech).

5 / 43

Classification (cont.)

Project

assigned in the second half of the term

project: two or four problems (discrete math & graph theory)

Bonus Projects for all who want to learn something
contains two problems (1 discrete mathematics & 1 graph theory)

total of 10 points

to receive credit (“zápočet”) the project has to be accepted
(minimum standards, see web)

keep the deadline!

work alone!

Credit (“Zápočet”) = at least 10 points and an accepted project

6 / 43

Classification (cont.)

Exam

examining dates given at the end of the term

total of 70 points

sample exam on the web (http://am.vsb.cz/kovar)

you can use one page A4 with handwritten notes
definitions, theorems a formulas, but no examples

7 / 43

Literature

In Czech:

(partially M. Kubesa. Základy diskrétńı matematiky, textbook
on-line).
P. Ková̌r: Algoritmizace diskrétńıch struktur on-line.
P. Ková̌r. Úvod do teorie graf̊u, textbook on-line.
P. Ková̌r: Cvičeńı z diskrétńı matematiky, exercises on-line.
solved examples as “pencasts” available on-line.

In English:

Meyer: Lecture notes and readings for an open course (weeks 1-5,
8-10, 12-13), MIT, 2005.
Diestel: Graph theory on-line preview (chapetrs 1-6), Springer, 2010.

You are free to use any major textbook, but beware: details can differ!
At the exam things will be required as in the lecture.

Office hours

We 9:30–11:00 (?) EA536.

see web: http://am.vsb.cz/kovar

8 / 43

Sample problems

Some problem, we will learn how to solve:

handshaking problem. . .

list all possible tickets in powerball . . .

nine friends exchanging three presents each. . .

three lairs and three wells. . .

seven bridges of Königsberg. . .

missing digits in social security number (“rodné č́ıslo”). . .

correcting UPC bar codes. . .

Monty Hall. . .

Additional interesting problems and exercises:
http://am.vsb.cz/kovar.

9 / 43

Z p̌redchoźıho semestru znáte

Chapter 0. Review
number sets

set and set operations

relations

proof techniques

mathematical induction

10 / 43

Numbers and interval of integers

Natural numbers and integers

Natural numbers are denoted by N = {1, 2, 3, 4, 5, . . .}
notice! zero is not among them
Natural numbers with zero included denoted by N0 = {0, 1, 2, 3, 4, 5, . . .}
Integers are denoted by Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, 4, . . .}

Intervals of integers between a and b

is the set {a, a + 1, . . . , b − 1, b}
we denote it by: [a, b] = {a, a + 1, . . . , b − 1, b}

Compare to the notation used for an interval of real numbers (a, b).

Examples

[3, 7] = {3, 4, 5, 6, 7} [−2,−2] = {−2}
[5, 0] = ∅ (the empty set)

11 / 43

Cartesian product and Cartesian power

Cartesian product of two sets A× B = {(a, b) : a ∈ A, b ∈ B}
is the set of all ordered pairs (a, b) such that a ∈ A and b ∈ B in this order.
A1 × A2 × · · · × An = {(a1, a2, . . . , an) : ai ∈ Ai , i = 1, 2, . . . , n}
For A1 = A2 = . . . = An we get the Cartesian power An.
We define A0 = {∅}, A1 = A.

A

B

A×B
a

b

♣ ♥ ♠

(a,♣)

(b,♣)

(a,♥)

(b,♥)

(a,♠)

(b,♠)

Cartesian product of sets A× B = {a, b} × {♣,♥,♠}.

Power set of A

is the set of all subsets of A

2A = {X : X ⊆ A}.

12 / 43

A family of sets over A

or a family of subsets of A is some T ⊆ 2A.
We prefer the term “family of sets” to “set of sets”.

r

b

g y

rg

b y

All subsets of the set of colors C = {r , g , b, y}.

13 / 43

Generalized unions and intersections

Generalized union
n⋃

i=1

Xi and intersection
n⋂

i=1

Xi of sets.

Given an index set J, we can write
⋃
j∈J

Xj and
⋂
j∈J

Xj .

Examples

Ai = {1, 2, . . . , i}, for each i ∈ N
5⋃

i=1

Ai = {1, 2, 3, 4, 5},
5⋂

i=1

Ai = {1},
∞⋂
i=1

Ai = {1}

Questions

What is
⋂
j∈J

Aj for J = {2, 5}?

What is
⋃
j∈J

Aj for J = N?

14 / 43

Definition

(Homogenous) binary relation R on the set A is a subset of the Cartesian
product A× A = A2, i.e.

R ⊆ A2.

Definition

(Homogenous) n-ary relation S on the set A is a subset of the Cartesian
power A× A× · · · × A = An, i.e.

S ⊆ An.

Example

Relation between students, with the same grade in DiM.

Relation between pairs of students, who has a higher score.

Relation between documents with similar terms (plagiarism). . .

Binary relation is a special case of an n-ary relation. (unary, ternary, . . .).
(Homogenous) relations on a given set are special case of (heterogenous)
relation between sets. In greater detail in another course.

15 / 43

Equivalence relation

Definition

Equivalence on the set A is a reflexive, symmetric, and transitive binary
relation on the set A. We denote it by '.

Definition

Let ' be an equivalence relation on the set A. An equivalence class of x
(denoted by [' x]) is the subset of A defined by [' x] = {z ∈ A : z ' x}.

['a]

[' b]

[' c]

[' d]

Equivalence relation expresses “having the same property”.

Examples

congruence relation ≡ (same remainder after division by n)
relation among students “having the same grade in DIM”
relation “synonyms in a language” is (often) an equivalence

16 / 43

Partial ordering
Ordering and equivalence are among the most common relations.

Definition

Partial ordering � on the set A is reflexive, antisymmetric, and transitive
binary relation on the set A. The set with the relation is called a poset.

The word partial emphasizes the fact, that the relation does not have to
be linear relation on A, i.e. not every pair of elements has necessarily to be
related. Neither xRy nor yRx .
Partial orderings can be illustrated by a Hasse diagram

if x � y , then the element y will be drawn higher than x ,
elements x and y will be connected by a line if x � y . We omit all
lines that follow from transitivity.

1

2 3

4

5

6

7

8

9 10

12

3

4 5

6

17 / 43

0.4.2. Concept of a mathematical proof
Theorem (claims) in mathematics are usually of the form of a conditional
statement: P ⇒ C
Precisely formulated premise (or hypothesis) P, under which the
conclusion (consequence) C holds.

Detailed description how to obtain the conclusion from the premises is
called a proof.

Mathematical proof

of some statement C is a finite sequence of steps including:

axioms – or postulates that are considered true (the set of postulates
differs for various disciplines∗),
hypothesis P is an assumption on which we work,
statement derived from previous by some correct rule (depends on
logic used).

The last step is a conditional statement with conclusion C .

∗ Discrete mathematics relies on Peano axioms, geometry is build upon
five Euklid’s postulates, . . .

19 / 43

What could I need a proof for?

“What is the use of a newborn?”

correctly understand the limitations of various method

arguments for/against a presented solution

comparison of quality of different solutions

100% validity of an algorithm may be required
(autopilot, intensive care unit)

20 / 43

Mathematical induction
Mathematical induction is a common proof technique used to prove
propositional functions with a natural parameter n, denoted by P(n).

Mathematical induction

Let P(n) be a propositional function with an integer parameter n.
Suppose:

Basis step:
The proposition P(n0) is true, where n0 = 0 or 1, or some integer.
Inductive step:
Assume the Inductive hypothesis: P(n) holds for some n.
Show, that for all n > n0 if P(n) holds, then also P(n + 1) holds.

Then P(n) is true for all integers n ≥ n0.

Mathematical induction can be used also to prove validity of algorithms.

A few examples follow. . .

21 / 43

Wait a minute!

But. . .

we verify the Basis step,

we verify the Inductive step (using the Inductive hypothesis),

. . . how come this implies the validity for infinity many values!?!

Example

How high can you climb a ladder?
Suppose we can

mount the first step,

standing on rung n climb the rung n + 1.

. . . thus, we can reach any rung of the ladder!

22 / 43

Theorem

The sum of the first n even natural numbers is n(n + 1).

2 + 4 + 6 = 12 = 3 · 4
2 + 4 + 6 + 8 + 10 + 12 + 14 + 16 + 18 + 20 = 110 = 10 · 11

Proof by mathematical induction based on n:
We prove ∀n ∈ N the following holds

∑n
i=1 2i = n(n + 1).

Basis step: For n = 1 claim P(1) gives “2 = 1 · 2”.

Inductive step: Does P(n) imply P(n + 1)?

I.e. does
∑n

i=1 2i = n(n + 1), imply
∑n+1

i=1 2i = (n + 1)(n + 2)?

We state Inductive hypothesis P(n):
Suppose ∃n ∈ N :

∑n
i=1 2i = n(n + 1).

Now∑n+1
i=1 2i =

∑n
i=1 2i + 2(n + 1)

IH
= n(n + 1) + 2(n + 1) = (n + 1)(n + 2).

We have shown the correctness of the formula for the sum of the first
n + 1 evens using the formula for the sum of the first n evens.

By mathematical induction the claim holds ∀n ∈ N. �

23 / 43

Strong mathematical induction compared to mathematical induction

Mathematical induction

Let P(n) be a propositional function with an integer parameter n.
Suppose:

Basis step:
The proposition P(n0) is true, where n0 = 0 or 1, or some integer n0.
Inductive step:
Assume the Inductive hypothesis: P(n) holds for some n.
Show, that for all n > n0 if P(n) holds, then also P(n + 1) holds.

Then P(n) is true for all integers n ≥ n0.

Strong mathematical induction

Basis step: The proposition P(n0) is true.
Inductive step:
Inductive hypothesis: Assume P(k) holds for all n0 ≤ k < n.
Show, that also P(n) is true.

Then P(n) is true for all integers n ≥ n0.

24 / 43

Example

There are always pr − 1 breaks necessary to split a chocolate bar of p × r
squares.
By strong induction on n = pr :

Basis step:
For n0 = 1 we have a bar with only one square, there are no breaks
necessary (pr − 1 = 0).

Inductive step:
Suppose now the claim holds for any chocolate bars with less than n
squares. Take any bar with n squares. We break this bar into two
parts of s or t squares, respectively, where 1 ≤ s, t < n and s + t = n.
By Inductive hypothesis we can break each part by s − 1 or t − 1
breaks, respectively. There is a total of
(s − 1) + (t − 1) + 1 = s + t − 1 = n − 1 breaks necessary.

The proof is complete by strong induction for all positive p, r . �

25 / 43

Lecture overview

Chapter 1. Sequences
sequences

sums and products

arithmetic progression

geometric progression

ceiling and floor functions

26 / 43

Sequence

is an ordered list of objects, called elements.
We denote it by (ai)

n
i=1 = (a1, a2, . . . , an).

in real analysis defined as mappings p : N→ R
we distinguish first, second, third, ... element in the sequence.
indices are natural numbers, usually starting at 1
elements in a sequence can repeat (in contrary to sets)
sequences can be finite (a1, a2, . . . , an)
and infinite (a1, a2, . . .), the sequence can even be empty
(we focus mainly on finite sequences)

Examples

(x , v , z , v , y)
(2, 3, 5, 7, 11, 13, 17, 19, 23, 29)
(2, 3, 5, 7, 11, 13, 17, 19, 23, 29, . . .)
(1,−1, 1,−1, 1,−1, 1,−1, . . .)

A sequence is given by: listing the elements, recurrence relations or a
formula for the n-th element

27 / 43

Sums

Sum of a sequence is denoted by

n∑
i=1

ai = a1 + a2 + · · ·+ an−1 + an

∑
i∈J

ai = ai1 + ai2 + · · ·+ ain , where J = {i1, i2, . . . , in}.

Question ∑
i∈{1,3,5,7}

i2 =?

Example

n∑
i=1

i =?

28 / 43

Product

Product of elements in a sequence is denoted by

n∏
i=1

ai = a1 · a2 · · · · · an−1 · an

∏
i∈J

ai = ai1 · ai2 · · · · · ain , where J = {i1, i2, . . . , in}

Examples

5∑
i=2

ln(i) = ln

(
5∏

i=2

i

)
= ln (2 · 3 · 4 · 5) = ln 120

n∑
i=1

n∑
j=1

(i · j) =
n∑

i=1

i ·
n∑

j=1

j

 =

(
n∑

i=1

i

)
·

 n∑
j=1

j

 =

(
1

2
n(n + 1)

)2

empty sum
2∑

i=3

i = 0 empty product
2∏

i=3

i = 1

29 / 43

Examples

n∑
i=1

(i + j) =
n∑

i=1

i +
n∑

i=1

j =
n

2
(n + 1) + nj

J = {2, 8, 12, 21},
∑
j∈J

j = 2 + 8 + 12 + 21 = 43

Questions

5∑
i=1

ln(i) =?
100∑
i=1

i =?

6∏
i=1

i =?
n∏

i=1

i =?

n∏
i=1

(n − i) =?
n∑

i=1

(n + 1− i) =?

30 / 43

Question

Can you find a sequence (ai)
n
i=1, such that

∑n
i=1 ai <

∑n
i=1(−ai)?

Question

Can you find a sequence (ai)
n
i=1, such that

∑n
i=1 ai > 0 and

∏n
i=1 ai < 0?

Question

Does there exist a sequence of positive numbers (ai)
n
i=1, such that∑n

i=1 ai >
∏n

i=1 ai?

31 / 43

Arithmetic progression

Certain sequences for special progressions and we know several their
properties.

Arithmetic progression

The sequence (ai) is an arithmetic progression if its terms are

a, a + d , a + 2d , a + 3d , . . .

Real numbers a, d are the first term and the difference of the progression,
respectively.

Notice that the sequence (ai) is an arithmetic progression, if there exists a
real number d , such that for all i > 1 is ai − ai−1 = d .

Every subsequent term arises by adding (the same!) difference d to the
previous term.

Finite arithmetic progressions are also considered.
We have n terms

a, a + d , a + 2d , . . . , a + (n − 1)d .

32 / 43

Examples

−2, 3, 8, 13, 18, . . . first term −2, difference 5

−3, 2, 7, 12, 17, . . . first term −3, difference 5

20, 9,−2,−13,−24, . . . first term 20, difference −11
√

2,
√

2,
√

2,
√

2,
√

2, . . . first term
√

2, difference 0

Examples

Find the n-th term of the progressions an from previous example
−2, 3, 8, 13, 18, . . . an = −2 + (n − 1)5

−3, 2, 7, 12, 17, . . . an = −3 + (n − 1)5

20, 9,−2,−13,−24, . . . an = 20− (n − 1)11
√

2,
√

2,
√

2,
√

2,
√

2, . . . an =
√

2

Example

Which sequence is given by the n-th term an = −8 + 5n?

Second progression −3, 2, 7, 12, 17, . . .

33 / 43

Summing n terms of an arithmetic progression

a1 + a2 + · · ·+ an =
n∑

i=1

ai

In this case

a + (a + d) + · · ·+ a + (n − 1)d =
n∑

i=1

(a1 + (i − 1)d)

holds

n∑
i=1

(a1 + (i − 1)d) =
n

2
(a1 + an) =

n

2
(2a1 + (n− 1)d) = na1 +

n(n − 1)d

2
.

Sum of certain consecutive n terms of an arithmetic progression

k+n−1∑
i=k

ai =
n

2
(ak + ak+n−1) =

n

2
(2ak + (n − 1)d) = nak +

n(n − 1)d

2
.

34 / 43

Notes

The sum of an infinite arithmetic progression generally does not exist.

Sequence of partial sums

diverges to +∞ for d > 0,

diverges to −∞ for d < 0,

for d = 0 diverges to +∞ or to −∞ or converges based on a1.

Arithmetic progression with first term a and difference d can be given by a
recurrence relation

an = an−1 + d , a1 = a.

35 / 43

Example savings

Example

Uncle Scrooge has 4 514 cents in his safe. Every week he adds 24 cents to
the safe. What is the formula for an?

4 514, 4 538, 4 562, 4 586, · · · = 4 514 + 24(n − 1) = 4 490 + 24n.

Example

Uncle Scrooge has 4 514 cents in his safe. The pocket money of each of
his three nephews is 1 cent, but every week he increases the pocket money
by one cent.
a) Evaluate the total pocket money in the n-th week.
b) Evaluate the number of cents in the safe in the n-th week.

a) pocket money k = 3 + 3(n − 1) = 3n
b) in safe s = 4 514− 3n

36 / 43

Geometric progression

Geometric progression

The sequence (ai) is a geometric progression if its terms are

a, a · q, a · q2, a · q3, . . .

Real numbers a, q are the first term and the common ration of the
progression, respectively.

Notice that the sequence (ai) is a geometric progression if there exists
a real number q, such that for all i > 1 is ai

ai−1
= q.

Every subsequent term arises by multiplying the previous term by (the
same!) common ratio q.
Finite geometric progressions are also considered. We have n terms

a, a · q, a · q2, . . . , a · qn−1.

Question

Can a progression be both geometric and arithmetic at the same time?
If yes, can you find different solutions? Infinitely many?

37 / 43

Examples

2, 10, 50, 250, 1250, . . . first term 2, common ratio 5

9, 6, 4, 8
3 ,

16
9 , . . . first term 9, common ratio 2

3

4,−2, 1,−1
2 ,

1
4 , . . . first term 4, common ratio −1

2
√

2,
√

2,
√

2,
√

2,
√

2, . . . first term
√

2, common ratio 1

Examples

Find the n-th term of the progressions an from previous example
2, 10, 50, 250, 1250, . . . an = 2 · 5n−1

9, 6, 4, 8
3 ,

16
9 , . . . an = 9 ·

(
2
3

)n−1
= 27

2 ·
(

2
3

)n
4,−2, 1,−1

2 ,
1
4 , . . . an = 4 ·

(
−1

2

)n−1
= −8 ·

(
−1

2

)n
√

2,
√

2,
√

2,
√

2,
√

2, . . . an =
√

2

Example

Which sequence is given by the n-th term an =
(

1
2

)n
? 1

2 ,
1
4 ,

1
8 ,

1
16 , . . .

38 / 43

Sum of n terms of a geometric progression

a1 + a2 + · · ·+ an =
n∑

i=1

ai

In our case

a + (a · q) + · · ·+ a · qn−1 =
n∑

i=1

(a1 · qi−1)

for q 6= 1 holds
n∑

i=1

(a1 · qi−1) = a1
qn − 1

q − 1
.

For q = 1 is the progression both arithmetic and geometric; we use a
different formula.

Question

How does the sum of first n terms of a geometric progression with
common ratio 1 look like?

39 / 43

Notes

The sum of an infinite geometric progression

generally does not exist for |q| ≥ 1,

for q = 1 the sequence is constant; the sum depends on a1,

for q = −1 the sequence oscillates, there is no sum

for |q| < 1 the sum is finite a1
1−q

Sequence of partial sums of an infinite geometric progression

diverges for q ≥ 1,

oscillates (and does not converge for q ≤ −10,

converges to a1
1−q for |q| < 1.

A geometric progression with first term a and common ratio q can be
described recursively

an = an−1 · q, a1 = a.

40 / 43

Example savings

Example

Uncle Scrooge has 4 514 cents in a bank. Every year he get an interest of
2 percent (no rounding). What is the formula for the amount an (after n
years)?

4 514, 4 604.3, 4 696.4, 4 790.3, 4 886.1, 4 983.8, · · · = 4 514 · 1.02n−1.

Example

Uncle Scrooge has 4 514 cents in his safe. The pocket money of each of
his three nephews is 1 cent, but every week he doubles the pocket money
of each.
a) Evaluate the total pocket money in the n-th week.
b) Evaluate the number of cents in the safe in the n-th week.

a) pocket money k = 3 · 2n−1 = 3
2 · 2

n

b) in safe s = 4 514− 3 · 2n−1

41 / 43

Example

We tilt the pendulum to 5 cm height. Due friction each sway of the
pendulum looses one fifth of it energy. Describe the sequence of heights to
which the pendulum rises after each sway.

5 cm, 4 cm,
16

5
cm,

64

25
cm,

256

125
cm, . . . , 5 ·

(
4

5

)n−1

cm

first term 5 cm,
common ratio 4

5 .

Question

After how many tilts will the pendulum stop?

42 / 43

Integer part of a real number

bxc floor function for a real number x
dxe ceiling function for a real number x

Example

b3.14c = 3 b−3.14c = −4
bxc = dxe ⇒ x ∈ Z

Question

Gives the expression dlog ne the number of digits of n (in decimal system)?

If not, can you find a “correct” formula?

Question⌈
n

n+1

⌉
=?, where n ∈ N (what if n ∈ N0)

43 / 43

Next lecture

Arrangements and selections
multiplication principle (of independent selections)
method of double counting

1 / 23

Discrete mathematics

Petr Ková̌r
petr.kovar@vsb.cz

VŠB – Technical University of Ostrava

Winter term 2021/2022
DiM 470-2301/02, 470-2301/04, 470-2301/06

The translation was co-financed by the European Union and the Ministry of Education, Youth and Sports from the Operational
Programme Research, Development and Education, project “Technology for the Future 2.0”, reg. no.

CZ.02.2.69/0.0/0.0/18 058/0010212.

This work is licensed under a Creative Commons “Attribution-ShareAlike 4.0 International” license.

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

2 / 23

About this file

This file is meant to be a guideline for the lecturer. Many important pieces
of information are not in this file, they are to be delivered in the lecture:
said, shown or drawn on board. The file is made available with the hope
students will easier catch up with lectures they missed.

For study the following resources are better suitable:

Meyer: Lecture notes and readings for an
http://ocw.mit.edu/courses/electrical-engineering-and-

computer-science/6-042j-mathematics-for-computer-science

-fall-2005/readings/”(weeks 1-5, 8-10, 12-13), MIT, 2005.

Diestel: Graph theory http://diestel-graph-theory.com/

(chapters 1-6), Springer, 2010.

See also http://homel.vsb.cz/~kov16/predmety dm.php

3 / 23

Lecture overview

Chapter 2. Arrangements and selections
selections: permutations, k-permutations and k-combinations

two basic counting principles
multiplication principle (of independent selections)
method of double counting

permutations, k-permutations and k-combinations with repetition

4 / 23

Arrangements and selections

We count the number of selections from a given set

ordered arrangements / unordered selections,
with repetition / without repeating elements.

Today:

permutations (without repetition)
combinations (without repetition)
k-permutations (without repetition)
+ problems leading to counting selections

Beware! While solving real life problems we usually need to split a
complex problem into several sub-cases,

complex selections/arrangements, during discussions

we have to distinguish common/different properties.

5 / 23

Definition

Permutation of an n-element set X is an (ordered) arrangement of all n
elements from X (without repetition).

The total number of possible permutations of an n-element set is

P(n) = n · (n − 1) · (n − 2) · · · · · 2 · 1 = n!

the first element is chosen among n possibilities
the second element is chosen among n − 1 possibilities
the third element is chosen among n − 2 possibilities. . .

Problems, described by permutations (without repetition)

number of orderings of elements from a set
number of bijections from an n-element set onto another n-element
set
number of ways how to order the cards in a deck
distribution of numbers at a start of a marathon
distributing keys in a fully occupied hotel

6 / 23

Definition

Combination (or k-combination) from a set X is an (unordered) selection
of k distinct elements from a given set X (a k-element subset of X .)

The number of k-combinations from an n-element set

C (n, k) =
n!

k! · (n − k)!
=

(
n

k

)
n! different orderings (permutations) of X
we choose first k elements (not distinguishing their k! orderings)
we discard the last n − k elements (not distinguishing their (n − k)!
orderings)

Problems, described by combinations (without repetition)

number of k-element subsets of an n-element set
binomial coefficients: coefficient at xk in (x + 1)n

(x + 1)n =
n∑

k=0

(
n

k

)
xk

7 / 23

Definition

k-permutation from a set X is an ordered arrangement of k elements from
an n-element set X (without repetition)
(sequence of k-elements from X).

The number of k-permutations from an n-element set

V (n, k) = n · (n − 1) · · · · · (n − k + 1) =
n!

(n − k)!

the first element is chosen among n possibilities
the second element is chosen among n − 1 possibilities
. . .
the k-th element is chosen among n − k + 1 possibilities.

or

n! possibilities how to order elements of X
we take only first k elements
we discard the last n − k elements (not distinguishing their (n − k)!
orderings)

8 / 23

Problems, described by k-permutations (without repetition)

setting up an k-element sequence from n elements
number of injections (one-to-one mappings) from an k-element set to
an n-element set
number of different race outcomes (trio on a winner’s podium)
distributing keys in a partially occupied hotel

9 / 23

Examples

team of four among ten employees
calculation using k-combinations (we do not distinguish ordering)

C (10, 4) =

(
10

4

)
=

10!

4! · 6!
=

10· 6 9· 6 8 · 7
6 4· 6 3· 6 2

=
10 · 3 · 7

1
= 210

number of matches in a tennis tournament of seven players
calculation using k-combinations (2-element subsets in a 7-element
set)

C (7, 2) =

(
7

2

)
= 21

10 / 23

Examples

number of possible orders after a tournament of seven players
calculation based on permutations

P(7) = 7! = 5040

number of triples on the winners podium in a tournament of seven
calculation by 3-permutations, because “the order does matter”

V (7, 3) =
7!

4!
= 7 · 6 · 5 = 210

11 / 23

Complex selections and arrangements

In some cases we add and in some cases we multiply the number of
selections or arrangements to obtain the result. How to recognize which is
correct?

Sum rule

Suppose there are n1 selections (arrangements) obtained in one way and
n2 selections (arrangements) obtained in another way, where no selection
(arrangement) can be obtained in both ways, then the total number of
selections (arrangements) is n1 + n2.
“EITHER n1 ways OR n2 further ways.”

Product rule

Suppose a selection (arrangement) can be broken into a sequence of two
selections (arrangements). If the first stage can be obtained in n1 ways and
the second stage can be obtained in n2 ways for each way (independently)
of the first stage, then the total number of selections (arrangements) is
n1 · n2.
“First n1 ways AND then n2 ways.”

12 / 23

If a selection is broken into two disjoint sets of selections, then we add the
number of selections.

Example

In the game
”
člověče nezlob se“ we roll an ordinary dice and move a peg

by the indicated number of fields. If we roll a 6 in the first roll, we roll an
additional time. By how many fields can we move the peg in one round?

We distinguish two cases:

if there is not a 6 in the first roll, we move by 1 up to 5 fields,

if there is a 6 in the first roll, we move by 6 + 1 up to 6 + 6 fields.

There are 11 possibilities: 1, 2, 3, 4, 5, (no 6!) 7, 8, 9, 10, 11, 12.

14 / 23

If a selection can be broken into two stages (subselections), then we
multiply the number of selections.

Example

The coach of a hockey team sets up a formation (three forwards, two
full-backs and a goalkeeper). He has a team of 12 forwards, 8 full-backs,
and two goalkeepers.
How many different formations can he set up?

Because there is no relation between the choice of full-backs, forwards,
and goalkeepers we can count as follows(

12

3

)
·
(

8

2

)
·
(

2

1

)
=

12 · 11 · 10

6
· 8 · 7

2
· 2 = 220 · 28 · 2 = 12320.

There are altogether 12 320 different formations.

15 / 23

When two selections are not independent...

we cannot just multiply the counts of each (sub)selection.

Example

The coach of a hockey team sets up a formation (three forwards, two
full-backs and a goalkeeper). He has a team of 11 forwards, 8 full-backs, 1
universal player (either a full-bak or a forward), and two goalkeepers.
How many different formations can he set up?

choose 3 forwards:
(12

3

)
choose 2 full-backs:

(8
2

)
or
(9

2

)
?

It depends, whether the universal player was picked as forward or not.

. . . solution in the discussion

Question

We roll a dice three times. How many rolls are possible, such that every
subsequent roll gives a higher number than the previous one?

16 / 23

Double counting

Suppose each arrangement can be further split into several finer `
arrangements. Moreover, suppose we know how to count the total number
of the refined arrangements m. Then the total number of the original
arrangements is given by the ratio m/`.

Example

We have the characters T, Y, P, I, C. How many different (even
meaningless) five-letter words can you construct? We do not distinguish Y
and I letters.

If we distinguish all characters, we have P(5) = 5! = 120 words.
Not distinguishing Y, I: TYPIC = TIPYC .

In the total of m = 120 we have every arrangement counted twice ` = 2.
The number of different words is

m

`
=

120

2
= 60.

17 / 23

Arrangements with repetition

So far no repetition of selected elements was allowed
(people, subsets, . . .)
In several problems repetition is expected (rolling dice, characters, . . .)

Example

How many anagrams of the word MISSISSIPPI exist?
(anagram is a word obtained by rearranging all characters of a given word)

If no character in “MISSISSIPPI” would repeat, the calculation would rely
on permutation. But they repeat: S 4times, I 4times, P 2times.

By double counting:

1 first we distinguish all characters (using colors, indices, etc.)
2 we count all arrangements: (4 + 4 + 2 + 1)!
3 divide by the number of indistinguishable arrangements: 4! · 4! · 2! · 1!

(4 + 4 + 2 + 1)!

4! · 4! · 2! · 1!
=

11 · 10 · 9· 6 8 · 7· 6 6 · 5
6 4· 6 3· 6 2· 6 2

= 11 · 10 · 9 · 7 · 5 = 34650

18 / 23

Definition

Permutation with repetition from the set X is an arrangement of elements
from X in a sequence such that every element from X occurs a given
number of times. Denote the number of them by P∗(m1,m2, . . . ,mk).

(an arrangement with a given number of copies of elements from X)

The number of all permutations with repetition from a k-element set,
where the i-th element is repeated in mi identical copies (i = 1, 2, . . . , k):

P∗(m1,m2, . . . ,mk) =
(m1 + m2 + · · ·+ mk)!

m1! ·m2! · · ·mk !
.

Examples

permutation with repetition of 2 elements, one element occurs in k
copies the other in (n − k) copies

(k + n − k)!

k! · (n − k)!
=

(
n

k

)
= C (n, k).

first element = “is”, the second element = “is not” an arrangement
permutation of multisets (in multisets identical copies are allowed)

19 / 23

Example describing the idea of combination with repetition

Example

How man ways are there to select 6 balls of three colors, provided we have
an unlimited supply of balls of each color?

We present a beautiful trick, how to count the total number of selections.
Suppose we pick •, •, •, •, •, •
This selection we can order (group) based on colors

• • •|•|• •

now we observe, that only the “bars”, not the colors are important

• • •|•|• •

The total number of selections is

C ∗(3, 6) =

(
6 + 2

2

)
=

(
8

2

)
= 28.

20 / 23

Definition

A k-combination with repetition from an n-element set X is a selection of
k elements from X , while each element can occur in an arbitrary number
of identical copies. The number of them we denote by C ∗(n, k).

The total number of all k-element selections with repetition from n
possibilities is

C ∗(n, k) =

(
k + n − 1

n − 1

)
.

having n “colors”, we need n − 1 bars
we can “select bars”, or “select elements”

C ∗(n, k) =

(
k + n − 1

n − 1

)
=

(
k + n − 1

k

)
.

Problems solved using k-combinations with repetition

number of ways how to write k using n nonnegative integer summands
drawing k elements of n kinds provided after each draw we return the
elements back to the polling urn

21 / 23

Example

How many ways are there to write k as the sum of n nonnegative integer
summands? We distinguish the order of summands!
We have

k = x1 + x2 + · · ·+ xn.

We will select (draw) k ones and distribute them into n boxes (with the
possibility of tossing more ones into each box).

some boxes can remain empty (0 ∈ N0)
we can toss all ones into one box
we repeat boxes, not ones! (a different problem)

Questions

How many ways are there to write k as the sum of n positive summands?

How many ways are there to write k as the sum of at least n natural
summands?

How many ways are there to write k as the sum of at most n natural
summands?

22 / 23

Definition

A k-permutation with repetition from an n-element set X is an
arrangement of k elements from X , while elements can repeat in an
arbitrary number of identical copies. The number of them we denote by
V ∗(n, k).

The arrangement is a sequence.

The number of all k-permutations with repetition from n possibilities is

V ∗(n, k) = n · n · · · n︸ ︷︷ ︸
k

= nk .

Problems solved by k-permutation with repetition

number of mappings of an k-element set to an n-element set
cardinality of the Cartesian power |Ak |

Question

How many odd-sized subsets has a given set of n elements?

23 / 23

Next lecture

Chapter 3. Discrete probability
motivation
sample space
independent events

1 / 25

Discrete mathematics

Petr Ková̌r
petr.kovar@vsb.cz

VŠB – Technical University of Ostrava

Winter term 2021/2022
DiM 470-2301/02, 470-2301/04, 470-2301/06

The translation was co-financed by the European Union and the Ministry of Education, Youth and Sports from the Operational
Programme Research, Development and Education, project “Technology for the Future 2.0”, reg. no.

CZ.02.2.69/0.0/0.0/18 058/0010212.

This work is licensed under a Creative Commons “Attribution-ShareAlike 4.0 International” license.

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

2 / 25

About this file

This file is meant to be a guideline for the lecturer. Many important pieces
of information are not in this file, they are to be delivered in the lecture:
said, shown or drawn on board. The file is made available with the hope
students will easier catch up with lectures they missed.

For study the following resources are better suitable:

Meyer: Lecture notes and readings for an
http://ocw.mit.edu/courses/electrical-engineering-and-

computer-science/6-042j-mathematics-for-computer-science

-fall-2005/readings/”(weeks 1-5, 8-10, 12-13), MIT, 2005.

Diestel: Graph theory http://diestel-graph-theory.com/

(chapters 1-6), Springer, 2010.

See also http://homel.vsb.cz/~kov16/predmety dm.php

3 / 25

Lecture overview

Chapter 3. Discrete probability
describing chance: event, sample space

independent events

expected values

random selections and arrangements

4 / 25

Discrete probability

One of the oldest motivation for counting probabilities is gambling.
Questions

“What are the chances of rolling dice with a given outcome?”
“What are the chances of receiving a given hand of cards?”

led to formalizing the terms of chance and probability.

We will deal only with discrete cases, i.e. situations, that can be described
with one of finitely many possibilities.

Overview:

motivation problems
sample space (intuition often fails)
independent events
expected values
random selections and arrangements

7 / 25

Motivation problems

Flipping a coin 2 possible outcomes: head / tail (1 / 0)
We expect that both sides are equally likely to be obtained by flipping
(we say “with probability 1

2 ”)

Rolling dice 6 possible outcomes: 1, 2, 3, 4, 5, and 6
each number of points occurs with the same frequency (“probability”) 1

6

Shuffling a deck of cards we expect, that the shuffling is fair, no shuffle
is more likely to occur
there are 32!

.
= 2.6 · 1035 possible outcomes

Powerball Winning Numbers (Tah sportky) drawing balls (6 out of 49)(49
6

)
= 13 983 816 possible outcomes (Powerball: 5/55 and 1/42)

Our “expectancy of probability” is based on the expectancy of fairness.
Often different outcomes are considered to be equivalent in the terms of
frequency of occurrences of a random experiment.

8 / 25

Finite sample space

How to describe “chance” by a mathematical model?
We expect (subjectively) whether an event will occur. We compare with
the previous relative frequency of that event, a number between 0 and 1.

probability =
frequence of an event

number of experiments

Definition

Finite sample space is a pair (Ω,P), where Ω is a finite set of elements
and P is probability function, which assigns to every subset of Ω a real
value (probability) from 〈0, 1〉, s.t. the following hold

P(∅) = 0, P(Ω) = 1
P(A ∪ B) = P(A) + P(B) for disjoint A,B ⊆ Ω

An Event is any subset A ⊆ Ω and its probability is P(A).

Note: it is enough to assign probabilities to the one element sets, called
elementary events, or atomic events, or points of Ω. Then, for
A = {a1, . . . , ak} ⊆ Ω, by definition P(A) = P({a1}) + · · ·+ P({ak}).

9 / 25

Notice
One element subsets are called elementary events.
However, the elements are not events nor elementary events.

Example

elementary event: rolling a dice you get 1
event: rolling a dice you get an even number

disjoint events cannot occur at the same time: A ∩ B = ∅

Example

Rolling two dice we have events

A: you get at least one 6

B: you get the sum 7

are not disjoint events P(A ∩ B) = 2
36 = 1

18 , but

C: you get at least one 6

D: you get the sum 3

are disjoint events P(C ∩ D) = 0, C and D cannot occur together.

10 / 25

Motivation problems based on the definition

Flipping a coin 2 possible outcomes: head / tail (1 / 0)
Ω = {0, 1} a P({0}) = P({1}) = 1

2 .

Rolling dice Ω = {1, 2, 3, 4, 5, 6} and P({1}) = . . . = P({6}) = 1
6

Event “rolling an even number” is given by the subset {2, 4, 6}.

Shuffling a deck of cards Ω contains all 32! permutations of 32 cards, each
permutation has the same probability 1

32! .
Event “Full House” is formed by the subset of permutations with a triple
of cards with the same value and a pair with another value.

Powerball Winning Numbers (Tah sportky) drawing balls (6 out of 49)
Ω contains all 6-combinations of 49 numbers, each with the probability
1/
(49

6

)
.

Notice: in all examples the elementary events have the same probability.

11 / 25

Definition

If the probability function P : P(A)→ 〈0, 1〉 is given by

P(A) = |A| / |Ω|

for all A ⊆ Ω, then P is called uniform probability and such sample
space Ω is uniform.

all elementary events have the same probability
the probability of the event A = relative size of A with respect to Ω

One can specify the probability of elementary events only:
For each elementary event {e} ⊂ Ω let

P({e}) =
1

|Ω|
.

12 / 25

Example

Random experiment: sum of points while rolling two dice.

The set of all possible sums on two dice Ω = {2, 3, . . . , 12}.
Probabilities of the elementary events differ! There is only one way how to
obtain the sum 2 = 1 + 1, while the sum 7 can be obtained in six ways.

There are 6 · 6 = 36 possible outcomes, we mentioned that the sum 7 can
be obtained in 6 ways, the sum 6 in five ways, etc. We get the following
probabilities

P(2) = P(12) = 1
36 ,

P(3) = P(11) = 2
36 = 1

18 ,
P(4) = P(10) = 3

36 = 1
12 ,

P(5) = P(9) = 4
36 = 1

9 ,
P(6) = P(8) = 5

36 ,
P(7) = 6

36 = 1
6 .

13 / 25

Example

Random experiment: sum of points while rolling two dice.
(a model with a uniform sample space).
The sample space is Ω′ = [1, 6]2 (Cartesian power of the set
{1, 2, 3, 4, 5, 6}).
The probability of every elementary event is P(A) = 1

36 .

Events for each sum are subset in Ω′

S1 = ∅,
S2 = {(1, 1)},
S3 = {(1, 2), (2, 1)},

...
S7 = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)},
S8 = {(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)},

...
S12 = {(6, 6)}.

Probabilities of the events S1, . . . ,S12 are same as in the previous model.

We prefer sample spaces with uniform probability.

14 / 25

Definition

Complementary event to the even A is denoted by A and the following
holds A = Ω \ A.

Theorem

The probability of the complementary event A to the event A is
P(A) = 1− P(A).

Example

We roll an ordinary dice.
Let A be the event “rolling a dice we got 1 or 2”,
the complementary event A is the event “we rolled neither 1 nor 2”, which
essentially means “we rolled 3, 4, 5, or 6.”

Handy for evaluating probabilities in uniform samplespaces.
Usually, we count selections or arrangements.

15 / 25

Conditional probability of event A given B occurs

If event B has nonzero probability, then the conditional probability of
event A given B occurs we denote by P(A|B) and it is given by

P(A|B) =
P(A ∩ B)

P(B)
.

The conditional probability of event A given B occurs is the probability of
the event A, provided the event B occurred.

Example

What is the probability that rolling two dice we get the sum 7, provided
that on some dice we got 5.
It is easy to evaluate P(A ∩ B) = 2

36 (5 + 2 or 2 + 5).
When evaluating P(B) don’t count 5 + 5 twice, thus P(B) = 11

36 .

We get P(A|B) =
P(A ∩ B)

P(B)
=

2
36
11
36

=
2

11
.

16 / 25

Beware! “Intuition” is often misleading

In the previous example we showed, that when rolling two dice the
conditional probability of A “the sum is 7” provided the event B “there is
a 5 on at least one dice”, je P(A|B) = 2

11 .

But this is not the correct solution in the following problem:

Example

A croupier rolls two dice, checks the outcames and announces “There is at
least one 5. What is the probability of the sum being 7?”

Probability 2
11 is the solution to a similar but differently worded problem:

Example

A croupier rolls two dice, he will check the outcome for 5. If no 5 is
obtained, he rolls again, until a 5 appears. Then he announces “There is at
least one 5. What is the probability of the sum being 7?”

Reason:
It is not a conditional probability P(A|B) if the event B may/did not
occur and probability P(B) is zero.

17 / 25

Independent events

It is intuitively clear what independence of events is. Informally:
The probability of one event is not influenced by the result of another
event.
(similar to independent selections/arrangements from Chapter 2.)

Independent events:
two consecutive rolls of a dice,
one roll with two or more dice,
rolling a dice and shuffling cards,
drawing from a urn and tossing the ball back
(two draws in Powerball)

Dependent events:
top and bottom face numbers on a dice,
first and second card in a deck,
consecutive drawings from an urn while keeping drawn balls outside.

18 / 25

Definition

Independent events A,B are such two events, that

P(A ∩ B) = P(A) · P(B).
Alternative definition:
Event A is independent of event B, if the probability of occurrence of
event A while event B occurs is the same as the probability of event A

P(A ∩ B)

P(B)
=

P(A)

P(Ω)
or P(A|B) = P(A).

Both definitions are equivalent.

Questions

From the “Sportka” urn (we draw one ball and then another ball)
what is the probability that the first ball is 1?
what is the probability that the second ball is 2?
what is the probability that second ball is 2, provided first ball was 1?
how do the probabilities change if we return the first ball before
drawing the second ball?

19 / 25

Expected value

Let us explore random experiments whose outcome is a (natural) number.
Let us concentrate on problems with finitely many possible outcomes.

Definition of a random variable X

The outcome of a random experiment, which gives a number as a result
will we call a random variable X .

Definition of expected value

Let X be a random variable that can have k possible outcomes from the
set {h1, h2, . . ., hk}, where hi occurs with the probability pi , a
p1 + p2 + · · ·+ pk = 1. The expected value of X is the number

E (X) = EX =
k∑

i=1

pihi = p1 · h1 + p2 · h2 + · · ·+ pk · hk .

Thus, it represents the average amount one “expects” as the outcome of
the random trial when identical experiments are repeated many times.

21 / 25

Example

What is the expected value when rolling a dice?

E (K) =
1

6
· 1 +

1

6
· 2 +

1

6
· 3 +

1

6
· 4 +

1

6
· 5 +

1

6
· 6 =

21

6
= 3.5.

Example

What is the expected value when rolling a dice on which 6 has the
probability of occurrence twice as high as any other number?

E (K) =
1

7
· 1 +

1

7
· 2 +

1

7
· 3 +

1

7
· 4 +

1

7
· 5 +

2

7
· 6 =

27

7
.

= 3.8571.

Example

There is a 20$ a 5$ and a 1$ banknote. We pick a banknote by random.
Every bigger value has a two times bigger probability to be chosen than
the smaller. What is the expected value of the banknote M?

p1 =
1

7
, p5 =

2

7
, p20 =

4

7
, E (M) =

1

7
· 1 +

2

7
· 5 +

4

7
· 20 =

91

7
= 13.

22 / 25

Sum of expected values

For any two random variables X ,Y the following holds

E (X + Y) = E (X) + E (Y).

Product of expected values

For any two independent random variables X ,Y the following holds

E (X · Y) = E (X) · E (Y).

Example

What is the expected value of the sum while rolling two dice?
Using the results from the previous example and by Sum of expected
values theorem

E (K1 + K2) = E (K1) + E (K2) = 3.5 + 3.5 = 7.

23 / 25

Examples

What is the expected value of the product of numbers of points while
rolling two dice?
Using the first example and by Product of expected values theorem

E (K1 · K2) = E (K1) · E (K2) = 3.5 · 3.5 = 12.25.

Similarly E (K1 · K2) =
∑6

i=1

∑6
j=1

1
36 · i · j = 441

36 = 49
4 = 12.25

What is the expected value of the product of the numbers of points on the
top and bottom face while rolling one dice?
The expected value on the top face is 3.5 and on the bottom face also 3.5.
But the expected value of their product is not 3.5 · 3.5 = 12.25, since the
two variables are not independent.
We can evaluate the expected value by definition

1

6
(1 · 6 + 2 · 5 + 3 · 4 + 4 · 3 + 5 · 2 + 6 · 1) =

56

6
.

= 9.3333.

Carefully about the independence of events while multiplying expected
values!

24 / 25

Random selections and arrangements

Frequently used finite uniform random selections in discrete mathematics:

Random subset Given an n-element set we pick any of the 2n subsets,
each with the probability 2−n.

Random permutation Among all n! permutations of a given n-element
set we pick one with the probability 1/n!.

Random combination Among all
(n
k

)
k-combinations of a given

n-element set we pick one with the probability 1/
(n
k

)
.

Random bit sequence We obtain an arbitrary long sequence of 0 and 1
so that any subsequent bit is chosen with probability 1

2 (does
not depend on any previous bit, similarly to flipping a coin).
Each subsequence of this random sequence is equally likely
to occur.

25 / 25

Next lecture

Chapter 4. Counting and combinatorial identities
inclusion exclusion principle
double counting
combinatorial identities
proofs “by counting”

1 / 30

Discrete mathematics

Petr Ková̌r
petr.kovar@vsb.cz

VŠB – Technical University of Ostrava

Winter term 2021/2022
DiM 470-2301/02, 470-2301/04, 470-2301/06

The translation was co-financed by the European Union and the Ministry of Education, Youth and Sports from the Operational
Programme Research, Development and Education, project “Technology for the Future 2.0”, reg. no.

CZ.02.2.69/0.0/0.0/18 058/0010212.

This work is licensed under a Creative Commons “Attribution-ShareAlike 4.0 International” license.

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

2 / 30

About this file

This file is meant to be a guideline for the lecturer. Many important pieces
of information are not in this file, they are to be delivered in the lecture:
said, shown or drawn on board. The file is made available with the hope
students will easier catch up with lectures they missed.

For study the following resources are better suitable:

Meyer: Lecture notes and readings for an
http://ocw.mit.edu/courses/electrical-engineering-and-

computer-science/6-042j-mathematics-for-computer-science

-fall-2005/readings/”(weeks 1-5, 8-10, 12-13), MIT, 2005.

Diestel: Graph theory http://diestel-graph-theory.com/

(chapters 1-6), Springer, 2010.

See also http://homel.vsb.cz/~kov16/predmety dm.php

3 / 30

Lecture overview

Chapter 4. More counting techiques
inclusion/exclusion principle
combinatorial identities
binomial theorem
pigeon-hole principle

4 / 30

Recapitulation

We introduced terms and symbols

permutation P(n)
k-combination with or without repetition, C ∗(n, k) or C (n, k)
k-permutation with or without repetition, P∗(n, k) or P(n, k)

We derived formulas for the number of various selections and
arrangements.

But not all selections or arrangements can be counted as simple
selections/arrangements. For example

size of a union of sets

number of bijections without fixed points

number of decompositions of an n-element set to k disjoint subsets

number of decompositions of n to k summands, while order of
summands is irrelevant

5 / 30

4.1. Inclusion exclusion principle
For small n we use it often intuitively:

Theorem

The number of elements in a union of two sets is:

|A ∪ B| = |A|+ |B| − |A ∩ B|.

A B

The number of elements in a union of three sets is:

|A∪B ∪ C | = |A|+ |B|+ |C | − |A∩B| − |B ∩ C | − |A∩ C |+ |A∩B ∩ C |.

A B

C

6 / 30

General form of the inclusion exclusion principle

The number of elements in a union of n sets is:∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣ =
∑

J⊆{1,...,n}
J 6=∅

(−1)|J|−1 ·

∣∣∣∣∣⋂
i∈J

Ai

∣∣∣∣∣ .
To count the cardinality of a union, we

sum the cardinalities of all sets,
subtract the cardinalities of intersections of all pairs of sets,
add the cardinalities of intersections of all triples of sets,
subtract the cardinalities of intersections of all quadruples of sets,
. . .

7 / 30

Cardinality of union of three sets

For example for n = 3 we get

∣∣∣∣∣
3⋃

i=1

Ai

∣∣∣∣∣ =
∑

J⊆{1,2,3}
J 6=∅

(−1)|J|−1 ·

∣∣∣∣∣⋂
i∈J

Ai

∣∣∣∣∣ =

= |A1|+ |A2|+ |A3| −
− |A1 ∩ A2| − |A1 ∩ A3| − |A2 ∩ A3|+
+ |A1 ∩ A2 ∩ A3|.

A1 A2

A3

8 / 30

Cardinality of union of four sets

For example for n = 4 we get

∣∣∣∣∣
4⋃

i=1

Ai

∣∣∣∣∣ =
∑

J⊆{1,2,3,4}
J 6=∅

(−1)|J|−1 ·

∣∣∣∣∣⋂
i∈J

Ai

∣∣∣∣∣ =

= |A1|+ |A2|+ |A3|+ |A4| −
− |A1 ∩ A2| − |A1 ∩ A3| − |A2 ∩ A3| − |A1 ∩ A4| − |A2 ∩ A4| − |A3 ∩ A4|+
+ |A1 ∩ A2 ∩ A3|+ |A1 ∩ A2 ∩ A4|+ |A1 ∩ A3 ∩ A4|+ |A2 ∩ A3 ∩ A4| −
− |A1 ∩ A2 ∩ A3 ∩ A4|.

A1 A2

A3

A4

9 / 30

Special case of inclusion exclusion principle

A simpler form (with fewer summands), if the intersections of i sets have
always the same cardinality:∣∣∣∣∣∣

n⋃
j=1

Aj

∣∣∣∣∣∣ =
n∑

i=1

(−1)i−1 ·
(

n

i

)
·

∣∣∣∣∣∣
i⋂

j=1

Aj

∣∣∣∣∣∣ .
To count the cardinality of a union, we

take the number of one-element sets × size of A1,
subract number of two-element sets × size of pair-set intersections,
add number of three-element sets × size of tripple-set intersections,
subract number of four-element sets × size of quadruple-set
intersections,
. . .

10 / 30

Cardinality of the union of three sets if each set and each
intersection have the same cardinality

For n = 3 we have

∣∣∣∣∣
3⋃

i=1

Ai

∣∣∣∣∣ =
3∑

k=1

(−1)k−1 ·
(

3

k

)
·

∣∣∣∣∣∣
k⋂

j=1

Aj

∣∣∣∣∣∣ =

=

(
3

1

)
· |A1| −

(
3

2

)
· |A1 ∩ A2|+

(
3

3

)
· |A1 ∩ A2 ∩ A3|.

A1 A2

A3

11 / 30

Cardinality of the union of four sets if each set and each intersection
have the same cardinality

For n = 4 we have

∣∣∣∣∣
4⋃

i=1

Ai

∣∣∣∣∣ =
n∑

k=1

(−1)k−1 ·
(

n

k

)
·

∣∣∣∣∣∣
k⋂

j=1

Aj

∣∣∣∣∣∣ =

=

(
4

1

)
· |A1| −

(
4

2

)
· |A1 ∩ A2|+

+

(
4

3

)
· |A1 ∩ A2 ∩ A3| −

(
4

4

)
|A1 ∩ A2 ∩ A3 ∩ A4|.

A1 A2

A3

A4

12 / 30

Venn diagram for seven sets – Adelaide

13 / 30

Example

There are 25 students in a class. 17 study English and 10 German. 4 study
English and German, 4 English and French, 2 German and French and one
all three languages. How many students study only French?
We denote the sets by E , G a F . We know

|E | = 17, |G | = 10, |E ∩G | = |E ∩ F | = 4, |G ∩ F | = 2, |E ∩G ∩ F | = 1

From the equation

|E ∪G ∪ F | = |E |+ |G |+ |F | − |E ∩G | − |G ∩ F | − |E ∩ F |+ |E ∩G ∩ F |

it follows

|F | = |E ∪ G ∪ F | − |E | − |G |+ |E ∩ G |+ |G ∩ F |+ |E ∩ F | − |E ∩ G ∩ F |
|F | = 25− 17− 10 + 4 + 4 + 2− 1 = 7.

E G

F

14 / 30

Example (continued)

But some of these 7 students study also other languages!

E G

F

Just French

x = |F | − |E ∩ F | − |G ∩ F |+ |E ∩ G ∩ F |
x = 7− 4− 2 + 1 = 2 students.

2 students study just French.

15 / 30

Combinatorial identities

For binomial coefficients we can derive many interesting formulas. There is
an entire part of Discrete mathematics dealing with them.

Lemma

For all n ≥ 0 the following holds(
n

0

)
=

(
n

n

)
= 1.

Statement, proof of which is just a substitution and one or two simple
steps we consider as obvious and their proof we do not write down.

Compare the number of corresponding subsets.

16 / 30

More combinatorial identities

Lemma

For all n ≥ k ≥ 0 the following holds(
n

k

)
=

(
n

n − k

)
.

If the proof requires some elaborate step, “trick”, or genuine derivation, it
is customary to give some explanation.

Compare the number of corresponding subsets.

17 / 30

Lemma

For all n ≥ k ≥ 0 the following holds(
n

k

)
+

(
n

k + 1

)
=

(
n + 1

k + 1

)
.

Proof (direct by substitution and derivations)(
n

k

)
+

(
n

k + 1

)
=

n!

k! · (n − k)!
+

n!

(k + 1)! · (n − k − 1)!
=

=
n! · (k + 1) + n! · (n − k)

(k + 1)! · (n − k)!
=

n! · (n + 1)

(k + 1)! · (n − k)!
=

=
(n + 1)!

(k + 1)! · ((n + 1)− (k + 1))!
=

(
n + 1

k + 1

)
.

�

Combinatorial proof is explanatory:
Compare the number of (k + 1)-element subsets of some (n + 1)-element
set. �

18 / 30

Notion of the binomial coefficient

These formulas are an alternative definition of binomial coefficients.(
n

0

)
=

(
n

n

)
= 1

(
n

k

)
=

(
n

n − k

) (
n

k

)
+

(
n

k + 1

)
=

(
n + 1

k + 1

)
.

The value of the binomial coefficient is uniquely determined by these
equalities

no need for factorials,

each value can be (recursively) evaluated.

19 / 30

Pascal’s triangle (
0

0

)
(

1

0

) (
1

1

)
(

2

0

) (
2

1

) (
2

2

)
(

3

0

) (
3

1

) (
3

2

) (
3

3

)
(

4

0

) (
4

1

) (
4

2

) (
4

3

) (
4

4

)
(

5

0

) (
5

1

) (
5

2

) (
5

3

) (
5

4

) (
5

5

)
. .

20 / 30

Pascal’s triangle (
0

0

)
= 1(

1

0

)
= 1

(
1

1

)
= 1(

2

0

)
= 1

(
2

1

) (
2

2

)
= 1(

3

0

)
= 1

(
3

1

) (
3

2

) (
3

3

)
= 1(

4

0

)
= 1

(
4

1

) (
4

2

) (
4

3

) (
4

4

)
= 1(

5

0

)
= 1

(
5

1

) (
5

2

) (
5

3

) (
5

4

) (
5

5

)
= 1

. .
All border elements are 1.

21 / 30

Pascal’s triangle (
0

0

)
= 1(

1

0

)
= 1

(
1

1

)
= 1(

2

0

)
= 1

(
2

1

)
= 2

(
2

2

)
= 1(

3

0

)
= 1

(
3

1

)
= 3

(
3

2

)
= 3

(
3

3

)
= 1(

4

0

)
= 1

(
4

1

)
= 4

(
4

2

)
= 6

(
4

3

)
= 4

(
4

4

)
= 1(

5

0

)
= 1

(
5

1

)
= 5

(
5

2

)
= 10

(
5

3

)
= 10

(
5

4

)
= 5

(
5

5

)
= 1

. .
All border elements are 1.
All inner elements equal the sum of two elements immediately above.

22 / 30

Binomial Theorem

Binomial Theorem

For all n > 0 the following holds

(1 + x)n =

(
n

0

)
+

(
n

1

)
x +

(
n

2

)
x2 + · · ·+

(
n

n − 1

)
xn−1 +

(
n

n

)
xn.

Proof The proof can run by induction, but there is a nice argument.
Multiplying through we use the rule “multiply each element with each
other”. Thus in (1 + x)(1 + x) . . . (1 + x)︸ ︷︷ ︸

n

each product xk appears as

many times as there are k-element selections from n parentheses. There
are
(n
k

)
such different k-element subsets. �

23 / 30

Combinatorial identities derived from Binomial Theorem

Binomial Theorem

For all n > 0 the following holds

(1 + x)n =

(
n

0

)
+

(
n

1

)
x +

(
n

2

)
x2 + · · ·+

(
n

n − 1

)
xn−1 +

(
n

n

)
xn.

From the Binomial theorem follows for n ≥ 0(
n

0

)
+

(
n

1

)
+

(
n

2

)
+

(
n

3

)
+ · · ·+

(
n

n − 1

)
+

(
n

n

)
= 2n .

The number of all subsets on an n-element set is 2n.

From the Binomial theorem follows for n > 0(
n

0

)
−
(

n

1

)
+

(
n

2

)
−
(

n

3

)
+ . . .− (−1)n

(
n

n − 1

)
+ (−1)n

(
n

n

)
= 0 .

The number of odd-sized subsets on an n-element set is the same as he
number of even-sized subsets.

24 / 30

Proofs “by counting”
Sometimes we have to show that there exists an element with a certain
property, but we cannot find/construct one. Such proofs are called
non-constructive.
Instead to “construct” a solution, we show by “counting” there has to be
at least one.

The pigeon-hole principle (Dirichlet’s principle)

When distributing ` + 1 (or more) objects into ` boxes, there has to be a
box with at least two objects.

26 / 30

Proofs by counting
The existence of a possibility will follow from the fact that there are too
few cases in which the possibility does not occur.

Example

We see three cars entering a tunnel, but only two cars leaving the tunnel.
This means there is one car left in the tunnel (though we do not see it).

Example

8 friends went on a 9 day vacation. Each day some triple of them went for
a trip. Show, that at least one pair of friends didn’t go together on a trip.

Proof Checking of all possibilities would take long. . .
The proof by counting is easy: In one triple there are 3 pairs, thus after 9
days there was at most 9 · 3 pairs on trips. But 9 · 3 = 27 <

(8
2

)
= 28, thus

at least one pair is missing.

Question

Are there two people on Earth with the same number of hair?

28 / 30

Example

In a drawer there are 30 pairs of black socks, 10 pairs of brown socks, and
3 pairs of white socks. How many socks we have to take (without light or
looking) to guarantee, that we have at least one pair of the same color?

“Boxes” in the Pigeon-hole principle are the three colors. While taking
four socks (not distinguishing the right or left sock), at least two of them
have to be of the same color.

Question

We have four natural numbers. Show, that among them there are two
numbers difference of which is divisible by 3.

Question

We have 3 natural numbers. Show, that among them there are two
numbers difference of which is divisible by some prime.

29 / 30

Handshaking problem

There are n people in the room, some of them shook hands. Show that
there are always at least two people who performed the same number of
handshakes.

Example

We have five natural numbers. Show that there are always two among
them, such that their sum is divisible by 9.

Proof (incorrect!) We have a total of 9 different classes modulo 9. Among
five numbers we obtain 10 different sums. Surely, there has to be at least
one sum in each class, in some class there will be at least two sums. Thus
the pair which is in class “0”, has its sum divisible by 9. �

Question

Why is the proof not correct?

Hint: try to verify the argument for the following set of five numbers:
{0, 2, 4, 6, 8}.

30 / 30

Next lecture

Chapter 5. Recurrence relations

motivation
sequences given by recurrence relations
methods of solving recurrence relations

1 / 34

Discrete mathematics

Petr Ková̌r
petr.kovar@vsb.cz

VŠB – Technical University of Ostrava

Winter term 2021/2022
DiM 470-2301/02, 470-2301/04, 470-2301/06

The translation was co-financed by the European Union and the Ministry of Education, Youth and Sports from the Operational
Programme Research, Development and Education, project “Technology for the Future 2.0”, reg. no.

CZ.02.2.69/0.0/0.0/18 058/0010212.

This work is licensed under a Creative Commons “Attribution-ShareAlike 4.0 International” license.

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

2 / 34

About this file

This file is meant to be a guideline for the lecturer. Many important pieces
of information are not in this file, they are to be delivered in the lecture:
said, shown or drawn on board. The file is made available with the hope
students will easier catch up with lectures they missed.

For study the following resources are better suitable:

Meyer: Lecture notes and readings for an
http://ocw.mit.edu/courses/electrical-engineering-and-

computer-science/6-042j-mathematics-for-computer-science

-fall-2005/readings/”(weeks 1-5, 8-10, 12-13), MIT, 2005.

Diestel: Graph theory http://diestel-graph-theory.com/

(chapters 1-6), Springer, 2010.

See also http://homel.vsb.cz/~kov16/predmety dm.php

3 / 34

Lecture overview

Kapitola 5. Recurrence relations

motivation
sequences given by recurrences
main problem
methods of solving
examples

4 / 34

5. Recurrence relations
Last chapter already mentioned than not all selections and arrangements
can be expressed in simple “closed” formulas mentioned in Section 2.
Today we mention several typical problems that we encounter when using
recursive algorithms.
We how, how the complexity of certain such algorithms can be expressed.

Typical examples of recursive algorithms or recursive approaches

merge sort
dynamic programming
using n pairs of parentheses on n + 1 terms
number of “ordered rooted trees” in chapter UTG 4

5 / 34

5.1. Motivation examples
The classic Fibonacci sequence is notoriously known.

Fibonacci sequence

A young pair of rabbits has been released on an island. The rabbits are
mature at the age of two months, after that they they raise another pair of
rabbits each month. What is the number fn of pairs of rabbits after n
months?

Clearly f1 = f2 = 1.
For n ≥ 3 is the number of pairs given by

the number of pairs in the previous months,

the number of pairs of two months age fn−2, that became mature and
can breed.

Altogether we have fn = fn−1 + fn−2 pair, if dying of age is neglected.

The solution, i.e. the formula for fn we derive at the end of the lecture.

6 / 34

Towers of Hanoi

We have three pegs and a set of discs of different sizes. All discs are on
one peg arranged according their size. The task is to move all discs to
another peg while

always one discs is moved,

never a larger disc can be on top of a smaller one.

What is the smallest number of moves Hn to move the entire tower of n
discs?

7 / 34

Towers of Hanoi

To move the largest disc, n − 1 smaller discs have to be moved to another
peg using Hn−1 moves.

We divide the total number of moves Hn into three parts

first using Hn−1 moves transfer n − 1 smaller discs on the third peg,

then using a single move transfer the largest disc to the desired peg,

finally using Hn−1 moves transfer n − 1 smaller discs on top of the
largest disc.

The total number of moves is given by the recurrence relation

Hn = 2Hn−1 + 1,

while clearly H1 = 1.

The solution, i.e. the formula for Hn we derive at the end of the lecture.

8 / 34

Bit strings without adjacent zeroes

Example

How many bit strings of length n are there, that have no two adjacent
zeroes? (important in bar codes)

Denote the number of required bit strings with n bits by an.
We distinguish, if a string of n bits end with a 0 or a 1 (assume n ≥ 3).

if the last bit is 1, then there are precisely an−1 such strings with an
additional bit 1,

if the last bit is 0, then the next-to-the-last bit has to be 1 and there
are an−2 such strings with additional bits 10 at the end.

These are all the options, therefore the total number of strings with n bits,
where no two zeroes are adjacent, is

an = an−1 + an−2.

It remains to figure out that a1 = 2, a2 = 4− 1 = 3.

At the end of the lecture we derive the formula for an.
Notice: an is similar to, yet different from the Fibonacci sequence.

9 / 34

Code words with an even number of zeroes

Example

A computer system works with keywords made from digits 0, 1, . . . , 9. A
valid code word has an even number of zeroes. How man such code words
of length n exist?

Let xn denote the number of such code words with n digits.
We distinguish if the n-th digit of a code word is 0 or no (suppose n ≥ 2).

code words with last digit not 0 are precisely 9xn−1, where the last
digit 1,2,. . . , 9 was added to some of xn−1 code words of length n− 1,

code words with last digit 0, are precisely those the are not code
words xn−1.

These are all possibilities, therefore the total of code words of length n
with an even number of zeroes is

xn = 9xn−1 + (10n−1 − xn−1) = 8xn−1 + 10n−1.

It remains to notice that x1 = 9. We search for the formula expressing xn.

10 / 34

Number of ways to parenthesize n + 1 terms with n parentheses

Example

We have an expression with n + 1 terms, priority of operation ⊕ is given by
n pairs of parentheses. Kolik existuje r̊uzných způsobů uzávorkováńı Cn?

C0 = 1, since x1 is unique.
C1 = 1, since (x1 ⊕ x2) is unique.
C2 = 2, since ((x1 ⊕ x2)⊕ x3), (x1 ⊕ (x2 ⊕ x3)) are two possibilities.
C3 = 5, there are 5 ways (((x1 ⊕ x2)⊕ x3)⊕ x4), ((x1 ⊕ (x2 ⊕ x3))⊕ x4),
((x1 ⊕ x2)⊕ (x3 ⊕ x4)), (x1 ⊕ ((x2 ⊕ x3)⊕ x4)), (x1 ⊕ (x2 ⊕ (x3 ⊕ x4))).

In general the most our parenthesis ha only one operator “⊕”. Notice the
operation is between two smaller terms, there are n different numbers of
terms to the left of the operator in the outer parenthesis.

Cn =
n−1∑
k=0

CkCn−k−1

Recurrence relation Cn =
∑n−1

k=0 CkCn−k−1 appears in a number of
different real life problems, so called. Catalan numbers.

11 / 34

5.2. Sequences give by recurrence relations
Recall:
Sequences are given by

a list of first elements: 1, 3, 7, 15, 31, . . .

a recurrence relation: an = 2an−1 + 1, a0 = 1

a formula for n-th term: an = 2n − 1

Now we deal with recurrence relations, every subsequent term can be
evaluated based on previous terms.

Main problem

Find the formula for the n-th term.

if it exists,

if it is possible,

and if we can do so.

12 / 34

Linear homogeneous recurrence relations of order k with constant
coefficients

Linear homogeneous recurrence relations of order k with constant
coefficients is a sequence given by a recurrence relation of the form

an = c1an−1 + c2an−2 + · · ·+ ckan−k ,

where c1, c2, . . . , ck are real numbers, ck 6= 0.

Let us explore the definition

it is linear, because it is a linear combination of the previous terms,

it is homogeneous, because there is no term without ai ,

it is of order k , because an is given by k previous terms,

it has constant coefficients, because each coefficient is a constant
independent on n.

For a unique description of the sequence given by a recurrence relation of
order k we have to provide k first terms.

13 / 34

Fibonacci sequence

Fibonacci sequence fn = fn−1 + fn−2 is a linear homogeneous recurrence
relation of second order with constant coefficients.
First two terms are f1 = 1, f2 = 1.

Bit strings without adjacent zeroes

Sequence of the number of bit strings of length n, which have no adjacent
zeroes an = an−1 + an−2, is a linear homogeneous recurrence relation of
order 2 with constant koeficients.
First two terms are a1 = 2, a2 = 3.

Hanoi tower

Sequence of the number of steps Hn necessary to move the entire tower of
n discs Hn = 2Hn−1 + 1 is a linear recurrence relation of the first order
with constant coefficients, which is not homogeneous.
First term is H1 = 1.

14 / 34

Code words with an even number of zeroes

The number of codewords made from digits 0, 1, . . . , 9, where each
codeword has an even number of zeroes is a linear recurrence relation of
the first order xn = 8xn−1 + 10n−1. First term is x1 = 9.
This relation is not homogeneous, since 10n−1 is not a coefficient at ai .
This relation has not constant coefficients, since term 10n−1 depends on n.

Catalan numbers

The sequence of Catalan numbers Cn =
∑n−1

k=0 CkCn−k−1 is given by a
homogeneous recurrence relation. First terms are C1 = 1, C2 = 2.
This recurrence relation is not linear, because we multiply terms Ck , Cn−k
and has no fixed order, because the number of terms grows with n.

Example

Recurrence relation an = an−1 · an−2 is a homogeneous recurrence relation
of second order with constant coefficients. First two terms are a1 = 1,
a2 = 2.
This recurrence relation is not linear, since we multiply terms an−1, an−2.

15 / 34

5.3. Methods for solving recurrence relations

Main problem of solving recurrence relations

If a linear recurrence relation of (small) order k with constant coefficients
is given by a recurrence relation and sufficient first terms, we can “solve”
this recurrence relation. This means, we find a formula for the n-th term,
which evaluates an without the knowledge of previous terms.

We provide a general framework:

first we set up a so called characteristic equation,

we find the roots of the characteristic equation,

based on the roots we set up a general solution,

based on the value of the given first terms of the sequence we
evaluate coefficients of the general solution.

We start with simple examples.

16 / 34

Characteristic equation and its roots

One can show (e.g. using so called generating functions), that the solution
of the linear homogeneous recurrence relations with constant coefficients
will have the form an = rn, where r is a constant.
Substituting into the recurrence relation we obtain

an = c1an−1 + c2an−2 + · · ·+ ckan−k

rn = c1rn−1 + c2rn−2 + · · ·+ ck rn−k

rk = c1rk−1 + c2rk−2 + · · ·+ ck rk−k

0 = rk − c1rk−1 − c2rk−2 − · · · − ck .

The last equation is the characteristic equation of the recurrence relation.
Clearly, the solution of this equation in variable r are the roots ri . We call
them characteristic roots.

17 / 34

Generalization of the solution

We split the solution of linear homogeneous recurrence relation with
constant coefficients into several steps.
The next step includes solutions to a larger family of recurrence relations:

first we show how a general form of the solution of a linear
homogeneous recurrence relation of order 2 with constant coefficients
looks like,

I if there are two distinct real characteristic roots,
I if there are two identical real characteristic roots.

Next we show a general form of the solution of a linear homogeneous
recurrence relation of order k with constant coefficients.
Finally we provide a general form of the solution of a linear recurrence
relation of order k with constant coefficients.

Theorem

Let c1, c2 be two real numbers. If the characteristic equation
r 2 − c1r − c2 = 0 has two distinct (real) roots r1, r2, then the solution of
the recurrence relation an = c1an−1 + c2an−2 is of the form
an = α1rn1 + α2rn2 , for n = 0, 1, 2,

There is a stronger claim, which we omit here.

18 / 34

Example

Solve the recurrence relation an = an−1 + 2an−2, where a0 = 2, a1 = 7.

We follow the steps suggester earlier:
We expect the solution of the form an = rn. Substituting to the recurrence
relation we get the characteristic equation

r 2 − r − 2 = 0

(r + 1)(r − 2) = 0.

Characteristic roots are r1 = 2, r2 = −1. The general solution has the form

an = α12n + α2(−1)n.

Substituting a0, a1 we get two equations in two variables α1, α2.

a0 = 2 = α1 · 1 + α2 · 1
a1 = 7 = α1 · 2 + α2 · (−1)

Solving the equation yields α1 = 3, α2 = −1, thus the general solution is

an = 3 · 2n − 1 · (−1)n.

19 / 34

Indeed,

the formula an = 2 ·1 2n − 1(−1)n for n = 0, 1, 2, . . .

the recurrence relation an = an−1 + 2an−2, where a0 = 2, a1 = 7

describe the same sequence:

2, 7, 11, 25, 47, 97, 191, 385, 767, 1 537, 3 071, . . .

Now we examine the case with two identical characteristic roots.

Theorem

Let c1, c2 be two real numbers, where c2 6= 0. If the characteristic
equation r 2 − c1r − c2 = 0 has a double (real) root r0, then the solution of
the recurrence relation an = c1an−1 + c2an−2 is of the form
an = α1rn0 + α2nrn0 , for n = 0, 1, 2,

Example

Solve the recurrence relation an = 10an−1 − 25an−2, where a1 = 3, a2 = 5.

20 / 34

Example

Solve the recurrence relation an = 10an−1 − 25an−2, where a1 = 3, a2 = 5.

We follow the same steps:
We expect the solution of the form an = rn. Substituting to the recurrence
relation we get the characteristic equation

r 2 − 10r + 25 = 0

(r − 5)(r − 5) = 0.

Characteristic roots are r1 = r2 = 5, we denote r0 = 5. The general
solution has the form

an = α15n + α2n5n.

Substituting a0, a1 we get two equations in two variables α1, α2.

a0 = 3 = α1 · 1 + 0

a1 = 5 = α1 · 5 + α2 · 5

Solving the equation yields α1 = 3, α2 = −2, thus the general solution is

an = 3 · 5n − 2n5n.

21 / 34

We found the formula for the n-th term

an = 3 · 5n − 2n5n describes the same sequence as

the recurrence relation an = 10an−1 − 25an−2, where a1 = 3, a2 = 5.

Sequence

3, 5,−25,−375,−3 125,−21 875,−140 625, . . .

Solution of linear recurrence relations can be generalized to higher orders.

Theorem

Let c1, c2, . . . , ck be k real numbers. If the characteristic equation
rk − c1rk−1 − c2rk−2 − · · · − ck = 0 has k distinct (real)
roots r1, r2, . . . , rk , then the solution of the recurrence relation
an = c1an−1 + c2an−2 + · · ·+ ckan−k is of the form
an = α1rn1 + α2rn2 + · · ·+ αk rnk , for n = 0, 1, 2,

22 / 34

Example

Solve the recurrence relation an = 4an−1 − an−2 − 6an−3, where a0 = 6
a1 = 5, a2 = 13.

We get the characteristic equation

r 3 − 4r 2 + r + 6 = 0.

Characteristic roots are r1 = −1, r2 = 2, r3 = 3. The general solution has
the form

an = α1(−1)n + α22n + α33n.

Substituting a0, a1, a2 we get three equations in three variables α1, α2, α3.

a0 = 6 = α1 + α2 + α3

a1 = 5 = −α1 + 2α2 + 3α3

a2 = 13 = α1 + 4α2 + 9α3

Solving the equation yields α1 = 2, α2 = 5, α3 = −1, thus the general
solution is

an = 2 · (−1)n + 5 · 2n − 3n.

23 / 34

Solving general linear homogeneous recurrence relations with
constant coefficients

Theorem

Let c1, c2, . . . , ck be k real numbers. If the characteristic equation
rk − c1rk−1 − c2rk−2 − · · · − ck = 0 has t distinct roots r1, r2, . . . , rt with
multiplicities m1,m2, . . . ,mt , then the solution of the recurrence relation
an = c1an−1 + c2an−2 + · · ·+ ckan−k for n = 0, 1, 2, . . . has the form

an = (α1,1 + α1,2n + · · ·+ α1,m1nm1−1)rn1 +

+(α2,1 + α2,2n + · · ·+ α2,m2nm2−1)rn2 +

+ · · ·+ (αt,1 + αt,2n + · · ·+ αt,mt n
mt−1)rnt

To find the solution, we
1 get the characteristic equation,
2 find characteristic roots (if possible),
3 set up the general form of the solution with coefficients αi ,j ,
4 substitute k first (known) terms,
5 solve the system of equations with k variables,
6 set up the general solution.

24 / 34

Solving general linear non-homogeneous recurrence relations with
constant coefficients
So far only homogeneous recurrence relations . . .

Solving non-homogeneous recurrence relations in two steps:

general solution of the associated homogeneous recurrence relation,

one particular solution of the non-homogeneous recurrence.

Theorem

Let c1, c2, . . . , ck be k real numbers, let F (n) be a function not identically
zero.
If a

(p)
n is a particular solution to the non-homogeneous linear recurrence

relations with constant coefficients

an = c1an−1 + c2an−2 + · · ·+ ckan−k + F (n),

then every solution is of the form a
(p)
n + a

(h)
n , where a

(h)
n is the general

solution of the associated homogeneous recurrence relation

an = c1an−1 + c2an−2 + · · ·+ ckan−k .

25 / 34

Example

Show that a
(p)
n = −n − 2 is a (particular) solution of the recurrence

relation an = 2an−1 + n.

To verify a solution is easy: substitute and compare:
an = 2an−1 + n

−n − 2 = 2 (−(n − 1)− 2) + n

−n − 2 = −n − 2.

Notice: the solution has the form a
(p)
n = cn + d .

Example

Show that a
(p)
n = c · 7n is the form of a (particular) solution of the

recurrence relation an = 5an−1 − 6an−2 + 7n.

Again substitute and compare:
an = 5an−1 − 6an−2 + 7n

c · 7n = 5c · 7n−1 − 6c · 7n−2 + 7n

c =
49

20
.

26 / 34

Theorem

Let c1, c2, . . . , ck be k real numbers, let F (n) be a function not identically
zero.
Suppose a

(p)
n is a solution of the non-homogeneous linear recurrence

relations with constant coefficients

an = c1an−1 + c2an−2 + · · ·+ ckan−k + F (n),

where F (n) = (btn
t + bt−1nt−1 + · · ·+ b1n + b0)sn.

1 When s is not a root of the characteristic equation of the associated

homogeneous linear recurrence relations, then a
(p)
n has the form

(ptn
t + pt−1nt−1 + · · ·+ p1n + p0)sn.

2 When s is a root with multiplicity m of the characteristic equation of

the associated homogeneous linear recurrence relations, then a
(p)
n has

the form
nm(ptn

t + pt−1nt−1 + · · ·+ p1n + p0)sn.

27 / 34

Example

Solve the recurrence relation an = 2an−1 + n.

First we find the solution of the associated linear homogeneous recurrence
relation

an = 2an−1.

The characteristic equation rn = 2rn−1 has a nonzero root r = 2.

Therefore the general solution has the form a
(h)
n = α2n.

Substituting into the associated linear homogeneous recurrence relation we
get

α2n = 2 · α2n−1.

We evaluate α = 1, therefore the solution of the associated linear
homogeneous recurrence relation is a

(h)
n = 1 · 2n = 2n.

Next we find a particular solution of the original non-homogeneous linear
recurrence relation. By the previous theorem is

a
(p)
n = n(cn + d)2n,

since base 2 is the root of the characteristic equation.

28 / 34

To find the constants we substitute the particular solution

a
(p)
n = n(cn + d)2n into the recurrence relation an = 2an−1 + n2n.

We get

n(cn + d)2n = 2 · (n − 1)(c(n − 1) + d)2n−1 + n2n

(cn2 + dn)2n = 2 · (c(n − 1)2 + d(n − 1))2n−1 + n2n

(cn2 + dn)2n = (cn2 − 2cn + c + dn − d + n)2n

dn = (−2c + d + 1)n + (c − d).

Comparing coefficients of the polynomials at n1 and n0 we get a system of
linear equations

d = −2c + d + 1

0 = c − d .

The solution is c = 1
2 , d = 1

2 and thus the particular solutions is

a
(p)
n = n(1

2 n + 1
2)2n = (n2 + n)2n−1.

The solution of the given recurrence relation is

an = a
(h)
n + a

(p)
n = 2n + (n2 + n)2n−1 = (n2 + n + 2)2n−1.

29 / 34

5.4. Solving the motivation examples from the first section

Fibonacci sequence

Solve the recurrence relation fn = fn−1 + fn−2, where f0 = 0, f1 = 1.

We obtain the characteristic equation r 2 − r − 1 = 0.
Characteristic roots are r1 = (1 +

√
5)/2, r2 = (1−

√
5)/2. The general

solution has the form

fn = α1

(
1 +
√

5

2

)n

+ α2

(
1−
√

5

2

)n

.

Substituting f0 = 0, f1 = 1 we get two equations in two variables α1, α2.

0 = α1 · 1 + α2 · 1

1 = α1 ·

(
1 +
√

5

2

)
+ α2 ·

(
1−
√

5

2

)
Solving the system yields α1 =

√
5

5 , α2 = −
√

5
5 , thus, the general solution is

an =

√
5

5
·

(
1 +
√

5

2

)n

−
√

5

5
·

(
1−
√

5

2

)n

.

30 / 34

Towers of Hanoi

Solve the recurrence relation Hn = 2Hn−1 + 1, where H1 = 1.

It is not a homogeneous linear recurrence relation.
On the other hand it is a first order recurrence, we can obtain the solution
differently.
Notice

Hn = 2Hn−1 + 1

= 2(2Hn−2 + 1) + 1 = 22Hn−2 + 2 + 1

= 22(2Hn−3 + 1) + 2 + 1 = 23Hn−2 + 22 + 2 + 1
...

= 2n−1H1 + 2n−2 + 2n−3 + · · ·+ 2 + 1

= 2n−1 + 2n−2 + 2n−3 + · · ·+ 2 + 1

= 2n − 1.

The solution of the linear non-homogeneous recurrence relation of the
Towers of Hanoi is

Hn = 2n − 1.

31 / 34

Bit strings with no adjacent zeroes

Solve the recurrence relation an = an−1 + an−2, where a1 = 2, a2 = 3.

The characteristic equation is r 2 − r − 1 = 0.
Characteristic roots are r1 = (1 +

√
5)/2, r2 = (1−

√
5)/2. The general

solution has the form

an = α1

(
1 +
√

5

2

)n

+ α2

(
1−
√

5

2

)n

.

Substituting a1 = 2, a2 = 3 we get two equations in two variables α1, α2.

2 = α1 ·

(
1 +
√

5

2

)
+ α2 ·

(
1−
√

5

2

)

3 = α1 ·

(
1 +
√

5

2

)2

+ α2 ·

(
1−
√

5

2

)2

Solving the system yields α1 = 5+
√

5
10 , α2 = 5−

√
5

10 , the general solution is

an =
5 +
√

5

10
·

(
1 +
√

5

2

)n

+
5−
√

5

10
·

(
1−
√

5

2

)n

.

Example

32 / 34

Code words with an even number of zeroes

Solve the recurrence relation xn = 8xn−1 + 10n−1, where x1 = 9.

This linear non-homogeneous recurrence relation we did not learn how to
solve, its coefficients are not constant.

However, the solution is

an =
1

2
· 8n +

1

2
· 10n.

33 / 34

Merge sort

Merge sort is a well known algorithm for sorting a sequence of n numbers.
It is a recursive algorithm.
Knowing the algorithm, it is easy to see, that the number of comparisons
(and operations) Mn to sort a sequence of n terms can be bounded by a
recurrence relation Mn = 2Mn−1 + n, where M1 = 1.

This non-homogeneous linear recurrence relation we cannot solve now, its
coefficients are not constant.

HOwever it can be shown, that the solution describing the number of steps
of the Merge sort algorithm, is a function of complexity

Mn = O(n log n).

34 / 34

Next lecture

Chapter 6. Congruences and modular arithmetics

motivation

division and divisibility

linear congruences in one variable

methods of solving

examples and applications

1 / 40

Discrete mathematics

Petr Ková̌r
petr.kovar@vsb.cz

VŠB – Technical University of Ostrava

Winter term 2021/2022
DiM 470-2301/02, 470-2301/04, 470-2301/06

The translation was co-financed by the European Union and the Ministry of Education, Youth and Sports from the Operational
Programme Research, Development and Education, project “Technology for the Future 2.0”, reg. no.

CZ.02.2.69/0.0/0.0/18 058/0010212.

This work is licensed under a Creative Commons “Attribution-ShareAlike 4.0 International” license.

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

2 / 40

About this file

This file is meant to be a guideline for the lecturer. Many important pieces
of information are not in this file, they are to be delivered in the lecture:
said, shown or drawn on board. The file is made available with the hope
students will easier catch up with lectures they missed.

For study the following resources are better suitable:

Meyer: Lecture notes and readings for an
http://ocw.mit.edu/courses/electrical-engineering-and-

computer-science/6-042j-mathematics-for-computer-science

-fall-2005/readings/”(weeks 1-5, 8-10, 12-13), MIT, 2005.

Diestel: Graph theory http://diestel-graph-theory.com/

(chapters 1-6), Springer, 2010.

See also http://homel.vsb.cz/~kov16/predmety dm.php

3 / 40

Lecture overview

Chapter 6. Congruences and modular arithmetics

motivation

division and divisibility

linear congruences in one variable

methods of solving

examples and applications

4 / 40

6. Congruences and modular arithmetics
Modern electronic communication makes use of coding theory and
cryptography.

coding – storing or transfer of data with possible loss or disruption of
the data; we require to minimize the possible loss
cryptography – storing or transfer of data, which has to stay hidden
from or unreadable for third parties

Using results of Number Theory and Grout Theory.

Exampkles

CD storage format, mp3
digital phone calls
bar codes, ISBN
RSA cryptosystem

Now follows a brief introduction to Number Theory used in later sections.
We will be mostly using integers on a limited set (8, 16, 32 bits . . .).

5 / 40

Motivation examples

First we show/recall counting “mod n” and we learn to answer following
questions:

Example

A devise read a UPC bar code. Is 041331021641 a valid UPC bar code?

Example

We wrote an ISBN book number 0-03-001559-5. Is this a valid ISBN code?

Later we show some errors can be detected and some can be corrected.

Example

We know the fourth digit of the UPC bar code 041331021641 is wrong,
what is the correct digit?

Example

We know the ISBN book code 0-03-001559-5 is wrong. We know we often
swap adjacent digits while writing. Can you derive the correct ISBN code?

6 / 40

Divisibility

Divisibility

Let a, b be two integers. We say a divides b, if there exists an integer k ,
such that a · k = b, we write a | b.
If not, we say a does not divide b, we write a - b.
Integer a is the divisor of b and b is a multiple of a.

Example

It holds 3 | 6, 3 | 15.
Also it holds 2 | −6, 5 | −5 a 7 | 0.
However 6 - 3, 2 - 5, 4 - −6, 0 - 1.
It holds that 0 | 0, while 0 = k0, for an arbitrary k ∈ Z.
We can’t divide by zero, but zero can be a divisor, however a divisor of
zero only.

7 / 40

Operation vs. relation

Division is an operation Z× (Z \ {0})→ Q.
The result of the division of an arbitrary number by a nonzero number is
the resulting (third) number.

Example

It holds 18 : 3 = 6, 0 : 7 = 0, 18 : 4 = 9
2 .

Divisibility is a relation |⊂ Z× Z.
Two number (in the given order) are or are not related – one is the divisor
of the second or not.

Example

3 divides 18.
7 divides 0.
4 does not divide 18.

8 / 40

Properties of divisibility

Theorem

Let b, c be integers and let a be a nonzero integer. Plat́ı

If a | b and a | c, then a | (b + c).

If a | b then a | bc for all integer c .

If a | b and b | c , then a | c.

Examples

Because 3 | 12, then 3 | 12c for every integer c .
(notice, not only 12c , but also 12c + 3, 12c + 6, and 12c + 9)

Corollary

Let b, c be integers and let a be a nonzero integer. If a | b and a | c , then
a | rb + sc for arbitrary integers r , s.

9 / 40

The Quotient Remainder Theorem

The Quotient Remainder Theorem

For very integer a and every natural number b there exist unique integers
q and r , such that a = qb + r , where 0 ≤ r < m.

Integer q is the quotient and non negative integer r is the remainder when
dividing a by b.

Example

For a = 111 and b = 9 holds:

111 = 11 · 9 + 12

111 = 12 · 9 + 3 must hold 0 ≤ r < 9

111 = 13 · 9− 6

Example

It holds 7 | 21, therefore 21 = 3 · 7 + 0, remainder is r = 0.
Since 8 - 21, therefore 21 = 2 · 8 + 5, remainder is r = 5 6= 0.

10 / 40

Integer division with a remainder

By the Quotient Remainder Theorem we can to each pair of integers a, b
(b > 0) assign an integer quotient and a remainder after integer division.

Operation integer division with a remainder

Let a, b be two integers.
In the equality a = q · b + r given gy the Quotient Remainder Theorem
is a the dividend, b is the divisor, q is the integer quotient and r is the
remainder after integer division of a by b.
The following notation is used to denote the two integer operations of
quotient and remainder.

q = a div b, r = amod b

Example

For a = 111 and b = 9 from the previous example holds:

111 div 9 = 12, 11mod 9 = 3

Notice, “mod” written inside a parenthesis has a different meaning (later).

11 / 40

Congruences

Let a, b be integers, let m be a positive integer. We say a, b are congruent
modulo m, if both yield the same remainder after dividing by m. We write

a ≡ b (mod m).

Otherwise we write
a 6≡ b (mod m).

Using the “mod” operation introduced earlier we can write

a ≡ b (mod m) ⇔ amodm = bmodm.

Example

It holds 7 ≡ 1 (mod 2), since 7 is odd.
It holds 12 ≡ 0 (mod 2), since 12 is even.
It holds 61 725 ≡ 0 (mod 3), since 61 725 is a multiple of 3.

12 / 40

Equivalent formulations for congruence of two numbers

Lemma

Let a, b be integers, let m be a positive integer. Then a ≡ b (mod m) if
an only if m | (b − a).

Example

It holds 8 298 ≡ 8 228 (mod 7), because the difference
8 298− 8 228 = 70 is a multiple of 7.

Lemma

Let a, b be integers, let m be a positive integer. Then a ≡ b (mod m) if
and only if there exists an integer k such that b = a + km.

Example

Evaluate 748 549mod 7 (the remainder after dividing 748 549 by 7).

It holds 748 549 = 700 000 + 48 549 ≡ 48 549 = 49 000− 451 ≡ −451 =
−490 + 39 ≡ 39 = 35 + 4 ≡ 4 (mod 7).

13 / 40

Properties of congruences

Congruences with the same modulus can be summed and multiplied.

Theorem

Let a, b, c , d be integers, let m be a positive integer.
If a ≡ b (mod m), c ≡ d (mod m), then also a + c ≡ b + d (mod m),
ac ≡ bd (mod m).

Example

Because 7 ≡ 12 (mod 5) a −7 ≡ 3 (mod 5), then also
7− 7 ≡ 12 + 3 (mod 5) a 7 · (−7) ≡ 12 · 3 (mod 5).

Notice, the reverse implication does not hold!

Example

It holds 3 + 6 ≡ 7 + 5 (mod 3), but 3 6≡ 7 (mod 3) nor 6 6≡ 5 (mod 3).
Similarly 10 · 6 ≡ 4 · 15 (mod 5), but 10 6≡ 4 (mod 5) nor 6 6≡ 15 (mod 5).

14 / 40

Modular arithmetics

We can sum and multiply remainders, when dividing by the same divisor
(or modulus). The result is expressed again as a remainder modulo m.

Definition

Let a, b be integers. We introduce operations “+m” and “·m” using the
usual sum and product and the “mod” operation.

a +m b = (a + b)modm, a ·m b = (a · b)modm.

This can also be introduces as counting with congruence classes modulo m.

Example

The sum of two even integers or the sum of odd two integers is an even
integer.

a +m b = (a + b)mod 2.

Taking two representatives 0 and 1 of the congruence classes S and L

S +m S = S , L +m L = S , L +m S = L, S +m L = L.

15 / 40

Modular arithmetics - continued

Such operations have “nice” properties. They are

closed on the set {0, 1 . . . ,m − 1} (under operation modulo m),

commutative, a +m b = b +m a, a ·m b = b ·m a,

asociative,

a +m (b +m c) = (a +m b) +m c , a ·m (b ·m c) = (a ·m b) ·m c ,

and distributive with respect to addition,

a ·m (b +m c) = a ·m b +m a ·m c ,

there exist opposite numbers −a = m − a.

However inverses might not exist!

16 / 40

Greatest common divisor and least common multiple

A prime is such positive integer that has two positive divisors: one and
itself.

Definition

Let a, b be two integers. Greatest common divisor of a, b is such a
positive common divisor m of a, b, which is divisible by each other
common divisor. We denote it GCD(a, b) or simply (a, b). Moreover, if
GCD(a, b) = 1, we say a, b are coprime.

Examples

Numbers 91 and 77 are not coprime, GCD(91, 77) = 7.
Numbers 92 and 77 are coprime, GCD(92, 77) = 1.

We can have a set of mutually coprime numbers.

Finding a prime factorization, or verifying that a certain integer is a prime,
is a difficult task.

17 / 40

Euclid’s algorithm

IS an efficient way to find the GCD of two positive integers a, b.

easy to implement,
no need for prime factorization.

Euklid̊uv algoritmus

Let a, b be two positive integers. We divide a by b in modular arithmetic
with a remainder (using the Quotient Remainder Theorem) and proceed
repeating this process, until the remainder is zero.

a = bq1 + r1

b = r1q2 + r2

r1 = r2q3 + r3
...

rn−2 = rn−1qn−1 + rn

rn−1 = rnqn + 0

The last non-zero remainder rn is the greatest common divisor.

18 / 40

Example

Find the greatest common divisor of 414 ans 662.

We denote a = 414, b = 662. (It is better to denote a = 662, b = 414.)

Proceed by the Euclid’s algorithm:

414 = 662 · 0 + 414

662 = 414 · 1 + 248

414 = 248 · 1 + 166

248 = 166 · 1 + 82

166 = 82 · 2 + 2

82 = 2 · 41 + 0

The greatest common divisor (414, 662) = 2.

19 / 40

Euclid’s algorithm – implementation

Input are two positive integers a, b. Repeatedly we divide in modular
arithmetic with a remainder.

Euclid’s algorithm

int a,b; // positive integers

x = a; // dividend

y = b; // divisor

while (y<>0) {

r = x mod y; // evaluate the remainder r

x = y; // the divisor becomes the dividend

y = r; // the remainder becomes the divisor

}

return x; // (a,b) last non-zero remainder

Variable x holds the last non-zero remainder, which is the greatest
common divisor of a, b.

20 / 40

Further use of Euclid’s algorithm

Euclid’s algorithm work not only for integers but on any set with two
(nice) operations.

dividing polynomials

for so called Gaussian integers

The following theorem states that the greatest common divisor of a,b can
be expressed as a linear combination of a, b.

Bézout’s Theorem

Let a, b be positive integers. There exists integers r , s such that
GCD(a, b) = ra + sb.

Bézout’s Theorem provides a nice tool to solve certain problems expressed
by congruences.

Euclid’s algorithm can be easily extend to evaluate the coefficients r , s in
the Bézout’s equality.

21 / 40

Example

We have shown that the greatest common divisor of 414 and 662 is 2.
Find the Bézout’s coefficients r , s, so that 2 = r · 414 + s · 662.

Using the Euclid’s algorithm we got:

662 = 414 · 1 + 248

414 = 248 · 1 + 166

248 = 166 · 1 + 82

166 = 82 · 2 + 2

82 = 2 · 41 + 0

Now from the next-to-the last equation express GCD(414, 662) and
backward substitutions.

2 = 166− 2 · 82

2 = 166− 2 · (248− 166 · 1) = (−2) · 248 + 3 · 166

2 = (−2) · 248 + 3 · (414− 248 · 1) = 3 · 414 + (−5) · 248

2 = 3 · 414 + (−5) · (662− 414 · 1) = 8 · 414 + (−5) · 662

The coefficients are r = 8, s = −5.

22 / 40

The following statements follow by the Bézout’s Theorem

Theorem

Let a, b, c be positive integers. If a | bc and (a, b) = 1, then a | c .

In congruences we can cancel by numbers coprime with modulus m.

Theorem

Let a, b, c be integers and m a positive integer. If ac ≡ bc (mod m) and
(m, c) = 1, then a ≡ b (mod m).

In congruences we can cancel by common divisors of both sides and
the modulus m.

Theorem

Let a, b, c be integers and m a positive integer. If ac ≡ bc (mod cm),
then a ≡ b (mod m).

We use these theorems in the last part of this lecture.

23 / 40

Linear congruences

Definition

Let a, b be integers, let m be a positive integer, and let x be a variable.
Congruence

ax ≡ b (mod m)

is a linear congruence in one variable.

To solve a congruence is to find all values of x , for which the congruence
holds.

Example

Solution of the congruence x ≡ 1 (mod 2) are (precisely) all odd integers.
Solution of the congruence x ≡ 4 (mod 7) are integers x = 7k + 4, k ∈ Z.
Solution of the congruence 3x ≡ 0 (mod 7) are integers x = 7k , k ∈ Z.
Solution of the congruence 3x ≡ 4 (mod 7) are integers x = 7k + 6,
k ∈ Z.
Congruence 3x ≡ 1 (mod 6) has no solution.

Now we show how to find the solutions, provided it exists.

24 / 40

Solving linear congruences

For solving congruences we use (similarly as for equations) so called
inverses modulo m.

Definition

Let a be an integer and let m be a positive integer, where m > 1. The
integer a is the inverse to a modulo m, if a · a ≡ 1 (mod m).

Example

Number 3 is inverse to 5 modulo 7, because 3 · 5 ≡ 1 (mod 7).
Number 3 is inverse to itself modulo 8, because 3 · 3 ≡ 1 (mod 8).
Number 3 is inverse to 7 modulo 10, because 3 · 7 ≡ 1 (mod 10).
Number 8 has no inverse modulo 10, since 8 · x is even, 8 · x 6≡ 1 (mod 10).

The following theorem shows, when inverses modulo m exist.

Theorem

Let a be an integer, let m be a positive integer, m > 1. If a, m are coprime,
then there exists the inverse a of a modulo m and is unique modulo m.

The proof is constructive, it provides a way to find the inverse a to a.

25 / 40

Theorem

Let a be an integer, let m be a positive integer, where m > 1. If a, m are
coprime, then there exists the inverse a of a modulo m and is unique
modulo m.

Proof: Since a, m are coprime, then by Bézout’s Theorem exist integers r ,
s, such that

r · a + s ·m = 1.

This implies

r · a + s ·m ≡ 1 (mod m)

r · a ≡ 1 (mod m)

Hence, r is the inverse a modulo m, thus a = r .
We wont prove uniqueness here. �

A stronger claim holds also: if GCD(a,m) > 1, then no inverse to a
modulo m exists.

26 / 40

Example

Because (3, 7) = 1, we can write 1 = 5 · 3− 2 · 7 ≡ 3 · 5 (mod 7).
Number 5 is inverse to 3 modulo 7, thus 3 = 5.

Notice, if a is not coprime to modulus m, no inverse can exist!

Example

Take 14, 6. Because (14, 6) = 2, by Bézout’s Theorem follow
2 = 1 · 14− 2 · 6 and no such smaller integer exist.
Therefore, for no number a can hold 14a ≡ 1 (mod 6).

27 / 40

Solving linear congruences

Now we can solve linear congruences in one variable analogously to solving
linear equations.

Example

Find all solutions of the linear congruence 3x ≡ 4 (mod 7).

First we find the inverse to 3 modulo 7. By previous example 3 = 5.
We multiply both sides of the congruence by the inverse 5. We get

5 · 3x ≡ 5 · 4 (mod 7)

x ≡ 20 (mod 7)

x ≡ 6 (mod 7)

The solution are all integers, that have remainder 6 when dividing by 7.
The solution is x = 7k + 6, where k ∈ Z.

The most toilsome part is to find the inverse modulo m.

28 / 40

Manipulation and simplification of congruences

Let a, b, c , d be integers and let m be a positive integer.
Let a ≡ b (mod m), c ≡ d (mod m) be congruences.

We can add congruences with the same modulus.

a + c ≡ b + d (mod m)

We can multiply congruences with the same modulus.

ac ≡ bd (mod m)

We can multiply both sides of a congruence by the same integer c .

ac ≡ bc (mod m)

We can cancel in congruences by c coprime with the modulus, thus
for (c ,m) = 1 is

ac ≡ bc (mod m) ⇒ a ≡ b (mod m).

We can cancel in congruences by c = GCD(a, b,m)

ac ≡ bc (mod mc) ⇒ a ≡ b (mod m).

These manipulations allow to simplify and solve linear congruences.

29 / 40

Example

Find the solution of the congruence 5x ≡ 2 (mod 13) and verify it.

Using 5 = 8 we get x ≡ 16 (mod 13), therefore x = 13t + 3, t ∈ Z.

Another solution: we add modulus 13 to the right side 5x ≡ 2 + 13
(mod 13). Cancelation by 5 yileds x ≡ 3 (mod 13), thus x = 13t + 3,
t ∈ Z.

Verification? Substitute 5(13t + 3) ≡ 5 · 13t + 15 ≡ 0t + 2 (mod 13).

Example

Find the solution of the congruence 3x ≡ 2 (mod 15).

Congruence has no solution, because (3, 15) = 3, and can’t cancel by 3.

Example

Find the solution of the congruence 3x ≡ 6 (mod 15).

We cancel both sides and modulus by 3. We get x ≡ 2 (mod 5).
This conguence tha the solution x = 5t + 2, t ∈ Z, because (3, 15) = 3.
We canceled both sides and the modulus by 3.

30 / 40

Chinese Remainder Theorem

The following theorem states, that there is a unique solution to a system
of congruences with pairwise coprime moduli.

Chinese Remainder Theorem

Let m1,m2, . . . ,mn be coprime positive integers greater than one. Let
a1, a2, . . . , an be integers. The system of congruences

x ≡ a1 (mod m1)

x ≡ a2 (mod m2)
...

x ≡ an (mod mn)

Has a unique solution modulo m1 ·m2 · · ·mn.

Due problems solved in ancient manuscripts is the theorem called “Chinese
Remainder Theorem”.

31 / 40

The proof of the theorem is constructive, however the solution can be
found using manipulations backward substitution of congruences.

Example

Find the solution of the system of congruences

x ≡ 1 (mod 5)

x ≡ 2 (mod 6)

x ≡ 3 (mod 7)

Based on the theorems above we get the solution of the first congruence

x ≡ 1 (mod 5)

to be x = 1 + 5t, where t ∈ Z.
This solution we substitute the the second congruence

1 + 5t ≡ 2 (mod 6)

5t ≡ 1 (mod 6)

−t ≡ 1 (mod 6)

t ≡ −1 = 5 (mod 6)

32 / 40

The solution of the congruence

t ≡ 5 (mod 6)

is t = 6u + 5, where u ∈ Z.
Substituting do x = 1 + 5t we get the solution of the first two congruences

x = 1 + 5(6u + 5) = 30u + 26, u ∈ Z,

which can be substituted to the third congruence. We get

30u + 26 ≡ 3 (mod 7)

2u − 2 ≡ 3 (mod 7)

4 · 2u ≡ 4 · 5 (mod 7)

u ≡ 6 (mod 7).

The solution is u = 7v + 6, where v ∈ Z, which we substitute to the
solution of the first two congruences.

x = 30u + 26 = 30(7v + 6) + 26 = 210v + 206, v ∈ Z.

We get the solution of the system of three congruences.

33 / 40

Application of congruences – hash functions

When storing a large database we can add a new entry x to the end of the
database. This is cumbersome or searching the database – we have to
search the whole database.
Of there are m entries, we need O(m) steps.

Hash function: We estimate the expected database size m and allocate the
corresponding memory. New entry with key k we enter to position h(k),
where

h(k) = k modm,

or the next appropriate free place after h(k).
Instead of searching whole database, we start searching at position h(k).

Example

Students at a university with 15 000 students, key is the social security
number.

Possible hash function h(k) = security number mod 15 000.

34 / 40

Application of congruences – Pseudorandom numbers

A truly random number is computationally “expensive”.
However, pseudorandom numbers we evaluate quickly

xn+1 = (axn + c)modm,

where a, c,m are carefully selected integers. The value x0 is the “seed”.

Example

For example for a = 7, b = 4, m = 9, and x0 = 1 we get

x1 = (7x0 + 4)mod 9 = 11mod 9 = 2

x2 = (7x1 + 4)mod 9 = 18mod 9 = 0

x3 = (7x0 + 4)mod 9 = 4mod 9 = 4

x4 = (7x0 + 4)mod 9 = 32mod 9 = 5
...

This gives the sequence 1, 2, 0, 4, 5, 3, 7, 8, 6, 1, 2, 0, 4, . . .

A commonly used random generator: a = 75, b = 0, m = 231 − 1.

35 / 40

Application of congruences – check sums

Parity sums

Let x1, x2, . . . , xn be an n-bit word.
The sender adds another bit (bits), a parity check digit

xn+1 = x1 + x2 + · · ·+ xn mod 2.

If during the transfer one (or an odd number) errors occur, the recipient
evaluates

x1 + x2 + + · · ·+ xn + xn+1 6≡ 0 (mod 2)

and can require ask for the message to be sent again.

Using several parity check digits, we can CORRECT certain errors without
sending it again.
(example provided later)

36 / 40

Application of congruences – UPC bar codes

UPC bar code (Universal Product Code)

There are many variations on UPC bar codes, most of them make use of
check sums.
UPC-A bar code has 12 digits. It satisfies

3x1+x2+3x3+x4+3x5+x6+3x7+x8+3x9+x10+3x11+x12 ≡ 0 (mod 10)

Example

Is 041331021641 a valid UPC code?

Since 0 + 4 + 3 + 3 + 9 + 1 + 0 + 2 + 3 + 6 + 12 + 1 = 44 ≡ 4 (mod 10),
therefore the code is invalid.

37 / 40

Application of solving linear congruences

Reconstruction of UPC bar codes

We know the UPC code 041331021641 is not valid. However it seems the
fourth digit is damaged. What is the correct UPC code?

We know the digits of the UPC code 041?31021641 must satisfy

3x1+x2+3x3+x4+3x5+x6+3x7+x8+3x9+x10+3x11+x12 ≡ 0 (mod 10)

We set up a linear congruence.

0 + 4 + 3 + x4 + 9 + 1 + 0 + 2 + 3 + 6 + 12 + 1 ≡ 0 (mod 10)

x4 + 41 ≡ 0 (mod 10)

x ≡ −1 (mod 10)

x ≡ 9 (mod 10)

The missing digit of the UPC bar code is 9.

It is easy to verify

3x1 + x2 + 3x3 + x4 + 3x5 + x6 + 3x7 + x8 + 3x9 + x10 + 3x11 + x12 =

= 0 + 4 + 3 + 9 + 9 + 1 + 0 + 2 + 3 + 6 + 12 + 1 = 50 ≡ 0 (mod 10).

38 / 40

Further application of congruences

ISBN/ISSN

social security numbers (rodná č́ısla)

banknote numbers

bank account numbers

simple ciphers

39 / 40

Application of solving linear congruences

Reconstruction of the social security number (rodné č́ıslo)

An old lady forgot her social security number. She remembers her birthday
and the last three digits. Thus, we can reconstruct the following parts of
the number: 346509?248. What is the missing digit?

We know that the digits have to satisfy

x1x2 + x3x4 + x5x6 + x7x8 + x9x10 ≡ 0 (mod 11).

We set up a linear congruence

34 + 65 + 9 + (10x + 2) + 48 ≡ 0 (mod 11)

1− 1 + 0 + 10x + 4 ≡ 0 (mod 11)

10x ≡ −4 (mod 11)

−x ≡ −4 (mod 11)

x ≡ 4 (mod 11)

The missing digit is 4.

40 / 40

Next lecture

Algorithms for discrete structures

types discrete structures
implementation of sets
generating selection and arrangements
generating random numbers
combinatorial explosion

1 / 31

Discrete mathematics

Petr Ková̌r
petr.kovar@vsb.cz

VŠB – Technical University of Ostrava

Winter term 2021/2022
DiM 470-2301/02, 470-2301/04, 470-2301/06

The translation was co-financed by the European Union and the Ministry of Education, Youth and Sports from the Operational
Programme Research, Development and Education, project “Technology for the Future 2.0”, reg. no.

CZ.02.2.69/0.0/0.0/18 058/0010212.

This work is licensed under a Creative Commons “Attribution-ShareAlike 4.0 International” license.

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

2 / 31

About this file

This file is meant to be a guideline for the lecturer. Many important pieces
of information are not in this file, they are to be delivered in the lecture:
said, shown or drawn on board. The file is made available with the hope
students will easier catch up with lectures they missed.

For study the following resources are better suitable:

Meyer: Lecture notes and readings for an
http://ocw.mit.edu/courses/electrical-engineering-and-

computer-science/6-042j-mathematics-for-computer-science

-fall-2005/readings/”(weeks 1-5, 8-10, 12-13), MIT, 2005.

Diestel: Graph theory http://diestel-graph-theory.com/

(chapters 1-6), Springer, 2010.

See also http://homel.vsb.cz/~kov16/predmety dm.php

3 / 31

Lecture overview

Algorithms for discrete structures

implementing basic structures
implementing sets
list of all selections or arrangements
generating random numbers
combinatorial explosion

4 / 31

7. Algorithms for discrete structures
In this chapter we describe how to implement some structures and
algorithms introduced in Part I.

Some structures are easy to implement, some require a rather elaborate
approach. They often differ in memory requirements or CPU time
requirements.

Usually a general approach is more time/space consuming, on the other
hand the generality must not necessarily be payed for by significantly
slower algorithm.

This chapter is dedicated to selected implementations of structures and
algorithms.

5 / 31

7.1. Implementing basic structures

sequences

mappings

relations

permutations

A (finite) sequence (a0, a1, . . . , an−1)
we implement as a one-dimensional field a[], where a[i] = ai .

Example

We have a (finite) sequence (7, 5, 5, 7, 5, 6, 6).
We store the sequence in an array p = [7 5 5 7 5 6 6].

6 / 31

Mappings

Mapping f : A→ B
Let us take a finite A = {a0, a1, . . . , an−1} and B = {b0, b1, . . . , bm−1}.
Wework with subscripts only and implement the mapping as a sequence –
field f[], in which f[i]=j stands for f (ai) = bj .

This is particularly suitable when A and B are integer sets with small
integers. For different sets we have to “translate” elements in A, B into
their indices (usually CPU time consuming).

for elements in A we can use hash tables
for elements in B we use structured data types or pointers

Example

We have a mapping f : [0, 5]→ [0, 5], where f (0) = 4, f (1) = 5, f (2) = 3,
f (3) = 3, f (4) = 2, f (5) = 2.
We store the mapping in a field f = [4 5 3 3 2 2].

7 / 31

Example

Take a mapping f : {A,B,C ,D,E} → {x , y , z ,w},
where f (A) = w , f (B) = z , f (C) = w , f (D) = x , f (E) = w .
Mapping is stored in a field f = [3 2 3 0 3].
Poťrebujeme pomocná pole X = [A B C D E], Y = [x y z w].

Example

Take a mapping f : R× R→ R, where f (x , y) = x2 + 3y .
Cannot be stored in a field! Not possible to store R.

Example

Take a mapping f : [−5 : 5]× [−5 : 5]→ R, where f (x , y) = x2 + 3y .
Mapping is stored in a two-dimensional field with 11× 11 (approximate?)
values.

Example

Take a mapping f : [−5 : 5]× [−5 : 5]→ R, where f (x , y) =
√

x + y .
Mapping is stored in a two-dimensional field with 11× 11 (approximate!)
values.

8 / 31

Binary relations

Binary relation R on the set A
For finite and small A = {a0, a1, . . . , an−1} we implement relation by
a two-dimensional field (matrix) r[][], in which
r[i][j] = 0 when (ai , aj) 6∈ R and
r[i][j] = 1 when (ai , aj) ∈ R.

Example

We have a relation R ⊆ [0, 4]2, where R = {(0, 0), (0, 4), (1, 3)(2, 4)}.
Relation R can be stored in a two-dimensional field

R =


1 0 0 0 1
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0



9 / 31

Properties of relations

Take a binary relation R on the set {0, 1, . . . , n − 1} given by the field
r[][].

Check if the relation r is reflexive, O(n)

for (i=0; i<n; i++)

if (!r[i][i]) { // all ones?

printf("Not reflexive!");

return -1;

}

Check if the relation r is symmetric, O(n2)

for (i=0; i<n; i++)

for (j=i+1; j<n; j++)

if (r[i][j]!=r[j][i]) { // a symmetric matrix?

printf("Not symmetric!");

return -1;

}

10 / 31

Properties of relations (continued)

Is the relation r transitive? Verify for each tripple

∀i , j , k : r [i][j] ∧ r [j][k] ⇒ r [i][k].

Check if the relation r is transitive, O(n3)

for (i=0; i<n; i++)

for (j=0; j<n; j++) {

if (!r[i][j]) continue; // skip

for (k=0; k<n; k++) {

if (!r[j][k]) continue; // skip

if (r[i][k]) continue; // has to be!

printf("Not transitive!");

return -1;

}

}

11 / 31

Example

We have a relation R ⊆ [0, 4]2, where R = {(0, 0), (0, 4), (1, 3)(2, 4)}
stored in a two-dimensional field

R =


1 0 0 0 1
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0


Relation is not reflexive.
Relation is not symmetric.
Relation IS transitive.

Question

How to test antisymmetry?
How to test linearity?
What is the time-complexity of these test?

12 / 31

Permutations

A permutation we implement as a bijective mapping
p : [0, n − 1]→ [0, n − 1].

Example

We have a permutation π =

(
0 1 2 3 4 5
4 2 1 3 0 5

)
, π can be stored in a field

p = [4 2 1 3 0 5]

How to verify, the one dimensional field describes a permutation? It is
enough to verify if p is onto (surjective).

Check whether p[] is a permutation, O(n)

for (i=0; i<n; i++) u[i] = 0; // an auxiliary field

for (i=0; i<n; i++) if (p[i]>=0 && p[i]<n) u[p[i]] = 1

else printf("Not a permutation!"); // out of range

for (i=0; i<n; i++)

if (u[i]!=1)

printf("Not a permutation!");

13 / 31

Permutations (continued)

Composition of p[] and q[] is the permutation r[], O(n)

for (i=0; i<n; i++)

r[i] = q[p[i]];

We can obtain a list of all cycles by the code:

Cycle notation of an n-element permutation p[] of [0, n − 1], O(n)

for (i=0; i<n; i++) u[i] = 0; // an auxilliary field

for (i=0; i<n; i++) if (u[i]==0) { // not used

printf("\n(%d",i); u[i] = 1; // start cycle

for (j=p[i]; j!=i; j=p[j]) { // next in this cycle

printf(",%d",j); u[j] = 1;

}

printf(")"); // close cycle

}

14 / 31

7.2. Set implementation
Set are not easy to implement. The problems include

search for a particular element (not a specified list index),
guarantee non-repetitive elements.

Characteristic function of a subset
The universe U = {u0, u1, . . . , un−1}, from which elements are taken, has
to be known. Subsets X ⊆ U are implemented as fields x[], where

x[i] =

{
1 for ui ∈ X

0 otherwise.

Advantages: easy to search for a particular element, unions by using the
OR function, intersection by AND function.

Disadvantage: suitable only for small universe U !

15 / 31

Example

The set A = {2, 3, 5} in a universe U = [1, 10] is implemented using a
characteristic function in a field A = [0 1 1 0 1 0 0 0 0 0].

Example

The set A = {2, 3, 5} in a universe U = [1, 100] is implemented using a
characteristic function in a field A = [0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0
0 0
0 0 0 0 0 0].
The set B = {1}, B = [1 0
0 0
0].

To find the union A ∪ B on U use binary OR. To find the intersection
A ∩ B use binary AND.

Example

The set A = {2, 3, 5} in the universe U = N cannot be implemented.

16 / 31

List of elements
The set X is implemented as a list of elements. The list of k elements
in X is stored in a field x[], we can write

X = {x[1], x[2], . . . , x[k]} for the field x[] of length k.

Advantage: work for big or even unspecified universe.

Instead of a field one can use a dynamic linked list, then it is easy to add
or remove elements from the list.

Disadvantage: determining if a particular object is in the set (often used
operation) is costly – one has to go through the entire list.

Example

The set A = {2, 3, 5} in the universe U = [−MAX INT ,MAX INT] is
implemeted as a field A = [2, 3, 5].

Example

The set A = {3, 5, 2} in the universe U = [−MAX INT ,MAX INT] is
implemeted as a field A = [3, 5, 2].

17 / 31

Test if element x is in the set a[] of size n, O(n)

for (i=0; i<n; i++) { // traverse all field a[]

if (a[i]==x) break; // is x in a[]?

}

if (i<n) printf("Element x is in field a[]"); // found?

Union of two set in fields a[],b[] into the field c[], O(n2)

for (i=0; i<m; i++)

c[i] = a[i]; // all m elements from a[]

for (i=0,k=m; i<n; i++) { // next n elements from b[]

for (j=0; j<m; j++)

if (b[i]==a[j]) break; // if b[i] in a[]

if (j<m) continue; // skip

c[k++] = b[i]; // or add it to c[]

}

18 / 31

Ordered list of elements
An easy modification of the previous implementation.
The elements in the list are ordered according some rule (length, size,
lexicographic, etc.)

Advantage: on can use binary search in the set of elements by bisection in
the list (see Example).

Example

The set A = {2, 3, 5} in the universe U = [−MAX INT ,MAX INT] is
implemented as a field A = [2, 3, 5].

Example

The set A = {3, 5, 2} in the universe U = [−MAX INT ,MAX INT] is
implemented as a field A = [2, 3, 5].

19 / 31

Binary search for k in an ordered field p[] of length n

int a = 0; b = n-1;

while (a<b && p[a]!=k) { // k found?

c = (a+b)/2;

if (p[c]<k) a = c+1; // no, it will be bigger

else b = c; // no, it will be smaller

}

if (p[a]!=k) printf("The number k not in the list.");

Just dlog2 ne searching steps.

Adding a new element x to the set in a field a[] requires O(n)
operations:

find the proper place, O(dlog2 ne)
copy or “shift” part of the field, O(n)

Similarly, when removing elements.

20 / 31

Union of two ordered list in fields a[], b[] of size m, n into an
ordered field c[] of size l, O(n + m)

int i=0, j=0, k, l=0;

for (k=0; k < m+n; k++) {

if (i >= m) { // if a[] exhausted

c[l++] = b[j++];

continue;

}

if (j >= n) { // if b[] exhausted

c[l++] = a[i++];

continue;

}

if (a[i] == b[j]) { // just one copy

j++;

continue;

}

c[l++] = (a[i] < b[j]) ? a[i++] : b[j++];

}

21 / 31

Summary

How large is the universe?

Will we (and how often) modify the structure of the set?

Will we (and how often) search the set?

Will we (and how often) construct unions of sets?

... pick the approriate model.

22 / 31

7.3. Listing selection and arrangements
Often we have to traverse all selections or arrangements of a given type:

different mappings,
k-permutations,
k-combinations without repetitions.

Simple traversing of all ordered pairs (triples, etc.)
All ordered pairs of indices i,j we traverse in a nested loop

2-permuations with repetition, O(n2)

for (i=0; i<n; i++) // nested loop

for (j=0; j<n; j++) {

// process a particular ordered pair (i,j)

}

All unordered pairs of indices i,j are traversed similarly

2-combinations, O(n2)

for (i=0; i<n; i++) // just "above the diagonal"

for (j=i+1; j<n; j++) {

// process a particular unordered pair {i,j}

}

23 / 31

Processing all permutations of an n-element set A in a[]

All n! permutations are processed by a recursive algorithm (Heap 1963).

Heap’s algorithm – permutations of n elements

int i, a[];

permutation(n, a[]) {

if (n==1)

// process permutation in a[]

else

for (i=0; i < n-1; i++) {

permutation(n-1, a[]);

if (n even)

swap(a[i], a[n-1]);

else

swap(a[0], a[n-1]);

}

permutation(n-1, a[]);

}

Function swap(x,y) simply swaps the content of x and y.

24 / 31

Processing all mappings
All nk mapping of a k-element set into and n-element set

map : {0, 1, . . . , k − 1} → {0, 1, . . . , n − 1}
we traverse by the following code: k nested cycles not necessary!

k-permutations with repetition of n elements, O(nk)

int i, map[k];

map[i = 0] = -1;

while (i>=0) {

if (++map[i]>=n) // increase by 1

{ i--; continue; }

if (++i<k) // ’erase’ next element

{ map[i] = -1; continue; }

// process the mapping (map[0], ..., map[k-1])

i--;

}

For each choice we verify

if it exceeded n, then we return to the previous level,
if this was the last choice for the k-th element, otherwise next level.

25 / 31

Processing all k-permutations (without repetitions) on n elements

k-permutations without repetition of n elements, O(nk)

int i, j, arrange[k];

arrange[i = 0] = -1;

while (i>=0) {

if (++arrange[i]>=n) // increase by 1

{ i--; continue; }

for (j=0; j<i; j++) // does it repeat?

if (arrange[i]==arrange[j]) break;

if (j<i) continue; // skip repeated

if (++i<k) // ’erase’ next elements

{ arrange[i] = -1; continue; }

// process k-permutation (arrange[0],...,arrange[k-1])

i--;

}

For each choice we verify
if it exceeded n, then we return to the previous level,
if this is not a repeated element, then we skip it,
if it was the last k, otherwise proceed by the next level.

26 / 31

Processing all k-combiations
We traverse all k-combinations (without repetition) on n elements.
It is similar to the previous case, but now we produce
ordered k-tuples. Hence every k-combination is obtained just once.

k-combinations (without repetition) of n elements, O(nk)

int i, select[k];

select[i = 0] = -1;

while (i>=0) {

if (++select[i]>=n) // increase by 1

{ i--; continue; }

if (++i<k) {

select[i] = select[i-1]; // sorted already!

continue;

}

// process the k-combinaton (select[0],...,select[k-1])

i--;

}

We do not have to check for repeated selections, since the elements of the
selection are ordered.

27 / 31

7.4. Generating random numbers
We investigate really random sequence of bits in a computer.

Where do we require random numbers/bit sequences?

generating random (large) private keys (for SSL certificates).
Using random passwords for SSL encryption (if not random, it can be
broken!).

Resolving packet collisions on Ethernet by random pauses before next
transmission.

Used by probability algorithms, random bits can boost computation
performance.

In statistical analysis of real events, modelling real chaotic and
physical experiments, etc.

28 / 31

Various random number generators
Elemental pseudorandom generators
Use various formulas as

x := (A · x + B) mod C .

We iterate this and certain bits x are used as the random sequence.

Disadvantage: depends heavily on previous iterations and predictable.

Pseudorandom generators with external input
Similar formulas as in the previous case with additional input from external
physical processes (key press delays, disk reading delays, network statistics,
etc.)

Problems: dependence on external conditions, can be influenced by the
environment, each bit is “costly”.

Hardware random generators
Based on quantum noise (in semiconductors).

Problems: translation into a uniform bit sequence, confidence in quantum
mechanics.

29 / 31

7.5. Combinatorial explosion
In software based solution of problems in discrete mathematics we often
require algorithms such as:

Traverse all cases.

Then we may encounter the phenomenon called exponential combinatorial
explosion.

fast growth of the factorial.

tale about corn on chessboard fields

If the number of traversed cases grows exponentially, them even for an
input increased by 1 the computational time increases many times.
In many situation in input of size 10 can be solved in seconds on a 386
processor, but the input of size 15 cannot be counted on most powerful
machines in the world.

Remember this phenomenon when designing your algorithm with “brute
force”!

By choosing an appropriate algorithm, data structure or input limitation
we can achieve tremendous increase of performance.

30 / 31

Example

How many (non-isomorphic!) tournaments of n teams (disregards the
round order, disregard the team numbers).

n=2 1 tournament

n=4 1 tournament

n=6 1 tournament

n=8 6 tournaments

n=10 396 tournaments

n=12 526 915 620 tournaments

n=14 1 132 835 421 602 062 347 tournaments

n=16 ?

If we distinguish the team numbers, then for n = 14 is
98 758 655 816 833 727 741 338 583 040 tournaments.

31 / 31

Next lecture

Part II Introduction to Graph Theory

Chapter 1. The graph

motivation

definition of a graph

degree of a vertex

1 / 39

Discrete mathematics

Petr Ková̌r
petr.kovar@vsb.cz

VŠB – Technical University of Ostrava

Winter term 2021/2022
DiM 470-2301/02, 470-2301/04, 470-2301/06

The translation was co-financed by the European Union and the Ministry of Education, Youth and Sports from the Operational
Programme Research, Development and Education, project “Technology for the Future 2.0”, reg. no.

CZ.02.2.69/0.0/0.0/18 058/0010212.

This work is licensed under a Creative Commons “Attribution-ShareAlike 4.0 International” license.

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

2 / 39

About this file

This file is meant to be a guideline for the lecturer. Many important pieces
of information are not in this file, they are to be delivered in the lecture:
said, shown or drawn on board. The file is made available with the hope
students will easier catch up with lectures they missed.

For study the following resources are better suitable:

Meyer: Lecture notes and readings for an
http://ocw.mit.edu/courses/electrical-engineering-and-

computer-science/6-042j-mathematics-for-computer-science

-fall-2005/readings/”(weeks 1-5, 8-10, 12-13), MIT, 2005.

Diestel: Graph theory http://diestel-graph-theory.com/

(chapters 1-6), Springer, 2010.

See also http://homel.vsb.cz/~kov16/predmety dm.php

3 / 39

Lecture overview

Part II Introduction to Graph Theory

Chapter 1. The graph

motivation
definition of a graph
oriented graphs and multigraphs
degree of a vertex
subgraphs and isomorphisms
implementation of graphs

4 / 39

Introduction to Graph Theory
Graph Theory originated rather recently

L. Euler: Seven Bridges of Königsberg in 1736
First monograph in 1936

Well known problem solved by Graph Theory:

four color theorem
shortest path in a graph
maximum flow in a network

5 / 39

Motivation
Graph Theory is a very important discipline of Discrete Mathematics

by graphs real life situations can be described easily
intuitive interpretation
easily implemented in computers

Informally: a graph contains

vertices (nodes) – “dots” in the figure
edges – “lines” joining two points in the drawing

Examples of graphs.

6 / 39

Figures of the same graph may be considerably different.

Different drawings of the same graph.

It may not be apparent if two different drawings represent the same graph
(the same structure).

7 / 39

Definition of a graph

Definition

Graph G (simple graph) is an ordered pair G = (V ,E), where V is a
nonempty set of vertices and E is the set of edges – the set of (some)
two-element subsets of V .

Example

The graph G = (V ,E), where V = {v ,w , x , y} and
E =

{
{v ,w}, {v , x}, {v , y}, {w , x}

}
we draw as follows:

v
w

x

y

The elements of V are called vertices, they are usually denoted by lower
case letters u, v ,
The elements of E are called edges. The edge between vertices u and v is
the two-element subset {u, v} of V , it is denoted by uv for short.

8 / 39

Example

Graph G = (V ,E), where V = {v1, v2, v3, v4, v5, v6, v7, v8} and E =
{v1v2, v1v3, v1v4, v1v5, v2v3, v2v4, v2v6, v3v5, v3v7, v4v5, v5v6, v5v7, v6v7}.

v1

v2

v3

v4

v5

v6

v7

v8

If we are given a graph G , by V (G) we understand the set of vertices of
the graph G and by E (G) the set of edges of G .

Note

Graph G = (V ,E) can be viewed as a special relation E on the set V ,
where E is irreflexive and symmetric .

9 / 39

Oriented graphs and multigraphs
If a graph represents a transportation or road network, it is often necessary
to impose orientation to edges, called arcs. We distinguish then the first
(tail) and the end (head) vertex. The arc uv is not identical to the arc vu.

Definition

An oriented graph is the ordered pair G = (V ,E), where V is the set of
vertices and a nonempty set of arcs is E ⊆ V × V .

In a drawing we depict oriented edges by arrows.

v1v2

v3

v4 v5

v6

An oriented graph.

10 / 39

Note

A simple oriented graph G = (V ,E) (without loops) can be considered as
an irreflexive relation on a given set V .

Note

An oriented graph G = (V ,E) with loops can be considered as a (general)
relation on a given set V .

Note

A multigraph is even more general than an oriented graph. Multiple edges,
arcs and loops are allowed.

We focus on oriented graphs in the last chapter. . .

11 / 39

Common graph classes
Graph can be defined by giving

sets V and E
drawing
name and parameter (parameters)

Some graph classes appear often and have their names

paths
trees
caterpillars
lollipops
books
. . .

12 / 39

Complete graph Kn

The graph on n vertices (n ≥ 1), which contains all
(n

2

)
edges is called

complete graph and is denoted by Kn.

Kn = (V ,E) : V = {1, 2, . . . , n}, E = {ij : i , j = 1, 2, . . . n ∧ i 6= j}

K1 K2

K3 K4 K5 K6

Trivial graph and complete graphs.

13 / 39

Cycle Cn

Graph on n vertices (n ≥ 3), which are connected by edges into a single
cycle is called a cycle on n vertices and denoted by Cn. The number n is
the length of the cycle Cn.

Cn = (V ,E) : V = {1, 2, . . . , n}, E = {i(i+1): i = 1, 2, . . . n−1}∪{1n}

C3 C4 C5 C6

Cycles C3, C4, C5 and C6.

The cycle of length three is often called a triangle.

14 / 39

Path Pn

The graph on n vertices (n > 0), which are connected consecutively by
n − 1 edges is called a path and denoted by Pn.

Pn = (V ,E) : V = {1, 2, . . . , n}, E = {i(i + 1): i = 1, 2, . . . n − 1}

P1 P2 P3 P4 P5

Paths P1, P2 P3, P4, and P5.

Notice, there is another notation (less common):
index = number of edges

15 / 39

Complete bipartite graph Km,n

A graph, whose vertex set is partitioned into two disjoined nonempty
subsets M and N (|M| = m ≥ 1, |N| = n ≥ 1) and which contains all
m · n edges uv such that u ∈ M and v ∈ N is called complete bipartite
graph and is denoted by Km,n.

Km,n = (M ∪ N,E) : M = {u1, u2, . . . , um}, N = {v1, v2, . . . , vn},

M,N 6= ∅, M ∩ N = ∅, E = {uivj : i = 1, 2, . . . ,m ∧ j = 1, 2, . . . n}.

Graph K4,5.

16 / 39

Degree of a vertex in a graph

For a given edge uv , we call the vertices u and v the end-vertices of the
edge uv .

We also say that u and v are incident with the edge uv (u ∈ {u, v}).

Two different end-vertices of the same edge we call neighbors. If such edge
does not exist, we call the vertices independent.

Definition

Degree of a vertex in a graph G is the number of edges which are incident
with the given vertex v .
The degree of a vertex v in a graph G is denoted by deg(v) (or degG (v)).

v1

v2

v3

v4

v5

v6

v7

Graph with degrees 5, 1, 3, 3, 4, 4, and 0.

17 / 39

Theorem (Parity Principle)

The sum of all degrees in a graph is even and is equal to the double of
edges. ∑

v∈V (G)

degG (v) = 2|E (G)|

Proof Both, the left and right side of the equation gives the count of
end-vertices. Summing degrees every end-vertex contributes a 1 to a
degree of some vertex. Moreover, every edge has two end-vertices, hence
the sum of degrees is equal to the double of number of edges. �

Question

How many edges are in a graph with vertex degrees 5, 4, 4, 3, 3, 2, 1?

18 / 39

Example

How many edges are in a graph G which has thirty vertices of degree 5
and five vertices of degree 4?
By Parity Principle the double of edges equals to the sum of vertex
degrees. ∑

v∈V (G)

degG (v) = 30 · 5 + 5 · 4 = 150 + 20 = 170

Thus, the graph G has 170/2 = 85 edges. Does G exist? We show later.

Example

How many edges are in a graph G which has five vertices of degree 5 and
thirty vertices of degree 4?
Similarly. . . ∑

v∈V (G)

degG (v) = 5 · 5 + 30 · 4 = 145

By Parity Principle no such graph exists!

19 / 39

Example

Nine friends exchange Christmas presents. Everyone gave three presents to
his friends. Show, that it is not possible that everyone receives presents
from precisely those friends he gave his presents to. Hint: show that no
graph model of such exchange can exist.
We set up a graph: vertices=friends, edges=pairs of exchanged presents.∑

v∈V (G)

degG (v) = 9 · 3 = 27

By Parity Principle no such graph exists, thus there is no solution to the
problem.
There is no exchange of presents possible such that each of the nine
friends would receive presents from precisely those friends he/she gave
his/her presents to.

20 / 39

Definition

Take a graph G with vertices v1, v2, . . . , vn. The sequence
(deg(v1), deg(v2), . . ., deg(vn)) is called the degree sequence of the
graph G .

Not every sequence is a degree sequence of a graph. How to tell?

Theorem (Havel–Hakimi)

Let (d1 ≥ d2 ≥ · · · ≥ dn) be a sequence of natural numbers. Then a
non-trivial graph on n vertices with the degree sequence

D = (d1, d2, . . . , dn)

exists if and only if there exists a graph on n − 1 vertices with the degree
sequence

D ′ = (d2 − 1, d3 − 1, . . . , dd1+1 − 1, dd1+2, dd1+3, . . . , dn).

Since we deal only with finite graphs, we can by recursion decide about
every finite sequence if it is a degree sequence of some graph. Moreover we
can construct example of such a graph (needs not to be unique!).

21 / 39

Example

Does there exist a graph with the degree sequence (3, 3, 3, 1, 1)?
No, by Parity Principle.

Example

Does there exist a graph with the degree sequence (3, 3, 3, 1)?
The Parity Principle? No such graph exists, we use Theorem H-H to prove
it.
Examining the degree sequence (3, 3, 3, 1) we get

(3, 3, 3, 1)
HH∼ (2, 2, 0)

HH∼ (1,−1)

which obviously is not a degree sequence.

Example

Does there exist a graph with the degree sequence (6, 4, 4, 1, 1)?
Obviously, no such graph exists.
If you do not know why, try using Theorem H-H.

22 / 39

Example

Does there exist a graph with the degree sequence (6, 5, 4, 3, 3, 2, 1)?
Yes, by Theorem H-H. Moreover, we construct such a graph.
Based on the degree sequence (6, 5, 4, 3, 3, 2, 1) we get

(6, 5, 4, 3, 3, 2, 1)
HH∼ (4, 3, 2, 2, 1, 0)

HH∼ (2, 1, 1, 0, 0)
HH∼ (0, 0, 0, 0).

To construct the graph we add vertices.

We start by drawing a graph with the degree sequence (0, 0, 0, 0).

23 / 39

continued . . .

Then we add a vertex of degree 2 and connect it to two vertices of degree
0 (hereby we obtain vertices with degree 1).

We obtain a graph with the degree sequence (2, 1, 1, 0, 0).

To obtain a graph with the degree sequence (4, 3, 2, 2, 1, 0), we add a
vertex of degree 4 and connect it to vertices of degree 2, 1, 1 and 0.

24 / 39

continued . . .

Finally we add a vertex of degree 6 and connect it to all remaining vertices.

We get a graph with the degree sequence (6, 5, 4, 3, 3, 2, 1).

Summary: using Havel-Hakimi Theorem we can

decide, whether a given finite sequence of positive integers is a degree
sequence of some graph,
if yeas, the process yields an example of such a grah.

25 / 39

Definition

The highest degree of a vertex in a graph G we denote by ∆(G).
The smallest degree we denote by δ(G).

Questions

Is every non-increasing sequence of natural numbers a degree
sequence?

How to tell if a particular sequence is a degree sequence of a graph?

Is the graph uniquely determined by its degree sequence?

How many graphs do exist with a particular degree sequence?

26 / 39

Subgraphs
Often we consider graphs, that arose by deleting some vertices (and all
incident edges) from a graph, or by deleting some edges or both. In this
way we obtain a subgraph.

Definition

Graph H is called a subgraph of a graph G if V (H) ⊆ V (G) and
E (H) ⊆ E (G). We write H ⊆ G .

Notice: by deleting a vertex of G we have to delete all incident edges as
well. The definition is correct, otherwise H would not be a graph.

Example

Graph G and its subgraphs H1 and H2.

27 / 39

Induced subgraph

A subgraph I of a graph G is called induced subgraph of G if E (I)
contains all edges of G , that are incident with vertices in V (I) (we omit
no other edges besides those incident with the deleted vertices).

Example

Graph G and subgraph H1 (induced) and H2 (not induced).

Factor of a graph

A subgraph F of a graph G is called a factor of G if V (F) = V (G).

28 / 39

Graph isomorphisms

Definition

Isomorphism of graphs G and H is a bijective mapping f : V (G)→ V (H),
for which the following holds: every pair of vertices u, v ∈ V (G) is joined
by an edge in G if and only if f (u), f (v) are joined by an edge in H.

For short ∀u, v ∈ V (G) : uv ∈ E (G)⇔ f (u)f (v) ∈ E (H).

Example

v1

v2

v3 v4

v5

f(v1)

f(v4)

f(v2) f(v5)

f(v3)

g(v1)
g(v4)

g(v2) g(v5)
g(v3)

Isomorphic graphs.

29 / 39

Fact

Isomorphic graphs G and H have

the same number of vertices
the same number of edges
the same highest degree ∆(G) = ∆(H)
the same lowest degree δ(G) = δ(H)
the same degree sequence
each subgraph of G has to be a subgraph of H and vice versa
. . .

If some bijection f is an isomorphism, it has to map vertices to vertices of
the same degree, e.g.

degG (v) = degH(f (v)).

This implication cannot be reversed!
It is not enough to compare degree sequences!

30 / 39

Example

Are the following two graphs both with the degree sequence
(4, 3, 3, 2, 2, 2) isomorphic?

Are these two graphs isomorphic?

Are these two graphs isomorphic?

31 / 39

continued. . .

xw

v

u z

y

f(x)f(y)

f(u)

f(w) f(v)

f(z)

Isomorphism f between two given graphs.

Note

On the examples above we have practised some approaches used to
determine, whether two given graphs are isomorphic or not.

No “fast and easy” universal algorithm for decision about being isomorphic
is known!

The only universal algorithm for finding an isomorphism of two graphs or
for deciding that such isomorphism does not exists is to try all feasible
bijections between vertices (there can be up to n! of them).

32 / 39

Theorem

Relation of “being isomorphic” ' is an equivalence relation on the set of
all graphs.

Proof Relation ' is

reflexive, since every graph is isomorphic to itself by identity,
symmetric, since to every isomorphism (bijection) f there exists (a
unique) f −1,
transitive, since by composition of isomorphisms (mappings) we get
again an isomorphism (mapping). �

When talking about a certain graph, we often address the entire
isomorphism class, is does not depend on a particular representation,
drawing or notation of a given graph.

[' C4]

[' K2,2]

[' K9]

[' K4,5]

. . .

Graph classes.

33 / 39

Implementation of graphs
We denote vertices of a graph G by natural numbers 0, 1, . . . , n − 1.
Among the most common computer implementations of graphs are:

Adjacency matrix

Adjacency matrix of a graph G is a square matrix A = (aij) of order n, in
which

aij =

{
1 if vivj ∈ E (G)

0 otherwise.

It can be stored in a two-dimensional field a[][] where a[i][j]=1 if the
edge/arc ij is in the graph, otherwise a[i][j]=0.

The sum of the i-th row/column of the matrix equals the degree of
vertex i .

Advantages:

quick to check the existence of and edge/arc uv ,

easy to add/remove an edge/arc ij .

Disadvantages:

adjacency matrix is large, uses memory even for sparse graphs.

34 / 39

Example

Set up the adjacency matrix of the given graph.

0

1 2

3

4

5

The adjacency matrix is

A =



v\v 0 1 2 3 4 5

0 0 1 1 0 0 0
1 1 0 1 1 0 0
2 1 1 0 1 0 0
3 0 1 1 0 0 0
4 0 0 0 0 0 1
5 0 0 0 0 1 0



35 / 39

Incidence matrix

Incidence matrix B of a graph G is a rectangular matrix with n rows and
m = |E (G)| columns. Each row corresponds to a given vertex of the
matrix B and each column corresponds to a column of B.

Element bij of the matrix B equals 1, if vertex i is incident to the edge ej ,
otherwise we set bij = 0.

Sum of every column is 2 and the sum of row i equals the degree of
vertex i .

Advantages:

easy to find end-vertices of a given edge,

easy to “reattach” edge ij in a graph.

Disadvantages:

expensive to add/remove edges to the incidence matrix,

for large graphs is the incidence matrix large and sparse.

36 / 39

Example

Set up the incidence matrix of the given graph.

0

1 2

3

4

5

The incidence matrix is

B =



v\e 01 02 12 13 23 45

0 1 1 0 0 0 0
1 1 0 1 1 0 0
2 0 1 1 0 1 0
3 0 0 0 1 1 0
4 0 0 0 0 0 1
5 0 0 0 0 0 1



37 / 39

Neighbor lists

For every vertex i = 0, 1, . . . , n − 1 of a given graph G we create an array
(list) of vertices, say neig[i][], which contains vertices adjacent to i .

Each array will have deg(i) entries, where deg(i) is the degree of vertex i ,
stored in deg[].

Elements neig[i][0], neig[i][1], ..., neig[i][deg[i]-1]

contain vertices (or their indices) adjacent to vertex i .

Example

deg[] = [2, 3, 3, 2, 1, 1],

neig[0][] = [1, 2],
neig[1][] = [0, 2, 3],
neig[2][] = [0, 1, 3],
neig[3][] = [1, 2],
neig[4][] = [5],
neig[5][] = [4].

38 / 39

We have to keep the symmetry of edges ij and ji in mind!

Advantages:

suitable for graphs with few edges, easy to evaluate deg(v),

Disadvantages:

costly to alter the structure of a given graph,

costly to find a given edge.

All given representations can be used for oriented graphs as well.
In general, for multigraphs one can use the incidence matrix or perhaps
neighbor list.

More complex structures are needed for labeled (weighted) graphs (we
assign labels/weights to vertices and/or edges).

We can use additional fields or structured data types. . .

39 / 39

Next lecture

Chapter 2. Connectivity of graphs

motivation
connectivity and components of a graph
searching through a graph
higher degrees of connectivity
Eulerian graphs traversable in “one trail”

1 / 30

Discrete mathematics

Petr Ková̌r
petr.kovar@vsb.cz

VŠB – Technical University of Ostrava

Winter term 2021/2022
DiM 470-2301/02, 470-2301/04, 470-2301/06

The translation was co-financed by the European Union and the Ministry of Education, Youth and Sports from the Operational
Programme Research, Development and Education, project “Technology for the Future 2.0”, reg. no.

CZ.02.2.69/0.0/0.0/18 058/0010212.

This work is licensed under a Creative Commons “Attribution-ShareAlike 4.0 International” license.

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

2 / 30

About this file

This file is meant to be a guideline for the lecturer. Many important pieces
of information are not in this file, they are to be delivered in the lecture:
said, shown or drawn on board. The file is made available with the hope
students will easier catch up with lectures they missed.

For study the following resources are better suitable:

Meyer: Lecture notes and readings for an
http://ocw.mit.edu/courses/electrical-engineering-and-

computer-science/6-042j-mathematics-for-computer-science

-fall-2005/readings/”(weeks 1-5, 8-10, 12-13), MIT, 2005.

Diestel: Graph theory http://diestel-graph-theory.com/

(chapters 1-6), Springer, 2010.

See also http://homel.vsb.cz/~kov16/predmety dm.php

3 / 30

Lecture overview

Chapter Connectivity of graphs

motivation
connectivity and components of a graph
searching through a graph
higher degrees of connectivity

4 / 30

Connectivity of graphs
If a graph represents a computer network or a road network, it is natural
to examine, whether one can transmit a signal or send goods from vertex
u to vertex v . This leads us to the notion of connectivity of graphs.
For similar reasons one can examine the robustness against local failures:

vertex redundancy
connectivity even in the case where several edges are cut

Hence we arrive at the notion of the degree of vertex- and
edge-connectivity .

Connected and not connected graphs.

5 / 30

Connections in graphs, components
Informally: A graph is connected, if there exists a “connection” between
every two vertices (not necessarily an edge).

Formally: we introduce the concept of a walk , trail , and path in s graph.

Definition

A v0vn walk in a graph G is such a sequence of vertices and edges

(v0, e1, v1, e2, v2, . . . , en, vn),

where vi are vertices and ei are edges of G such, that vi−1 and vi are
incident with ei . The number of edges n is the length of the v0vn walk.
v0 is the starting vertex and vn the end-vertex of the walk.

If there are no multiple edges, we can describe the walk by listing just a
sequence of vertices.

(v0, v1, v2, . . . , vn)

Alternatively we can omit the parentheses: v0, v1, v2, . . . , vn.

6 / 30

Example

v1 v2 v3

v4 v5 v6

v7

Walk v1, v1v2, v2, v2v5, v5, v5v7, v7, v7v6, v6,
v6v3, v3, v3v2, v2, v2v5, v5, v5v4, v4, v4v5, v5

is highlighted in blue.

Briefly:
v1, v2, v5, v7, v6, v3, v2, v5, v4, v5.

Example

v2v1

v4

v6 v7

v5v3

v1, v2, v6, v7, v2, v1, v2, v3 is not a walk
walk v1, v2, v6, v7, v2, v1, v2, v4

walk v1, v2, v7, v5, v6, v4, v3

(trivial) walk v4

7 / 30

The notion of “connectivity” is based on the term “walk”.

Definition

We say vertex v can be reached from vertex u, if there exists a uv walk in
the given graph.
We say a graph is connected if for every pair of vertices u, v is vertex v
reachable from vertex u. Otherwise the graph is not connected.

Example

Is each of the two graphs connected?

v1

v2

v3

v4 v5

v6

v7

v8 v1

v2

v3

v4 v5

v6

v7

v8

8 / 30

In some application the repetitions of edges or vertices is not allowed
(pipes, traffic networks, electrical networks, . . .).

Definition

Trail is a walk with no repeated edges.
Path is a walk with no repeated vertices.

Terminology: we travel along trails, we draw “in one stroke”.
Vertices and edges of a path in a graph form a subgraph that is a path.

Example

v1 v2 v3

v4 v5 v6

v7

v1 v2 v3

v4 v5 v6

v7

Trail v1, v2, v5, v7, v6, v5, v4 and a path v1, v2, v5, v7, v6, v3.

9 / 30

Theorem

If there exists a uv walk in G , then there exists also a uv path in G .

Proof Let W be a uv walk u = v0, e1, v1, . . . , en, vn = v of length n in G .
We want to find a uv walk P with no repeated vertex. If no vertex in W is
repeated, then P = W is the wanted path.
If a certain vertex vi is repeated, we can omit the entire part of W
between its first occurrence vi and its last occurrence of, say vk . We
obtain a uv walk W ′, in which the vertex vi occurs only once.
Now if no other vertex is repeated in W ′ we take P = W ′. Otherwise
repeat the process for the next repeated vertex.
The algorithm is deterministic, since there are only finitely many vertices
in G . �

If there exists a uv walk in G , we can obtain a uv path by the proof of the
theorem. We say that vertices u and v are joined by a path in G .

10 / 30

On the set of vertices of a given graph G we introduce the relation ∼.
Two vertices u, v ∈ V (G) are related in ∼ (we write u ∼ v) if and only if
there is uv walk in G .

We call ∼ a “relation of being reachable.”

Lemma

The relation ∼ is an equivalence relation.

Proof

Reflexivity follows from the existence of a trivial walk uu of length 0.
For each vertex u ∈ V (G) is u ∼ u.

Symmetry is obvious, since for each uv walk in G we can easily
construct the vu walk in G by “reversing” the sequence of vertices
and edges (in an unoriented graph). ∀u, v ∈ V (G) is u ∼ v ⇔ v ∼ u.

Transitivity follows from the fact, that by joining the walks u, . . . , v
and v , . . . ,w we obtain the walk u, . . . ,w . ∀u, v ,w ∈ V (G) is
u ∼ v ∧ v ∼ w ⇒ u ∼ w . �

11 / 30

The relation ∼ from the Lemma above defines a partitioning of V (G).
Now we can define the following:

Definition

The equivalence classes of ∼ are subsets of V (G) and subgraphs induced
on these sets are called components of G .

Example

Examples of graphs with one and more components.

12 / 30

Two alternative definitions of connectivity follow.

Definition

We say that a graph G is connected if it has only one component.

Definition

We say that G is connected if the ∼ relation on V (G) is total.

Example

Examples of connected graphs and a not connected graph.

13 / 30

How bishop moves.

Example

Take the graph S , which describes all possible movements of a bishop on a
chess board. (Recall that a bishop moves any number of vacant squares
diagonally.)
Vertices correspond to squares and an edges joins two squares if and only
if there is legal move of a bishop between them.

Graph S is not connected.

14 / 30

Example

Loyds’ fifteen puzzle is a classic. The task is to shuffle the pieces
numbered 1 through 15 so that they form an arithmetic progression 1
through 15 by rows.
We construct a graph of states: vertices are all possible arrangements of
the pieces and an edge joined two arrangements if there is a single valid
move from one to the other. One can show that such graph is not
connected and thus there is no solution to the puzzle!

15 / 30

Towers of Hanoi

We have three pegs and a set of discs of different sizes. All discs are on
one peg arranged according their size. The task is to move all discs to
another peg while

always one discs is moved,

never a larger disc can be on top of a smaller one.

Is it possible? What is the least number of moves required?

16 / 30

Graph formulation – state graph

For the solution we set up a state graph:

vertices – each valid distribution of discs,

edges – join two states with a valid move in between.

The puzzle with a single disc and with two discs.

For two discs we distinguish three cases where to put the larger discs.

For each we take a copy of the state graph for one disc.
We add edges where the larger discs can be moved.

17 / 30

Graph formulation

For three discs similarly. . .

18 / 30

Graph formulation

. . . and for five discs.

19 / 30

Interpretation of the graph formulation

For n discs we have:

3n different valid states = 3n vertices in the graph,

all discs on one peg = “tip” vertices,

each state is reachable,

to move all discs – at least 2n − 1 moves,

fastest solution = shortest path (next chapter).

20 / 30

Searching in a graph
For a general concept of “searching” in a graph we need to distinguish for
each graph element few different states and one auxiliary structure:
Vertex can have the status . . .

initial – at the beginning,
found – if it is found as an endpoint of an edge,
processed – once all outgoing edges are processed.

Edge can have the status . . .

initial – at the beginning,
processed – once it is processed from one end-point.

Depository as an auxiliary structure (sequence/set, see later),

we store here all found and unprocessed vertices.

Based on how we pick the vertices in the depository, we obtain different
variants of graph searching (depth-first/breadth-first search). For every
vertex and edge we can implement an action to be performed – searching
and processing a graph.

21 / 30

At the beginning

pick an arbitrary vertex
assign initial status to all vertices and edges

Algorithm of traversing all components

Traversing all connected components – we traverse each vertex and each
edge.

// on the input is the graph G

input < graph G;

status(all vertices and edges of G) = initial;

depository U = arbitrary vertex u of G;

status(u) = found;

Now we traverse the graph. . .

22 / 30

Algorithm of traversing all components (continued. . .)

// processing a component of G

while (U is not empty) {

pick a vertex v from the depository U: U = U - {v};

PROCESS(v);

for (edges e incident with v) // for all edges

if (status(e) == initial) PROCESS(e);

w = other end-vertex of e = vw; // known neighbor?

if (status(w) == initial) {

status(w) = found;

add vertex w to depository U: U = U + {w};

}

status(e) = processed;

}

status(v) = processed;

// check for additional components of G

if (U is empty && G has additional vertices)

U = {vertex u_1 from another component of G};

}

23 / 30

By various implementations of the depository we get various algorithms.

“Depth-first” search – depository U is implemented as a stack,
i.e. next processed vertex is the last found (and unprocessed).

“Breadth-first” search – depository U is implemented as a queue,
i.e. next processed vertex is the first found (and unprocessed).

Dijkstra algorithm for shortest path – from the depository pick always
the vertex closest to the initial vertex v_0;
(work as breadth-first search when all edges are of “equal length”).

Example

v1

v2 v3 v4

v5

v6 v7

Search through the graph using the depth-first and breadth-first search
(starting at the vertex v1).

24 / 30

v1

v2 v3 v4

v5

v6 v7

1

2 5 7

4

3 6

Breadth-first search (starting at v1).

v1

v2 v3 v4

v5

v6 v7

1

2 3 4

7

5 6

Depth-first search (starting at v1).

25 / 30

Note

The symbol O(g(n)) stands for all functions f (n), for which there exist
such positive constants c and n0, that ∀n > n0 is 0 ≤ f (n) ≤ c · g(n).

The algorithm described above is both easy and fast. The number of steps
grows linearly with the number of vertices plus the number of edges of a
given graph, the complexity is O(n + m), where n is the number of
vertices and m is the number of edges.

Questions

How to modify the algorithm to list all edges of a given graph?
How to modify the algorithm to check connectivity of a given graph?
How to modify the algorithm to find and distinguish all components of a
given graph?

26 / 30

k-connectivity
Often we examine not only if there exists a connection between a two
vertices in a graph, but also if there will be a loss of connectivity if the
case of local failures (web, roads, electricity network).

Eisenhower Interstate Highway System in the USA.

27 / 30

Definition

Graph G is edge k-connected if k ≥ 1 and after removing any k − 1 edges
from G remains the resulting factor connected.
The edge-connectivity of G is such a highest number k that G is edge
k-connected.

Definition

Graph G is vertex k-connected if |V (G)| > k ≥ 1 and after removing any
k − 1 vertices from G remains the resulting induced subgraph connected.
The vertex-connectivity of G is such a highest number k that G is vertex
k-connected.

Graphs with different edge/vertex k-connectivity.

28 / 30

We say that paths P and P ′ are:

edge-disjoint if they share no edge,

internally-disjoint if they share no internal vertex.

Theorem (Menger’s theorem)

Graph G is edge k-connected if and only if there are at least k
edge-disjoint paths between any two vertices (the paths can share vertices).
Graph G is vertex k-connected if and only if there are at least k
internally-disjoint paths between any two vertices (the paths share only
end-vertices).

Proof In the last Chapter. �

The following important theorem we state without a proof:

Theorem

In any graph G is the vertex-connectivity does not exceed
edge-connectivity which then does not exceed the minimum vertex
degree δ(G).

29 / 30

Example

The complete graph Kn is edge and vertex (n − 1)-connected.

x

y

x

y

x

y

x

y

x

y

x

y

Different edge-/internally-disjoint paths between x and y in K7.

30 / 30

Next lecture

Chapter Eulerian and hamiltonian graphs

motivation
eulerian graphs traversable in “one trail”
hamiltonian graphs traversable in “one path”

1 / 18

Discrete mathematics

Petr Ková̌r
petr.kovar@vsb.cz

VŠB – Technical University of Ostrava

Winter term 2021/2022
DiM 470-2301/02, 470-2301/04, 470-2301/06

The translation was co-financed by the European Union and the Ministry of Education, Youth and Sports from the Operational
Programme Research, Development and Education, project “Technology for the Future 2.0”, reg. no.

CZ.02.2.69/0.0/0.0/18 058/0010212.

This work is licensed under a Creative Commons “Attribution-ShareAlike 4.0 International” license.

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

2 / 18

About this file

This file is meant to be a guideline for the lecturer. Many important pieces
of information are not in this file, they are to be delivered in the lecture:
said, shown or drawn on board. The file is made available with the hope
students will easier catch up with lectures they missed.

For study the following resources are better suitable:

Meyer: Lecture notes and readings for an
http://ocw.mit.edu/courses/electrical-engineering-and-

computer-science/6-042j-mathematics-for-computer-science

-fall-2005/readings/”(weeks 1-5, 8-10, 12-13), MIT, 2005.

Diestel: Graph theory http://diestel-graph-theory.com/

(chapters 1-6), Springer, 2010.

See also http://homel.vsb.cz/~kov16/predmety dm.php

3 / 18

Lecture overview

Chapter Eulerian and hamiltonian graphs

motivation
eulerian graphs traversable in “one trail”
hamiltonian graphs traversable in “one path”

4 / 18

Eulerian graphs
Historically first problem solved by graph theory approach in 1736:
Seven bridges of Königsberg – search for a trail uv , such that it contains
all edges of a given graph G .

5 / 18

Example

A postman has to deliver mail along each street in his district. Suppose he
can traverse each street only once – he travels the shortest distance and
delivers mail sooner.

Take a graph representing the district in which streets correspond to edges
and junctions to vertices. On optimal solution to the postman problem
corresponds to finding a trail that traverses each edge precisely once.

Similarly one can suggest an optimal route for snowplows, garbage cars,
etc.

Example

v1 v2

v4v3

x1 x2

x4 x3

x5

Is it possible to draw the edges of G in one stroke?

6 / 18

Definition

A trail in a graph G which originates and stops in the same vertex is called
a closed trail. Moreover, if it contains all edges of a connected graph G , it
is a closed eulerian trail. A graph that allows a closed eulerian is called an
eulerian graph.

A trail in a connected graph G which originates in one stops in another
vertex and contains all edges of G is called an open eulerian trail.

We say that each such graph can be drawn in a single stroke.

Theorem

Graph G can be traversed by a single closed trail, if and only if G is
connected and all vertices of G are of even degree.

Using an elegant argument one can show easily:

Corollary

Graph G can be traversed by a single open trail, if and only if G is
connected and precisely two vertices of G are of odd degree.

7 / 18

Eulers’ Theorem

Graph G can be traversed by a single closed trail, if and only if G is
connected and all vertices of G are of even degree.

Proof By induction on the number of edges (just a sketch of ”⇐”).

Basis step:
We can start with the trivial graph. For non-trivial connected graph G is
every vertex of degree at least 2. The smallest such graph is G ' Cn.
Graph G contains a closed trail traversing all edges (why?).

Inductive step:
Suppose, that every connected graph with less than |E | edges and with all
vertices of even degree contains a closed trail traversing all edges. In G we
take any cycle C (each vertex is of degree at least 2). In G − C are
vertices of even degree (or isolated vertices). If G − C is not connected,
each component contains by induction hypothesis a closed trail traversing
all edges of the component.
Now we insert into the closed trail C a closed “sub-trail” at vertex vi , one
in each component. We obtain a closed trail traversing all edges of G .

The claim of ”⇐” follows by (strong) mathematical induction. �

8 / 18

Corollary

The edges of a graph G can be drawn in a single (open) stroke if and only
if G is connected and precisely two of its vertices are of odd degree.

Proof
”⇒” Suppose the edges of a graph can be drawn in a single stroke (via
an open eulerian trail). Then G is connected and all its vertices are of even
degree with the exception of the first and the last vertex of the open
eulerian trail.
”⇐” Suppose G is connected wit precisely two vertices u and v of odd
degree. We can add a new vertex x to G and join it with pair of edges to
vertices u and v . We obtain a connected graph G ′ in which each vertex
(u, v and x included) is of even degree.
By Eulers’ Theorem there exists a closed eulerian trail T ′ in G ′. After
removing vertex x and both edges incident to x we obtain an open
eulerian trail T from vertex u to v in G . �

9 / 18

Examples

u1

u2

u3u4

u5

u6

u7

u8 u9

u10

v1

v2

v3

v4

v5

v6

v7

w1

w2

w3

w4

w5

w6w7

w8 w9

Which of these graphs are eulerian?

10 / 18

Eulerian trail can be used to solve other problem besides traveling.
One nice application of eulerian trails:

Example

The vertices of the state graph (corresponding to some system) represent
states which may occur. We join two states by an edge if one state can
lead to the other – e.g. Finite Automaton.

When designing a test of the system, we would like to check all states and
all possible transitions. An optimal test may run along an eulerian trail.

11 / 18

Hamiltonian graphs

Hamiltonian cycle

(or hamiltonian circuit) in a given graph is a cycle that contains all
vertices of G .
A graph for which a hamiltonian cycle exists is a hamiltonian graph.

(Hamiltonian cycle visits every vertex of the graph.)

It may seem that constructing hamiltonian cycles is related to constructing
eulerian trails. This is not the case!
While there is an easy necessary and sufficient condition of even degrees
for the existence of eulerian trails in connected graphs, for the existence of
hamiltonian cycles no such easy condition is known (some think it may not
exists).

Corollary: it is not easy to decide whether a graph is hamiltonian or not.

12 / 18

Example

The traveling salesman problem is a well known motivation. The salesman
wants to visit each city in his region, return to the starting city and travel
the shortest possible distance during his travel.
Simplified version: can he visit every city wit at least 500 citizens precisely
once and return back?

Optimal solution to the travelling salesman problem for 13 509 cities in
the USA.

13 / 18

Example

A postman in a village delivers mail each day only to some of the houses.
Rather than traverse each street, he has to visit each address (house) to
which a letter has to be delivered.

Example

In a warehouse when goods are to be deposited or picked up, the forklift
(or pallet) has to visit each of the spot where a certain good is stored in
pallets. The forklift has to visit all selected locations and travel the
shortest distance possible.

All the problem mentioned above can be formulated as finding a
hamiltonian cycle in a graph, or a shortest hamiltonian path, respectively.

14 / 18

Examples

Which of the following graph are/are not hamiltonian?

Hamiltonian an non-hamiltonian graphs.

Examples

More problem leading to hamiltonian cycles

family travel plan for visiting several places of interest

theater or circus tour through the country

Hamilton game

15 / 18

Theorem (Dirac)

Let G be a graph on n vertices, where n ≥ 3.
If the smallest degree is at least n/2, then G is hamiltonian.

Proof In another course “Teorie Graf̊u I”.

Notice, the statement has the form of an implication, not an equivalence.
Thus, each graph in which the smallest degree high enough is hamiltonian,
but not each hamiltonian graph has to have a large small degree.

Example

A hamiltonian graph does not have to have “many” edges.

Cycle C7.

16 / 18

Theorem (Ore)

Let G be a graph on n vertices, where n ≥ 3.
If for each independent (nonadjacent) vertices u and v in a graph G is
deg(u) + deg(v) ≥ n, then G is hamiltonian.

Diracs’ Theorem is a special case of Ores’ Theorem.

Example

Is this graph hamiltonian?

u1

u2

u3

u4

u5 u6

u7

17 / 18

Why are the graphs called “hamiltonian”?

18 / 18

Next lecture

Chapter Distance and measuring in graphs

motivation
distance in graphs
measuring in graphs
weighted distance
shortest path algorithm

1 / 41

Discrete mathematics

Petr Ková̌r
petr.kovar@vsb.cz

VŠB – Technical University of Ostrava

Winter term 2021/2022
DiM 470-2301/02, 470-2301/04, 470-2301/06

The translation was co-financed by the European Union and the Ministry of Education, Youth and Sports from the Operational
Programme Research, Development and Education, project “Technology for the Future 2.0”, reg. no.

CZ.02.2.69/0.0/0.0/18 058/0010212.

This work is licensed under a Creative Commons “Attribution-ShareAlike 4.0 International” license.

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

2 / 41

About this file

This file is meant to be a guideline for the lecturer. Many important pieces
of information are not in this file, they are to be delivered in the lecture:
said, shown or drawn on board. The file is made available with the hope
students will easier catch up with lectures they missed.

For study the following resources are better suitable:

Meyer: Lecture notes and readings for an
http://ocw.mit.edu/courses/electrical-engineering-and-

computer-science/6-042j-mathematics-for-computer-science

-fall-2005/readings/”(weeks 1-5, 8-10, 12-13), MIT, 2005.

Diestel: Graph theory http://diestel-graph-theory.com/

(chapters 1-6), Springer, 2010.

See also http://homel.vsb.cz/~kov16/predmety dm.php

3 / 41

Lecture overview

Chapter Distance and measuring in graphs

motivation
distance in graphs
measuring in graphs
weighted distance
shortest path algorithm

4 / 41

Motivation
In many real life applications of graphs we need to “measure” distances.

In a graph representing a road network it is natural to ask

“How far is it from vertex (place) u to vertex (place) v?”
or

“How long does it tak to travel from vertex u to vertex v?”

The distance will not be just mere number of edges (number of roads
traveled) but important will be their length. Notice that length have not
been considered yet.

We will introduce the notion of labeling edges. The meaning of the labels
may vary: length, width, capacity, color, . . .

Usually, for labels one can use natural numbers only (well chosen scale).

5 / 41

x y

1

1

1

1

1

1

1

x y

1

3

5

7

2

4

6

x y

1

2

5

7

3

4

6

Different distances between vertices u and v in graph C7.

In the graph on the left
the distance between vertices x and y is 3 = number of edges of the
shorter path (walk).

In the graph in the middle
the distance between vertices x and y is 14 = 3 + 1 + 6 + 4 = 5 + 7 + 2.

In the graph on the right
the distance between vertices x and y is 13 = 2 + 1 + 6 + 4.

6 / 41

Distance in graphs
First for unlabeled graphs, i.e. each edge has length 1.

Length of a walk is the number of edges in the sequence of vertices and
edges in a a walk

v0, e1, v1, e2, v2, . . . , en, vn,

where each edge ei has end-vertices vi−1 and vi .

Definition

Distance distG (u, v) between vertices u and v in a graph G is given by the
length of the shortest walk between u and v in G . If no walk between u
and v exists, we define the length to be distG (u, v) =∞.

Notice, that

the shortest walk (with the fewest edges) is always a path
in unoriented graphs is distG (u, v) = distG (v , u)
distG (u, u) = 0
if distG (u, v) = 1, then edge uv ∈ E (G)

7 / 41

Lemma

Distance in a graph G satisfies the triangle inequality :

∀u, v ,w ∈ V (G) : distG (u,w) ≤ distG (u, v) + distG (v ,w).

Proof The inequality follows from the observation, that the walk of length
distG (u, v) between u, v joined with the walk of length distG (v ,w)
between v , w gives a walk of length distG (u, v) + distG (v ,w) between u,
w . Never distG (u,w) > distG (u, v) + distG (v ,w). Yet, a shorter walk
from u to v can exist distG (u,w) ≤ distG (u, v) + distG (v ,w). �

u

v

w

Two walks u, v and v ,w; a shorter walk between u, w.

8 / 41

Measuring in graphs (graph metrics)
When measuring distances one cannot simply choose among all possible
paths.

Example

What is the number of all paths between u, v in a complete graph Kn.

1 If u = v , then there exists only one (trivial) path from u to v .

2 Of u 6= v there exist V (n − 2, k) = (n−2)!
(n−2−k)! different paths from u to

v with k internal vertices, 0 ≤ k ≤ n − 2.

The total number of different uv paths is
n−2∑
k=0

(n − 2)!

(n − 2− k)!
.

There are O((n − 2)!) different paths . . . too many possibilities.

9 / 41

There is a simple modification of the breadth-first search algorithm
(depository implemented as a queue Q).
We determine lengths of the shortest paths form a given vertex to every
other vertex.

Each newly found vertex w will be assigned the distance by one greater
than the processed vertex v .
Distances are stored an a one-dimensional array dist[].

Algorithm: Distances from a given vertex

// on the input is the graph G

input < graph G;

status(all vertices of G) = initial;

queue Q = a given vertex u of G;

status(u) = found;

dist(u) = 0; // distance of u

10 / 41

Algorithm: Distances from a given vertex (continued)

// processing a selected component of G

while (Q is not empty) {

pick a vertex v from the queue Q; Q = Q - v;

for (edges e incident with v) // for all edges

w = other end-vertex of e = vw; // known neighbor?

if (status(w) == initial) {

status(w) = found;

add vertex w to queue: Q = Q + w;

dist[w] = dist[v]+1; // distance of w

}

}

status(v) = processed;

}

// vertices in additional components are unreachable!

while (there are unprocessed vertices w in G) {

dist[w] = MAX_INT; // infinity

status(w) = processed;

}

11 / 41

Notice:

The number of steps depends on the number of vertices and edges of
the given graph.
Complexity is O(n + m), where n is the number of vertices and m is
the number of edges.
After the line dist[w] = dist[v]+1;

add the line pre[w] = v;

If we store for every vertex its predecessor on the shortest path, we
can reconstruct the path:

I the last vertex is w ,
I the next-to-the-last vertex is pre[w],
I the the next-to-the-next-to-the-last vertex is pre[pre[w]],
I . . .
I first (i.e. starting) vertex is pre[. . . pre[pre[w]]] = u.

12 / 41

We assumed that vertices closer to u are processed before more distant
vertices.
This can be proven and used to prove the validity of the algorithm.

Lemma

Let u, v ,w be vertices of a connected graph G such, that
distG (u, v) < distG (u,w). In a breadth-first search in G starting at the
vertex u the vertex v will always be found before the vertex w .

Proof By induction on distG (u, v).
Basis step: For distG (u, v) = 0, i.e. u = v the claim is obvious – the
vertex u is found first.
Inductive step: Now for some distG (u, v) = d > 0 we denote by v ′ the
neighbor of v on the shortest walk u, v to u, obviously dG (u, v ′) = d − 1.
Similarly, by w ′ we denote the neighbor of w on the walk u,w to u, thus
distG (u, v ′) < distG (u,w ′).
By the induction hypothesis the vertex v ′ will be in a breadth-first search
found before w ′. This implies also, that v ′ will come to the queue of the
depository before w ′, and thus the neighbors of v ′ (v is among them) will
be found before the neighbors of w ′. �

13 / 41

Corollary

The basic algorithm for breadth-first search can be used to count distances
from the vertex u to all other vertices.

Proof is in the textbook.

Questions

Why the depth-first search cannot be used instead the breadth-first search?
Which part of the algorithm would fail?

14 / 41

Evaluating the metrics
By a metrics we understand the distance between any pair of vertices in a
given graph. We expect the metrics to satisfy “common properties”.

Formally: the set of vertices along with the distance function for every pair
of vertices forms a metric space.

Definition

Metrics ρ on a given set A is such a mapping ρ : A× A→ R, that
∀x , y ∈ A the following holds

1 ρ(x , y) ≥ 0 while ρ(x , y) = 0 only for x = y ,

2 ρ(x , y) = ρ(y , x),

3 ρ(x , y) + ρ(y , z) ≥ ρ(x , z).

Informally: The metrics in G is a matrix (two-dimensional field) d[][],
where d[i][j] gives the distance between vertices i and j (vertices are 0,
1, . . . , |V (G)| − 1).

15 / 41

To find the metrics we can use the algorithm for measuring distances from
a given starting vertex (repeat it for every starting vertex u).
There is a simpler algorithm:

Method: Counting the metric by joining paths

We denote the vertices of a graph by 0, 1, 2, . . . ,N − 1.

Let d[i][j] equal 1 (optionaly to the length of edge ij), or ∞ if
edge ij is not in the graph.

After each iteration t ≥ 0 contains d[i][j] the length of the
shortest path between i , j which passes only through vertices in
{0, 1, 2, . . . , t}.
During each iteration t we may modify the distance between every
pair of vertices, there are two options:

1) we find a shorter way through the newly added vertex t; we replace
d[i][j] by a shorter length d[i][t] + d[t][j], or

2) adding the vertex t does not help to find a way shorter than d[i][j]

obtained in the previous steps; then d[i][j] remains unaltered.

16 / 41

Floyd’s Algorithm – shortest paths

input: adjacency matrix G[][] of a graph with N vertices,

where G[i][j]=1 for edge ij and

G[i][j]=0 otherwise;

// initialization (value MAX_INT/2 stands for "infinity")

for (i=0; i<N; i++)

for (j=0; j<N; j++)

d[i][j] = (i==j ? 0 : (G[i][j] ? 1 : MAX_INT/2));

// loop for every vertex t, index from [0,N-1]

for (t=0; t<N; t++)

// traverse all pairs of vertices

for (i=0; i<N; i++)

for (j=0; j<N; j++)

// is there a shorter path through t?

d[i][j] = min(d[i][j], d[i][t]+d[t][j]);

In the computer we implement ∞ by a large constant, i.e. MAX INT/2.

17 / 41

Advantages:

easy implementation
finds the distance between every pair of vertices

Disadvantages:

even when searching only the distance of two vertices, we have to find
the distance of every pair of vertices
complexity of O(n3), where n is the number of vertices
doesn’t provide shortest paths, just distances
(can’t reconstruct the path based on the result only)

18 / 41

Weighted distance
We assign numbers to edges: length, width, capacity, color, . . .

Definition

Labeling of a given graph G is a mapping w : E (G)→ R, which assigns a
real number w(e) (called edge weight/label) to every edge of G . Weighted
(or labeled) graph is a graph G along with a labeling.
In a positively weighted (labeled) graph G are all weights w(e) positive
(w(e) > 0 pro ∀e ∈ E (G)).

Edge weight – more commonly “labels”.

In real life applications:

labels are usually non-negative,

we can use integers only when choosing a suitable scale (units).

Positively weighted (labeled) graph is a special case of a labeled graph.

19 / 41

Now we introduce distances in weighted graphs.

Definition

Let G be a weighted graph G with labeling w .
The length of a weighted walk S = v0, e1, v1, e2, v2, . . . , en, vn in G is the
sum

dw
G (S) = w(e1) + w(e2) + · · ·+ w(en)

(each edge is counted as may times as it appears in the walk S).
(Weighted) distance between two vertices u, v in a weighted (positively
labeled) graph (G ,w) is

distwG (u, v) = min{dw
G (S),where S is a path between u and v}.

If vertices u and v are unreachable, we set distwG (u, v) =∞.

Lemma

Weighted distance in positively weighted graphs satisfies the triangle
inequality ∀u, v ,w ∈ V (G) : distwG (u,w) ≤ distwG (u, v) + distwG (v ,w).

20 / 41

Example

xw

v

u z

y

5

2

5

4

4

6

2
1

xw

v

u z

y

−5

2

5

4

4

6

2
1

Two different labelings of G .

Questions

What is the distance between v and y in the graph on the left?
13? 12? 11? 10?

What is the distance between w and z?
We do not allow negative weights, since then no shortest walk has to
exists.

What is the distance between v and y in the graph on the right?
3?, 0?, -1?, 10? −n?

21 / 41

Shortest path algorithm
For finding a shortest (weighted) path between two vertices of a positively
weighted graph Dijkstra’s algorithm is used.

more complex than the algorithm above
is significantly faster ; finds the distance from a particular vertex to all
other vertices, not between all pairs of vertices

Dijkstra’s algorithm is used while searching connections in on-line search
engines.

Dijkstra’s algorithm

is a modification of the breadth-first search algorithm – for each
vertex v found we store the value of distance (length of the shortest
u, v -path) from the vertex u, as well as the last vertex on this path.
From the depository we always pick the vertex v with the smallest
distance from u (no shorter u, v -path exists).
After the search we have the distance form u to all vertices of the
graph.

22 / 41

Dijkstra’s algorithm (initialization)

Finds the shortest path between u and v of a positively weighted graph G
(given by the incidence matrix).

input: graph on N vertices, in an incidence matrix neig[][]

and w[][], where neig[i][0], ..., neig[i][deg[i]-1]}

are neighbors of vertex i with degree deg[i] and edge

from i to neig[i][k] has length w[i][k] > 0;

input: u,v, we search path from u to v;

// state[i] stores the state of vertex i:

// 0 ... initial

// 1 ... processed

// dist[i] gives the shotest (so far) distance to i

// pre[i] contains the predecessor of i

// initialization

for (i=0; i<=N; i++) // MAX_INT also to dist[N]!

{ dist[i] = MAX_INT; state[i] = initial; }

dist[u] = 0;

23 / 41

Dijkstra’s algorithm (continued)

while (state[v] == initial) {

for (i=0, j=N; i<N; i++) // dist[N] = MAX_INT

if (state[i] == initial && dist[i] < dist[j])

j = i;

// we have the closest unprocessed vertex j

// process it

if (dist[j] == MAX_INT) return NO_PATH;

state[j] = processed;

for (k=0; k<deg[j]; k++)

if (dist[j]+w[j][k] < dist[neig[j][k]]) {

dist[neig[j][k]] = dist[j]+w[j][k];

pre[neig[j][k]] = j;

}

// field pre[] containfs information about

// predecessors on the shortest path

}

output: Path of length dist[v] stored recursively in pre[];

24 / 41

Notes to Dijkstra’s algorithm

Running the loop not with the condition state[v] == initial, but
until all vertices are processed, the algorithm gives the shortest path
and its length from u to all vertices. This information is stored in
dist[] and pre[].

The total number of steps in Dijkstra’s Algorithm for finding the
shortest path from u to v is approximately N2, where N in the
number of vertices.

Implementing the depository in a convenient way (e.g. heap with the
distance as a key) an even faster implementation can be achieved on
sparse graphs – running time is approximately the number of edges.

Algorithm works also for oriented graphs.

We can modify it easily also for widest road .

An example follows. . .

Take the road map close to Přerov. We search for distance from Přerov
to all other places.

26 / 41

ul 3l
1l

6l

4l
7l

2l
5l

HH
HHH

HHH

�
�
�
�
��

@
@
@@

��
��

��
��

��

@@

�
��
�

��
��

��

@
@
@@ �

�
�
�
��

@@

Přerov

Radslavice

Lipńık nad Bečvou

Bysťrice pod Hostýnem

Helf̌stýn

Býškovice

Hranice na Moravě

Teplice

12

5

16

8

11

11

2

10
6

7

6 7

2

This is a graph representation of the road map. Edges in the graph are
labeled by distances in kilometers. Vertices represent cities and roads are
depicted by edged joining the corresponding vertices. Vertex i will be
labeled by (pre[i], dist[i]).

27 / 41

ul 3l
1l

6l

4l
7l

2l
5l

HH
HHH

HHH

�
�
�
�
��

@
@
@@

��
��

��
��

��

@@

�
��
�

��
��

��

@
@
@@ �

�
�
�
��

@@

(?, 0)

(u, 5)

(u, 12)

(u, 16)

(?,∞)

(?,∞)

(?,∞)

(?,∞)

12

5

16

8

11

11

2

10
6

7

6 7

2

In the initial step of Dijkstra’s algorithm each vertex will be in the state 0
(initial state). Only the starting vertex u will have distance 0, i.e. labeled
by (0, 0). All remaining vertices are labeled by (?,∞).
In the first step all vertices j , adjacent to u will be labeled by (s,w [s][j]).

28 / 41

ul 3l
1l

6l

4l
7l

2l
5l

H
HHHH

HHH

�
�
�
�
��

@
@
@@

�
��
�

��
��

��

@@

��
��

��
��

��

@
@
@@ �

�
�
�
��

@@

(?, 0)

(u, 5)

(u, 12)

(u, 16)

(?,∞)

(?,∞)

(?,∞)

(?,∞)

12

5

16

8

11

11

2

10
6

7

6 7

2

Next we choose the vertex j , which has from u the distance. This is the
vertex 3.

29 / 41

ul 3l
1l

6l

4l
7l

2l
5l

HHH
HHH

HH

�
�
�
�
��

@
@
@@

��
��

��
��

��

@@

��
��

��
��

��

@
@
@@ �

�
�
�
��

@@

(?, 0)

(u, 5)

(u, 12)

(u, 16)

(3, 13)

(?,∞)

(?,∞)

(?,∞)

12

5

16

8

11

11

2

10
6

7

6 7

2

In the next step we modify the label of neighbors of 3 (the closest
unprocessed vertex).
We modify the label of vertex 4. The new label of vertex 4 will be (3, 13).
The label of vertex 6 will not be changed. The vertex u is also adjacent
to 3, but it is processed and its label will change no more.

30 / 41

ul 3l
1l

6l

4l
7l

2l
5l

�
�
�
�
��

H
HHH

HHHH

@
@
@@

�
��
�

��
��

��

@@

��
��

��
��

��

@
@
@@ �

�
�
�
��

@@

(?, 0)

(u, 5)

(u, 12)

(u, 16)

(3, 13)

(?,∞)

(?,∞)

(?,∞)

12

5

16

8

11

11

2

10
6

7

6 7

2

Next we pick the vertex j , with the closest distance from u.
This is the vertex 1 (dist[1] = 12).

31 / 41

ul 3l
1l

6l

4l
7l

2l
5l

�
�
�
�
��

HHH
HHH

HH

@
@
@@

��
��

��
��

��

@@

��
��

��
��

��

@
@
@@ �

�
�
�
��

@@

(?, 0)

(u, 5)

(u, 12)

(u, 16)

(3, 13)

(?,∞)

(1, 23)

(?,∞)

12

5

16

8

11

11

2

10
6

7

6 7

2

Now vertex 2 will be labeled (1, 23), since ∞ > dist[1] + w [1][2]. But the
label of 4 will not be changed.

32 / 41

ul 3l
1l

4l

6l
7l

2l
5l

�
�
�
�
��

�
��
�

@@

H
HHH

HHHH

@
@
@@

��
��

��

��
��

��
��

��

@
@
@@ �

�
�
�
��

@@

(?, 0)

(u, 5)

(u, 12)

(u, 16)

(3, 13)

(?,∞)

(1, 23)

(?,∞)

12

5

16

8

11

11

2

10
6

7

6 7

2

Vertex 4 is the closest to u, it will be processed next.

33 / 41

ul 3l
1l

4l

6l
7l

2l
5l

�
�
�
�
��

��
��

@@

HH
HHH

HHH

@
@
@@

��
��

��

�
��
�

��
��

��

@
@
@@ �

�
�
�
��

@@

(?, 0)

(u, 5)

(u, 12)

(u, 16)

(3, 13)

(4, 19)

(1, 23)

(4, 20)

12

5

16

8

11

11

2

10
6

7

6 7

2

The unprocessed neighbors of vertex 4 are 5, 6 and 7. Since
dist[5] > dist[4] + w [4][5] (∞ > 13 + 7), we label vertex 5 by (4, 20). The
label of vertex 6 will not change. The vertex 7 will be labeled by a new
label (4, 13 + 6).

34 / 41

ul 3l
1l

4l

6l
7l

2l
5l

�
�
�
�
��

HHH
HHH

HH

��
��

@
@
@@

@@

��
��

��

��
��

��
��

��

@
@
@@ �

�
�
�
��

@@

(?, 0)

(u, 5)

(u, 12)

(u, 16)

(3, 13)

(4, 19)

(1, 23)

(4, 20)

12

5

16

8

11

11

2

10
6

7

6 7

2

Closest to vertex u is now the vertex 6. The remaining unprocessed
vertices 2, 5 and 7 have a higher dist[i].
We will not modify any label, no distance can be improved!
Note: If there are more vertices with the same distance, we choose one
arbitrarily.

35 / 41

ul 3l
1l

4l

6l
7l

2l
5l

�
�
�
�
��

H
HHHH

HHH

�
��
�

@
@
@@

@@

��
��

@
@
@@

��
��

��

��
��

��

�
�
�
�
��

@@

(?, 0)

(u, 5)

(u, 12)

(u, 16)

(3, 13)

(4, 19)

(1, 23)

(4, 20)

12

5

16

8

11

11

2

10
6

7

6 7

2

Closest to vertex u is now the vertex 7 (dist[7] = 19). Again no label will
be modified.

36 / 41

ul 3l
1l

4l

6l
7l

5l
2l

�
�
�
�
��

HHH
HHH

HH

��
��

@
@
@@

@@

��
��

@
@
@@

��
��

��

�
�
�
�
��

��
��

��
@@

(?, 0)

(u, 5)

(u, 12)

(u, 16)

(3, 13)

(4, 19)

(1, 23)

(4, 20)

12

5

16

8

11

11

2

10
6

7

6 7

2

Closest to vertex u is the vertex 5 since dist[5] < dist[2] (20 < 23). We
process it.

37 / 41

ul 3l
1l

4l

6l
7l

5l
2l

�
�
�
�
��

HHH
HHH

HH

��
��

@
@
@@

@@

��
��

@
@
@@

��
��

��

�
�
�
�
��

��
��

��
@@

(?, 0)

(u, 5)

(u, 12)

(u, 16)

(3, 13)

(4, 19)

(5, 22)

(4, 20)

12

5

16

8

11

11

2

10
6

7

6 7

2

Last unprocessed vertex is now vertex 2.
Since dist[2] > dist[5] + w [5][2] (23 > 22) the new label of vertex 2 will
be (5, 22).

38 / 41

ul 3l
1l

4l

6l
7l

5l
2l

�
�
�
�
��

HH
HHH

HHH

��
��

@
@
@@

��
��

��

@@

�
��
�

@
@
@@

��
��

��

�
�
�
�
��

@@

(?, 0)

(u, 5)

(u, 12)

(u, 16)

(3, 13)

(4, 19)

(5, 22)

(4, 20)

12

5

16

8

11

11

2

10
6

7

6 7

2

Now (the only) vertex closest to u is vertex 2. We modify its state and the
algorithm stops.
We have found the distance from u to all vertices in the graph.

39 / 41

Proof that Dijkstra’s Algorithm works correct

Theorem

Let G be a (positively) weighted graph and let u and v be two vertices in
G . Dijkstra’s Algorithm finds the shortest path from vertex u to vertex v .

Proof
By S we denote the set of processed vertices.
Key observation is that after each iteration gives dist[i] the distance
from u to i traversing only all processed vertices in S . These distances are
the same when traversing any vertices in G .

We proceed by induction on the number of iterations:

Basis step: In the first iteration of Dijkstra’s Algorithm the only vertex in
the depository is u. We process it and modify the distance to its neighbors
based on edge weights adjacent to u.

The claim holds trivially, since after the iteration S = {u} and all the
distances through vertices in S only are minimal.

40 / 41

Proof (continued)
Inductive step: In every subsequent iteration we choose from the
depository the vertex j with the distance to vertex u.
At the same time no shorter path to j exists, all paths through
unprocessed vertices has to be longer, no shortcut through more distant
vertices is not possible due the choice of j.

u

x
j

y

i

G

S

S ∪ {j}

Here we use the that the weights w[][] are positive, through i the paths
have to be longer than through j. The claim follows by induction. �

41 / 41

Next lecture

Chapter Trees and forest

motivation
basic tree properties
rooted trees
isomorphism of trees
spanning trees of graphs

1 / 39

Discrete mathematics

Petr Ková̌r
petr.kovar@vsb.cz

VŠB – Technical University of Ostrava

Winter term 2021/2022
DiM 470-2301/02, 470-2301/04, 470-2301/06

The translation was co-financed by the European Union and the Ministry of Education, Youth and Sports from the Operational
Programme Research, Development and Education, project “Technology for the Future 2.0”, reg. no.

CZ.02.2.69/0.0/0.0/18 058/0010212.

This work is licensed under a Creative Commons “Attribution-ShareAlike 4.0 International” license.

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

2 / 39

About this file

This file is meant to be a guideline for the lecturer. Many important pieces
of information are not in this file, they are to be delivered in the lecture:
said, shown or drawn on board. The file is made available with the hope
students will easier catch up with lectures they missed.

For study the following resources are better suitable:

Meyer: Lecture notes and readings for an
http://ocw.mit.edu/courses/electrical-engineering-and-

computer-science/6-042j-mathematics-for-computer-science

-fall-2005/readings/”(weeks 1-5, 8-10, 12-13), MIT, 2005.

Diestel: Graph theory http://diestel-graph-theory.com/

(chapters 1-6), Springer, 2010.

See also http://homel.vsb.cz/~kov16/predmety dm.php

3 / 39

Lecture overview

Chapter Trees

motivation

basic tree properties

rooted trees

isomorphism of trees

spanning trees of graphs

4 / 39

Chapter Trees

Motivation
Among the most common structures in both nature and mathematics are
trees (objects with “tree” structure).
There exist a vast amount of objects, that can be described by a “tree”.

genealogy trees

evolutionary tree

electrical circuits

hierarchical structure (chief and subordinated)

branching in a search

Common property: no “cycle” in the structure.

5 / 39

Elementary properties of trees
We say, that a graph is acyclic, if it does not contain a cycle. thus if no its
subgraph is isomorphic to a cycle.

Definition

A simple connected graph that acyclis is a tree.
A forest is a graph, whose components are trees.

Note to terminology

Forest is a (finite simple) acyclic graph.

Tree is a connected forest.

Seems awkward. . .

6 / 39

Vertices of degree 1 are called leaves.
All other vertices are non-leaf vertices.

Lemma

A tree with more than one vertex contains at least one leaf.

Proof Connected graph with more than one vertex cannot have a vertex of
degree 0. Let us take any tree T and some vertex v . Now we construct a
longest possible trail S in T starting at v . S starts with any edge from v
(such an edge exists, why?). In every consequent vertex u of the trail S

either u is of degree at least 2 and we can extend S by another edge
(notice: if some vertex would repeat in trail S , then S would contain
a cycle, that would be a subgraph of tree T , which contradicts the
definition of a tree),

or u is the last vertex of the trail (u is of degree 1),

Since T is finite, we surely find such vertex of degree 1 in any tree T . �

Note

It’s easy to prove, that every nontrivial tree T contains at least two leaves.

7 / 39

Questions

How is called a tree with, precisely two vertices of degree 2 and no
vertex with larger degree?

Does there exist a tree with a vertex of degree k and less than k
vertices of degree 1?

Can you prove the previous assertion?

How many edges have to be removed from Kn to obtain a tree?

8 / 39

Theorem

A tree on n vertices has precisely n − 1 edges.

Proof
We proceed by induction on n.

Basis step: A (trivial) tree with one vertex has n − 1 = 0 edges.

Inductive step: Let T be any non-trivial tree on n > 1 vertices. By
induction hypothesis every tree with less than n vertices has one edge less
than vertices.
By the previous lemma T has a vertex of degree 1. By T ′ = T − v we
denote the graph, which arises from T by removing vertex v (“shaving”).

After removing a leaf the graph remains connected (no path between
two vertices different from v does not pass through a vertex of
degree 1), T ′ is connected.

Removing a vertex/an edge no cycle arises, T ′ is also acyclic.

By induction hypothesis T ′ has one edge less then vertices, thus T ′ has
(n − 1)− 1 edges. Hence the original tree T has one edge more, i.e.
(n − 1)− 1 + 1 = n − 1 edges.
The claim follows by induction. �

9 / 39

Example

In the database there are 12 objects and 34 relations between the objects.
We want the structure of objects draw as a graph in which objects
correspond to vertices and relations to edges.
a) Will the resulting graph be a tree?
b) Will the resulting graph always be connected?

a) The resulting graph cannot be a tree, it has to contain cycles. A tree
on 12 vertices has precisely 11 edges (relations).
Even if there were 11 relations, we cannot guarantee the resulting
graph to be a tree, why?

b) The resulting graph can, but does not have to be connected.
Connectivity depends on the stored structure.
E.g. it could be a graph with one component close to K9 and three
isolated vertices (K9 has

(9
2

)
= 36 edges, we can remove any 2 edges).

If the graph has 12 vertices and more than 55 edges, the resulting graph
has to be connected. K12 has 66 edges and is edge 11-connected. After
removing any less than 66− 55 = 11 edges the graph remains connected.

10 / 39

on proving theorems of the form A⇒ B

Suppose A is the premise and B is the conclusion of the theorem.

Direct proof consists of a sequence of valid implications.

A = A0 ⇒ A1 ⇒ A2 ⇒ · · · ⇒ An = B

Indirect proof is a direct proof of the theorem ¬B ⇒ ¬A, which has the
same truth value table as A⇒ B.

¬B = A0 ⇒ A1 ⇒ A2 ⇒ · · · ⇒ An = ¬A

In a proof by contradiction we assume that both the premise A and the
negation of the conclusion ¬B are true. By a sequence of valid
implications we obtain a contradiction. By a contradiction we mean that
both V and its negation ¬V are true simultaneously, which is not possible.

A ∧ ¬B ⇒ · · · ⇒ V ∧ ¬V

Assuming ¬B leads to a contradiction, thus B holds.

11 / 39

Theorem

In a tree there exists exactly one path between every pair of vertices.

Proof By contradiction.
We assume the premise (T is a tree) and the negation of conclusion (there
exists a pair of vertices T connected by none or at least two different
paths).

Since T is connected (by definition of a tree), there is a path between any
pair of vertices u, v . Now if u, v are connected by two different paths, their
union is a walk in T and after “deleting” all repeated vertices in this walk
we obtain a cycle in T , which contradicts the premise that there is no
cycle in T .

The negation of the conclusion leads to a contradiction, thus thus there is
precisely one path between any u and v . �

Note

Paths from u to v and the “reversed” path from v to u we consider a
single path between u, v .

12 / 39

We know already, that a tree on n vertices contains n − 1 edges. Adding
one new edge

does not violate connectivity,

violates the state of being acyclic.

A tree with one additional edge contains a cycle, we show that there is
just one such cycle.

Corollary

By adding one (new) edge to a tree (on at least three vertices) we obtain
a graph with a single cycle.

Proof Suppose there is no edge uv in a tree T .
By adding edge uv precisely one cycle arises by joining uv and a unique
path between u andv in T (unique by previous theorem). �

Note

By adding at least two edges to a tree, the number of emerging cycles
depends on where we add the edges.

13 / 39

Given a connected graph G and determining k-connectivity we asked how
many edges at least have to be removed from G to obtain a disconnected
graph. Now we ask

how many edges at most can be removed from G to obtain a
connected graph or, conversely

how many edges at least have to remain in G for G to remain
connected.

Trees are graphs that are both connected and no edge can be removed
without loosing connectivity.

Theorem

A tree is the minimum connected graph (on a given set of vertices).

Proof A tree is connected by definition. If a graph contains a cycle, it
remains connected also after removing any edge of this cycle. Thus the
minimum connected graph is a tree.
Conversely, if after removing edge uv form a tree T the resulting graph
remains connected, then between u, v in T would exist two paths:
u, v -path in T \ uv and edge uv . This contradicts previous theorem.
Thus, tree is the minimum connected graph on a given set of vertices. �

14 / 39

Example

At most how many edges can be removed from the graph G so that the
graph remains connected?

Graph G .

By the previous theorem the resulting graph has to be a tree.
The graph G has 9 vertices and 16 edges, thus by the theorem on the
number of edges in a tree at most 8 edges can be removed.

Moreover, one can remove such 8 edges that both removed edges and the
remaining edges for a connected factor. Can you find such 8 edges?

15 / 39

Rooted trees
Is certain instances of “trees” it is convenient to select a vertex, called
root, (as the “start” of data). Rooted trees have their origins also in family
trees, (Tiggers “family tree”) which implied terminology.

Definition

A rooted tree is a tree T along with one significant root vertex r ∈ V (T),
denoted by (T , r), we say tree T with root r .

r r

r

There is a difference between a
”
tree“ and a

”
rooted tree“, which has

some extra information.

Root will be drawn on top.

16 / 39

Definition

Take a rooted tree (T , r) and a pair of adjacent vertices u, v , such that u
is the neighbor of v on the path to r . Then u is called the parent of v and
v is called the child of u.

children

parent

root
u

v

x y z

Sometimes we will use other terms as
”
grandfather“,

”
sibling“, . . .

Notice: by choosing a different root the parent-child relationship can swap.

17 / 39

Definition

Vertices without children in non-trivial graphs are called bottom vertices.

Notice the bottom vertices are leaves, but not all leaves are necessarily
bottom vertices.

Definition

Center of a tree T is the vertex or edge in T determined by the following
algorithm:

1 If a tree T has a unique vertex v , then v is the center of T .
If a tree T has two vertices, its center is the edge joining the two
vertices.

2 Otherwise we create a (smaller) tree T ′ ⊂ T by deleting all leaves of
T (shaving). It is obvious, that T ′ is not empty; proceed by step 1.

The center of T ′ obtained by recursion is also the center of T .

The process of removing leaves is called shaving.

18 / 39

Example

Find the center of tree T1.

19 / 39

Example

Find the center of tree T2.

Notice: we added a new vertex (and two edges instead of one edge).

20 / 39

The root and the center
The root can be any vertex in a given tree; the root does not have to be
the center.

If the root of a tree has to be determined uniquely , then center is the best
candidate (it is determined uniquely).

If the center is an edge add a new vertex onto the central edge so that it
“splits” the edge into two.

21 / 39

Ordered rooted trees
Another information assigned to rooted trees is the ordering of children of
every vertex (ordering the ancestors in one generation by their birth date).

Definition

The rooted tree (T , r) is ordered, if for every vertex is the order of its
children determined uniquely (“from left to right”).

1

1

2

3

1

2 3

1

1 2 1 2 3

Formally: ordered rooted tree is (T , r , f), where T is a tree and r its root.
Function f : V (T)→ N assigns each vertex it order among siblings
1, 2, . . . , k .

22 / 39

Isomorphism of trees
The notion of isomorphism of trees is a special case of isomorphism of
graphs. Two trees are isomorphic, if they are isomorphic as graphs.
Recall that no fast algorithm for deciding whether two general graphs are
isomorphic is known. Trees are such a special class of graphs that, for trees
such algorithm does exist!
Before we give the algorithm, we have to introduce several terms.

Definition

Two rooted trees (T , r) and (T ′, r ′) are isomorphic if there exists an
isomorphism of T and T ′, that takes root r onto root r ′.

T T ′

Two isomorphic trees that are not isomorphic as rooted trees.

Notice: the root is different in T and T ′.

23 / 39

Definition

Two ordered rooted trees are isomorphic, if there exists an isomorphism of
rooted trees, such that it preserves the order of children of every vertex.

Two isomorphic rooted trees that are not isomorphic as ordered rooted
trees.

Notice: the order of children of the root differs.

Definition

Subtree of a vertex u of a given rooted tree (T , r) is each component of
the graph T − u, which contains some child x of u.

Each subtree of vertex u is again a (rooted) tree.

24 / 39

Encoding ordered rooted trees
To every ordered rooted tree we can easily assign a string of 0 and 1 which
uniquely determine the tree.

Definition

Code of an ordered rooted tree is constructed recursively by joining codes
of all subtrees of the root, ordered in a particular (uniquely chosen)
ordering and enclosed in a pair of 0 and 1 (see figure).

01 01 01 01 01

01 01

001 011 00101011

0001011 01 011 0001010111

01

0000101101011 01 00010101111

Coding a rooted tree.

Note

Instead of “0” and “1” one can use, e.g. “(” and “)” or
”
A“,

”
B“.

25 / 39

Ordered rooted trees given by their code
We described how to obtain a code for a given rooted tree tree.
Now we show the reverse: how to draw a rooted tree given by its code.

Lemma

Take the code of an ordered rooted tree. The corresponding tree can be
drawn by the following algorithm:

when reading “0” at the beginning put the pen on the paper, draw
the root vertex,

when reading another “0” draw an edge to a child vertex of the
current vertex,

when reading “1” return to the parent of the current vertex or lift the
pen if the current vertex is the root.

Notice: not every sequence of 0 and 1 is a code of some tree (see
discussion).

26 / 39

Minimum code
We can consider tree codes as strings and we can order these strings
uniquely, e.g. lexicographically.

Suppose the symbol 0 precedes symbol 1 in the dictionary.
E.g. the string 000111 precedes codes 001011, 0011, and 01.

One has to distinguish code of an ordered rooted tree and minimum code
of a rooted tree:

drawing a tree given by the code of an ordered rooted tree (T , r), we
obtain (T , r) again,

drawing a tree given by the minimum code, the order of children can
differ from the order in (T , r).

We say the rooted tree (T , r)
”
was reordered“.

Note

The upper bound on time complexity for finding a minimum code of one
tree is O(n3).

27 / 39

Example

01 01 01 01 01

01

0 01 01 1

01

0 01 01 01 1

0 01 001011 01 1

01

0 00101011 1

0 001001011011 01 0001010111 1

The code of an ordered rooted tree.

01 01 01 01 01

01

0 01 01 1

01

0 01 01 01 1

0 001011 01 01 1

01

0 00101011 1

0 0001010111 000101101011 01 1

The minimum code of an ordered rooted tree.

28 / 39

When determining isomorphism of two arbitrary trees we

find the center of each tree,

the center of each tree we choose as the root,

we find the minimum codes (we order the codes of the children
lexicographically by their codes)

we use the following Lemma which guarantees the uniqueness of each
code.

Lemma

Two ordered rooted trees are isomorphic if and only if their codes,
obtained as described above, are the same strings.

The process results in the algorithm described below.

29 / 39

Algorithm Determining isomorphism of trees

Algorithm determines if two trees T and U are isomorphic (T '? U)

// Let T, U be two trees with the same number of vertices.

Input < trees T and U;

for (X=T,U) {

// find the centers of U, T

x = center(X);

if (x is one vertex)

r = x;

else

add new vertex r, replace edge x=uv by edges ru, rv;

k[X] = minimum_code(X,r);

}

if ((|V(T)|==|V(U)|) && (k[T]==k[U] as strings))

print("Trees T and U are isomorphic.");

else

print("Trees T and U are not isomorphic.");

exit;

30 / 39

Algorithm . . . continued (finding the minimum code)

Function minimum code(X,r) finds for tree X with root r (lexicographic)
minimum code.

// the input is a rooted tree (or a subtree)

input < rooted tree (X,r);

function minimum_code(tree X, vertex r) {

if (X has one vertex)

return "01";

Y[1...d] = {connected components X-r, subtrees without r};

s[1...d] = {roots of subtrees Y[] in corresponding order};

// roots are the children of r

for (i=1,...,d)

k[i] = minimum_code(Y[i],s[i]);

sort lexicographic so that k[1] <= k[2] <= ... <= k[d];

return "0"+k[1]+...+k[d]+"1";

}

Functions recursively constructs the minimum code of tree X .

31 / 39

Note

Notice that in the Algorithm we check whether both have the same
number of vertices.
For example paths P2n and P2n+1 are not isomorphic, but since the center
of path P2n is the

”
middle“ edge, by finding the center we add a new

vertex to this edge and obtain a second path P2n+1. Without checking the
number of vertices the algorithm could give a wrong answer.

Questions

Is the following code a minimum code? Why?

How would a minimum code look like?

01 01 01 01 01

01 01

001 011 00101011

0001011 01 011 0001010111

01

0000101101011 01 00010101111

32 / 39

Spanning tree
Recall the following terms:

subgraph, factor

connected and disconnected graph

labeled graph, graph labeling

Definition

A spanning tree of a connected graph G is such a factor of G , which is a
tree. (Factor of G is a subgraph, which contains all vertices of G .)
Weight of a spanning tree in a labeled graph G is the sum of labels of all
edges of the spanning tree.

We say “edge label” and “spanning tree weight”.

The importance of “spanning trees” lies in the minimality with respect to
number of edges, while connectivity is preserved.
(we have a Theorem about the minimum connected subgraph)

33 / 39

The label of every edge can differ, we obtain:

Minimum spanning tree problem (MST)

Given a connected labeled graph G with non-negative edge labels w . The
task is to find such a spanning tree T of G , which has among all spanning
trees the minimum weight. Formally

MST = min
span.treeT⊆G

 ∑
e∈E(T)

w(e)

 .

Questions

How many edges has a spanning tree of a connected graph with n
vertices?

Is it possible to find a minimum spanning tree in a graph with
negative labels?

Is every connected factor with minimum edge labels a spanning tree?

34 / 39

We present several algorithms for finding a minimum spanning tree in a
non-negatively labeled graph.

Algorithm Greedy minimum spanning tree algorithm

We have a labeled graphs G with non-negative labels w of edges. By m we
denote the number of edges of G .

We order the edges of G in an non-decreasing order according their
labels:

w(e1) ≤ w(e2) ≤ · · · ≤ w(em).

We start with an empty set of edges T = ∅ for the spanning tree.

For i = 1, 2, . . . ,m we take the edge ei and if by adding it to the
set T no cycle (induced by T ∪ {ei}) originates, we include ei into T .
Otherwise we “discard” ei .

At the end T contains all edges of a minimum spanning tree of graph
G with labels w .

We show that the algorithm works correctly.

35 / 39

Theorem

The greedy algorithm finds a minimum spanning tree of a connected graph.

Proof By contradiction. Let T be the set of edges obtained by the
Algorithm. Suppose that w(e1) ≤ w(e2) ≤ · · · ≤ w(em). Let T0 by the set
of edges of such a minimum spanning tree (multiple spanning trees can
have the same weight), which matches T in the most first edges. If
T0 = T , algorithm works correctly.

Suppose now that T0 6= T and we obtain a contradiction. Thus we show
that T0 6= T cannot occur.

By j > 0 denote such an index, that the sets T0 and T match in the first
j − 1 edges e1, . . . , ej−1, but they do not match in edge ej . Thus ej ∈ T ,
but ej 6∈ T0. (According the algorithm ej 6∈ T and ej ∈ T0 cannot
happen.) graph T0 ∪ {ej} contains the graph with edges precisely one
cycle C . Cycle C cannot be a subgraph of the spanning tree T , thus there
is an edge ek in C , such that ek 6∈ T and k > j . Since w(ek) ≥ w(ej), the
spanning tree with edges T ′ =

(
T0 \ {ek}

)
∪ {ej} (swapping edges ek and

ej) does not have higher weight than T0, but it matches T in more first
edges! This is a contradiction with the choice of T0. �

36 / 39

This greedy algorithm was introduced first by Kruskal in 1956. But it is
known that Kruskal continued the work of a Czech mathematician Otakar
Bor̊uvka.
Already in 1926 solved Bor̊uvka the question of building an optimal
electrical network in southern Moravia and described a very similar
algorithm in great detail using matrices.

Algorithm Bor̊uvka’s minimum spanning tree algorithm

Suppose G is a positively weighted graph with edges labeled by pairwise
different labels.
At the beginning we order the edges according their increasing labels
w(e1) < w(e2) < . . . < w(em).
The spanning tree we construct by adding edge ei (for i = 1, 2, . . . , n), if
no cycle originates by adding ei .

37 / 39

In response to Bor̊uvka’s work Vojtěch Jarńık designed in 1929 a similar
algorithm.

The Jarńık’s algorithm is known as Prim’s algorithm (1957).

Algorithm Jarńık’s minimum spanning tree algorithm

We do not order the edges. We construct the minimum spanning tree
starting from any vertex. In every step we choose the edge with the
smallest label with one end-vertex among the vertices in the already
constructed subgraph and the other end-vertex among remaining vertices.

Notice:

in Jarńık’s algorithm we need not to sort the edges,

we do not need to check whether adding an edge produces a cycle, we
save time.

Examples of the Greedy algorithm and Jarńık’s algorithm are given at
http://homel.vsb.cz/~kov16/predmety_dm.php

http://homel.vsb.cz/~kov16/predmety_dm.php

38 / 39

MSP algorithms can be used for constructing labyrinths.

Labyrinth constructed using Jarńık’s algorithm.

For details see textbook
”
Úvod do teorie graf̊u“ (in Czech) or on-line.

39 / 39

Next lecture

Chapter Graph colorings and graph drawing

motivation

graph coloring

drawing graphs in a plane

recognizing planar graphs

map coloring and planar graphs coloring

1 / 31

Discrete mathematics

Petr Ková̌r
petr.kovar@vsb.cz

VŠB – Technical University of Ostrava

Winter term 2021/2022
DiM 470-2301/02, 470-2301/04, 470-2301/06

The translation was co-financed by the European Union and the Ministry of Education, Youth and Sports from the Operational
Programme Research, Development and Education, project “Technology for the Future 2.0”, reg. no.

CZ.02.2.69/0.0/0.0/18 058/0010212.

This work is licensed under a Creative Commons “Attribution-ShareAlike 4.0 International” license.

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

2 / 31

About this file

This file is meant to be a guideline for the lecturer. Many important pieces
of information are not in this file, they are to be delivered in the lecture:
said, shown or drawn on board. The file is made available with the hope
students will easier catch up with lectures they missed.

For study the following resources are better suitable:

Meyer: Lecture notes and readings for an
http://ocw.mit.edu/courses/electrical-engineering-and-

computer-science/6-042j-mathematics-for-computer-science

-fall-2005/readings/”(weeks 1-5, 8-10, 12-13), MIT, 2005.

Diestel: Graph theory http://diestel-graph-theory.com/

(chapters 1-6), Springer, 2010.

See also http://homel.vsb.cz/~kov16/predmety dm.php

3 / 31

Lecture overview

Chapter Graph colorings and graph drawing

motivation

graph coloring

drawing graphs in the plane

recognizing planar graphs

map coloring and planar graphs coloring

4 / 31

Graph colorings
We mention two problems that can be solved naturally using graph
colorings.

Storing goods

There are many different food products in a storehouse. By regulations
several of them certain have to be stored separately. E.g. fruit salads
cannot be in the same department as raw eggs or salami cannot share
department with raw meat.
What is the smallest number of departments necessary?

Set up a graph whose vertices represent stored goods and an edges joins
two vertices whenever the corresponding two commodities have to be
stored separately. Compartments are distinguished by colors.

Question

What is the least number of different colors necessary to color the vertices
of the graph so that any two adjacent vertices have the different colors?

5 / 31

Optimization of traffic lights

A crossing has several corridors for both cars and pedestrians. Corridors
(even of different directions) may not interfere and the traffic can flow
simultaneously. On the other hand corridors that do interfere with each
other have to have green within non-overlapping time slots. Time slots are
distinguished by colors.
What is the least number of time intervals necessary in one “cycle” of the
traffic lights?

In the graph model the vertices will represent corridors and edges will join
vertices that correspond to corridors that do interfere.

Question

What is the least number of colors necessary to color the vertices of the
graph so that any two adjacent vertices have the different colors?

We show some special cases and prove a couple of simpler theorems. First
we introduce several definitions.

6 / 31

Definition

Graph coloring of G by k colors is such a mapping

c : V (G)→ {1, 2, . . . , k},

that any two adjacent vertices have different colors, i.e. c(u) 6= c(v) for
every edge uv ∈ E (G).

Note

Graph coloring is called also a proper vertex coloring of a graph.

There exists a proper coloring of every graph by |V (G)| colors. We are
interested in the lowest possible number of colors, for which a graph
coloring of G exists.

Definition

The chromatic number χ(G) of G is the least k , such that there exists a
proper coloring of G by χ(G) colors.

7 / 31

Example

What is the chromatic number of C5?

v1

v2

v3 v4

v5

Example

What is the chromatic number of C6?

v1v2

v3

v4 v5

v6

8 / 31

Upper bounds on the number of colors

Lemma

Let G by a simple graph on n vertices. Then χ(G) ≤ n. Equality holds if
and only if G is a complete graph.

Proof In any graph G with n vertices it is enough to color every vertex by
a different color and we get a proper vertex coloring of G by n different
colors. Thus, χ(G) ≤ n.

If G ' Kn, then no two adjacent vertices can have the same color Thus,
χ(Kn) = n.

If some edge uv is missing in G , we can color c(u) = c(v) = 1 and color
the remaining vertices by colors 2, 3, . . . , n − 1. We obtain a proper vertex
coloring by less than n colors, thus χ(G) < n. �

9 / 31

Brook’s Theorem

For every graph G with n vertices different from Kn and different from odd
cycles Cn is χ(G) ≤ ∆(G).

Proof is beyond the level of this course, you can find it in the textbook

”
Teorie graf̊u“ (in Czech) or on-line.

Notice, not in every graph G as many as ∆(G) color have to be used. For
example to color the vertices of a complete bipartite graph only two colors
are necessary.

Algorithms for finding a proper vertex coloring by the least number of
colors are complex and are not included in this text. For general graphs
there are algorithms with complexity O(n2n), where n is the number of
vertices.

10 / 31

Lower bounds on the number of colors
Brooks Theorem says at most how many colors are necessary to color the
graph properly. Now we show a couple of simple bounds on how many
colors are necessary at least for a proper edge coloring.

Theorem

Graph G has chromatic number 1 if and only if it has no edge.

Proof If a graph has no edge, we color all vertices by color 1. If all vertices
have the same color, no edge can be in the graph. �

The next theorem we mention without proving it.

Theorem

If there is a complete subgraph on k vertices in a given graph G , then any
proper vertex coloring of G requires at least k colors.

11 / 31

We prove one particular case of the theorem.

Theorem

Graph G has chromatic number 2 if and only if it contains no cycle of odd
length (as a subgraph).

Proof (idea) An odd cycle cannot be properly colored by two colors. We
choose any vertex v in G and color it by color 1. Vertices in odd distance
from v we color by color 2. Vertices in even distance from v we color by
color 1.
If any two vertices x , y in even distance from v are joined be edge xy , then
v , . . . x , y , . . . v is a walk of odd length. From the walk we obtain an odd
cycle be deleting repeated parts which contradicts the premise. For vertices
in odd distance from v we reason similarly. Thus, in this coloring no
adjacent vertices have the same color and we have a proper coloring by
two colors. �

Graphs without cycles of odd lengths are bipartite. The vertices of each
such graph can be partitioned into two independent (partite) sets.
In each partite set it is enough to use only one color for all the vertices in
the set.

12 / 31

How to determine chromatic number

To determine the chromatic number of a graph means to find the smallest
number of colors required for a proper vertex coloring.

There is no theorem that would yield the chromatic number “easily”.

The chromatic number can be found by algorithms with complexity
O(n2n), where n is the number of vertices of the given graph.

Here we have shown

upper and lower bound of the chromatic number,

applications (warehouse problem, scheduling).

13 / 31

Drawing graphs in the plane
In some cases it is important how the drawing looks like. Printed circuit
boards can be represented as graphs and when designing the board
crossings have to be avoided.

Question:
”
Is it possible to draw a given graph without crossing edges?“

Definition

Planar drawing of a graph G is such a drawing in the plane, in which
vertices are different points and edges are lines connecting the points of
their end-vertices and no two edges intersect save their end-points.
We say a graph is planar if there exists its planar drawing.

Not every graph has a planar drawing!

14 / 31

Examples

Examples of planar graphs are graphs of polyhedrons (tetrahedron, cube,
octahedron, dodecahedron, prisms, . . .)

All graphs of polyhedrons are planar and (at least) 3-connected.

On contrary every planar 3-connected simple graph is a graph of some
polyhedron.

15 / 31

Example

Are the graphs a) K5, b) K5 − e planar (drawn without crossing edges)?

Graph K5 and its drawing with a single crossing of edges.

Graph K5 with an edge removed and two its planar drawings.

16 / 31

Definition

Faces in a planar drawing of a graph are connected regions in a plane
bounded by edges and points of the drawing.

Faces in a planar drawing.

We show an important formula that counts graph elements of a planar
graph: Euler’s formula.

17 / 31

Theorem Euler’s formula

A planar drawing of a nonempty connected graph G has f faces. The the
following holds

v + f − e = 2.

Proof Proof goes by induction on the number of edges e.

Basis step: If G is a tree, it contains no cycle and the planar drawing has
only one face. By a theorem a tree has e = v − 1 edges and be evaluate
that v + f − e = v + 1− (v − 1) = 2.

Inductive step: Suppose the claim holds for all graphs with e − 1 edges. If
G contains a cycle C , then by omitting one edge uv of cycle C the number
of edges decreases by 1. At the same time the number of faces decreases
by 1, since the edge uv separated two faces (neighboring to uv) and by
deleting uv these faces merge. The number of vertices remains the same.

By the induction hypothesis is v + (f − 1)− (e − 1) = 2, thus also
v + f − e = 2. �

18 / 31

Note

Euler’s formula is independent of a particular drawing, only on the graph
structure.

Though it is a simple formula it has many applications and corollaries.

Corollary

A simple planar graph on v ≥ 3 vertices has at most 3v − 6 edges.

Proof Suppose we have a connected graph G , otherwise we can add more
edges. By v we denote the number of vertices in G , by f the number of
faces and by e the number of edges.
Since there are no loops or multiple edges, each face of G (in any planar
drawing) is bounded by at least three edges. Each edge is counted at most
twice (for both neighboring faces). Thus 2e ≥ 3f , from which follows
2
3e ≥ f . Substituting into the Euler’s formula we get

2 = v + f − e ≤ v +
2

3
e − e = v − 1

3
e

e ≤ 3(v − 2) = 3v − 6.

�

19 / 31

If there are no faces with only three edges in G (a triangle-free graph) the
number of edges is even smaller.

Corollary

A simple triangle-free planar graph on v ≥ 3 vertices has at most 2v − 4
edges.

Proof The proof is similar. By v we denote the number of vertices in G , by
f the number of faces and by e the number of edges. Now we know there
are no triangles in G , thus each face is bounded by at least four edges.
Thus 2e ≥ 4f , which implies 2

4e ≥ f . Substituting into the Euler’s formula
we get

2 = v + f − e ≤ v +
2

4
e − e = v − 1

2
e

e ≤ 2(v − 2) = 2v − 4.

�

20 / 31

We can also bound the smallest degree of a planar graph!

Corollary

Every planar graph has a vertex of degree at most 5.
Every triangle-free planar graph has a vertex of degree at most 3.

Proof By contradiction. If all vertices would be of degree at least 6, there
would be at least 1

2 · 6v = 3v edges in a planar graph, which contradicts
previous Corollary. Thus there has to be a vertex of degree smaller than 6.

Similarly, if in a triangle-free graph all vertices would be of degree at least
4, there would be at least 1

2 · 4v = 2v edges in the graph, which
contradicts previous Corollary. Thus there has to be a vertex of degree
smaller than 4. �

Notice, that a planar graph can have vertices of high degree, but not all of
them. There has to be some vertex of small degree as well.

21 / 31

Recognizing planar graphs
To “be planar”, or “non-planar” is an important property of a graph with
many applications. Among the most important are

printed circuit boards of single layer (the circuits form a graph, need
solder wires?)

well drawn graphs (no unnecessary crossings)

We show that Euler’s formula and its corollaries can help when
determining whether a graph is or is not planer.

In comparison to Hamiltonian cycles or graph colorings there are relatively
fast algorithms.
We focus only on small graphs, the algorithm mentioned above go beyond
the scope of this course.

We show two important graphs, that are not planar.

22 / 31

Example

Graphs K5 and K3,3 are non planar (are non-planar).

Graphs K5 and K3,3.

Proof We use the Corollary on the number of edges.
Notice that K5 has 5 vertices and 10 edges. But by the Corollary a planar
graph on five vertices has at most e ≤ 3 · 5− 6 = 9 edges, hence K5 is
non-planar.

Similarly K3,3 has 6 vertices and 9 edges. Moreover, it is triangle-free. But
by the Corollary a triangle-free planar graph on six vertices has at most
2 · 6− 4 = 8 edges, thus K3,3 is non-planar. �

23 / 31

Corollary

Graphs K5 and K3,3 are not planar.

It can be shown that both K5 and K3,3 are special among all non-planar
graphs. Their structure does not allow their planar drawing.

Moreover, no other such structure exists.

24 / 31

We introduce the notion of subdivision of a graph, that is a graph with
similar structure, with some vertices of degree 2 added.

Definition

A subdivision of a graph G is a graphs that is obtained by replacing some
edges by internally-disjoint paths.

We replace the edge uv of a graph G by a pair of edges uw and wv . We
obtain a new graph G ′, which is a subdivision of the original graph G .

G ′ = (V (G) ∪ {w}, (E (G) \ {uv}) ∪ {uw ,wv})

u

v

G
u

v

w
G′

Graph G with a selected edge uv and a subdivision G ′ of graph G.

25 / 31

In 1930 K. Kuratowski proved the following simple theorem.

Theorem

Graph G is planar if and only if it does not contain a subgraph isomorphic
to a subdivion of K5 or K3,3.

A subdivision of graphs K5 and K3,3.

It can be shown, that there exists a “nice” drawing of every planar graph:

Theorem

Every simple planar graph can be drawn in a plane without crossing edges
so that all edges are straight lines.

26 / 31

Graph colorings and graph drawing
One of the best known problems in graph theory is the Four color theorem.
Though the formulation is easy, correct solution took more than 100 years.

Four color problem

Given any political map, the regions may be colored using no more than
four colors in such a way that no two adjacent (sharing a borderline)
regions receive the same color.

The solution required besides substantial theoretical work also a large scale
computer search.

27 / 31

Example

A coloring of a political map can be translated into a proper vertex
coloring of a graph.
Each region becomes a vertex (the capital).
Two vertices are joined by an edge if the corresponding states are
neighboring.

28 / 31

Definition

Dual graph of a planar graph G we obtain by replacing every region by a
vertex. Two vertices of the new graph are connected by an edge if and
only if the corresponding regions share an edge.

Graph G with blue dual multigraph and a redrawn dual graph.

It can be shown, that the dual graph to a planar graph is again planar.

29 / 31

The process of transforming a political map into a graph is similar to
constructing a dual graph.

In 1976 Appel and Haken, and later in 1993 again Robertson, Seymour,
Sanders, and Thomas proved the theorem, which solved the four color
problem. It is one of the most famous results in discrete mathematics.

Theorem Four Color Theorem

Every planar graph without loops has a proper coloring by at most 4 colors.

Proof . . . definitely exceed the scope of this course :-) �

But easily we can show a weaker result for 6 colors.

30 / 31

Theorem

Every planar graph can be properly colored by at most 6 color.
Every triangle-free planar graph can be properly colored by at most 4
colors.

Proof We show the second part, the first part is shown in the textbook.

We proceed by induction on the number of vertices of G .

Basis step: The trivial graph with one vertex is surely planar and can be
colored by one color.

Inductive step: We have a planar graph with at least two vertices.
Suppose all smaller planer graphs we can color by at most four colors. By
a previous corollary we find in G a vertex v of degree at most 3. The
graph G − v is again planar and triangle-free. By the induction hypothesis
we can color the graph G − v by at most four colors. At most three of
them will be used to color the neighbors of v , thus always there is a fourth
color available to color v . �

Notice, the proof is constructive – we can find such coloring.

31 / 31

Next chapter

Chapter Flow in a network

motivation

definition of a network

maximal flow algorithm

network generalization

further applications

1 / 40

Discrete mathematics

Petr Ková̌r
petr.kovar@vsb.cz

VŠB – Technical University of Ostrava

Winter term 2021/2022
DiM 470-2301/02, 470-2301/04, 470-2301/06

The translation was co-financed by the European Union and the Ministry of Education, Youth and Sports from the Operational
Programme Research, Development and Education, project “Technology for the Future 2.0”, reg. no.

CZ.02.2.69/0.0/0.0/18 058/0010212.

This work is licensed under a Creative Commons “Attribution-ShareAlike 4.0 International” license.

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

2 / 40

About this file

This file is meant to be a guideline for the lecturer. Many important pieces
of information are not in this file, they are to be delivered in the lecture:
said, shown or drawn on board. The file is made available with the hope
students will easier catch up with lectures they missed.

For study the following resources are better suitable:

Meyer: Lecture notes and readings for an
http://ocw.mit.edu/courses/electrical-engineering-and-

computer-science/6-042j-mathematics-for-computer-science

-fall-2005/readings/”(weeks 1-5, 8-10, 12-13), MIT, 2005.

Diestel: Graph theory http://diestel-graph-theory.com/

(chapters 1-6), Springer, 2010.

See also http://homel.vsb.cz/~kov16/predmety dm.php

3 / 40

Lecture overview

Chapter Flow in a network

motivation

definition of a network

maximum flow algorithm

network generalization

further applications

4 / 40

Flow in a network
Motivation Graph theory solves many problems on networks. We are
given a network (computer network, pipelines, . . .), where edges represent
connections and vertices form crossings or routers.
It is natural to give a bound on capacity of each edge (capacity =
number).

Question

What is the largest possible number of units that can be transfered
through the network (with given constraints) from z (source) to s (sink).

5 / 40

A network is a graph in which the capacities, the source and sink are given.

Definition

Network is a four-tuple S = (G , z , s,w), where

G is an oriented graph,

vertices z ∈ V (G), s ∈ V (G) are the source and sink,

w : E (G)→ R+ is a positive labeling of edges, called edge capacity.

z

v4 v5 v6

v1 v2 v3

s

4

3

2
2

2

2 31
3

2

6 1

1

6

Question

What is the largest possible number of units that can be transfered
through the network G from the source z to the place of consumption s
(sink). Of course obeying the maximal capacity of each edge.

6 / 40

A more complex problem is a network with

given capacities of vertices

multiple sources and sinks

more products to be transfered in a network

In some cases this complex problem can be translated into to basic
network defined above. We show how.

Notice that even for a maximum flow through a network the full capacities
of all edges do not have to be achieved. This is when we define the flow
correctly (flow/capacity).

z

v4 v5 v6

v1 v2 v3

s

3/4

3/3

2/2

0/2

2/2

1/2 0/30/1
3/3

0/2

4/6 1/1

5/6

1/1

7 / 40

Note

The edge capacity does not really have to be a capacity (can represent
width, automobiles per minute, thickness of a pipe, resistance. . .) We will
use terminology from liquid flows: amount

”
entering“ and

”
leaving“ a

certain vertex.

By e → v we denote incoming edges to v , by e ← v outgoing edges.

Definition

A flow in network S = (G , z , s,w) is a function f : E (G)→ R+
0 , where

no edge capacity is exceeded: ∀e ∈ E (G) : 0 ≤ f (e) ≤ w(e),

the conservation-of-flow equation hold:
∀v ∈ V (G), v 6= z , s :

∑
e→v

f (e) =
∑
e←v

f (e).

The value of a flow f is

‖f ‖ =
∑
e←z

f (e)−
∑
e→z

f (e).

8 / 40

Example

z

v4 v5 v6

v1 v2 v3

s

2/4

1/3

2/2

0/2

2/2

0/2 0/30/1
0/3

0/2

1/6 1/1

2/6

1/1

z

v4 v5 v6

v1 v2 v3

s

3/4

3/3

2/2

0/2

2/2

1/2 0/30/1
3/3

0/2

4/6 1/1

5/6

1/1

Flow and a maximum flow in a network (G , z , s,w).

9 / 40

Source and sink are exceptional vertices in the network.
The conservation-of-flow equations do not hold for them!

from the source “issues” more than comes in
the sink “drains” more than comes out

The difference for both these vertices is the same.

Lemma

By fz we denote the sum of flows on outgoing edges minus the sum of
flows on the incoming edges to the source z . By fs we denote the sum of
flows on outgoing edges minus the sum of flows on the incoming edges
to s. Then fz = −fs holds.

Proof

0 =
∑
e

(f (e)−f (e)) =
∑
v

∑
e←v

f (e)−
∑
v

∑
e→v

f (e) =
∑

v∈{z,s}

(∑
e←v

f (e)−
∑
e→v

f (e)

)
.

Double sums cancel out for all vertices in the network except z and s.(∑
e←z

f (e)−
∑
e→z

f (e)

)
= −

(∑
e←s

f (e)−
∑
e→s

f (e)

)
. �

Note

“Sink” has several meanings.
(Punkva river in the Moravian Carst)

11 / 40

Maximum flow algorithm
Our goal is to find the maximum possible flow from source z to sink s in a
network (G) with capacities w .
A greedy algorithm does not give the maximum flow! (see figure)

z

v1 v2

v3 v4

v5 v6

v7 v8

s

2

2

2

2
2

2
2

2

2

1

1

1

1

1

1

z

v1 v2

v3 v4

v5 v6

v7 v8

s

2/2

2/2

2/2

2/2
2/2

2/2
2/2

2/2

2/2

0/1

0/1

0/1

0/1

0/1

0/1

A greedy algorithm yields a total flow of value 2.

The flow cannot be increased by simply adding some path with non-zero
flow, but this is not the maximum flow. There exists a flow of value 5.

12 / 40

Definition

A cut in a network S = (G , z , s,w) is such a subset of edges C ⊆ E (G),
that in G − C (G with edges of C deleted) no oriented path from z to s
remains.
Capacity of the cut C is the sum of capacities of edges in C , i.e.
‖C‖ =

∑
e∈C w(e).

Theorem

Value of the maximum flow equals the capacity of the minimum cut.

Proof later. . .

z

v1 v2

v3 v4

v5 v6

v7 v8

s

2/2

2/2

1/2

2/2
1/2

2/2
1/2

2/2

2/2

1/1

1/1

1/1

1/1

1/1

1/1
cut

Flow of value 5 and cut with capacity 5.

13 / 40

Beware, one has to know what is a cut!

z

v1

v2

v3

s

4/9

5/5

1/1

3/3

2/8

4/7

5/5
0/2

U

C

cut

A cut contains only edges leading out of set U.

14 / 40

The theorem characterizes nicely the maximum flow:
The flow of value x is maximum, if there is a cut of capacity x.

Definition

Let S be a network and let f be a flow in this network. An unsaturated
path in S is an unoriented path e1, e2, . . . , em in G from vertex u to vertex
v (usually from z to s), where

f (ei) < w(ei) for ei oriented “along” the path from u to v ,

f (ei) > 0 for ei oriented the opposite way.

The value w(ei)− f (ei) for edges ei oriented from u to v and the value
f (ei) for edges ei in the opposite way is called the slack of the edge ei .

An unsaturated path has positive slacks δ on all edges.

z v1 v2 s
4/7 2/5 1/6

slack +3 slack +2 slack +5
G

Path with slack 2.

15 / 40

Example

Find several unsaturated paths in the given network.

z

v1 v2

v3 v4

v5 v6

v7 v8

s

2/2

2/2

2/2

2/2
2/2

2/2
2/2

2/2

2/2

0/1

0/1

0/1

0/1

0/1

0/1

z

v1 v2

v3 v4

v5 v6

v7 v8

s

2/2

2/2

2/2

2/2
2/2

2/2
2/2

2/2

2/2

0/1

0/1

0/1

0/1

0/1

0/1

Example of three unsaturated paths.

16 / 40

Algorithm Ford–Fulkerson’s algorithm

input: network S = (G,z,s,w);

initial flow is zero on every edge;

do {

searching through G find the set U of all vertices

reachable from z on unsaturated paths in G;

if (s in U) {

P = unsaturated path (found above) in S from z to s;

increase the flow f by the slack of P;

} while (s in U);

output: print the maximum flow f;

output: print the min. cut as all edges from U to V(G)-U.

17 / 40

Proof We give a direct proof.

Obviously holds ‖f ‖ ≤ ‖C‖.
If at the end of the algorithm we have a flow f and in network S there is a
cut of the same capacity ‖C‖ = ‖f ‖, obviously we have the maximum
possible flow in the network S . At the same time we prove Theorem on
maximum flow.
It is enough to show that at the end of the algorithm the equality
‖f ‖ = ‖C‖ holds, where C is the cut between U and the remaining
vertices in G .

Suppose we have a flow f in S and no unsaturated path from z to s exists.
Thus the set U from the algorithm does not contain s (it is not reachable
via unsaturated paths).

Since from U lead no unsaturated paths (nor edges), has every edge
e ← U (outgoing from U) full capacity f (e) = w(e) and each edge e → U
(incoming to U) flow f (e) = 0. The value of the flow f from z to s is

‖f ‖ =
∑
e←U

f (e)−
∑
e→U

f (e) =
∑
e←U

f (e)− 0 =
∑
e∈C

w(e) = ‖C‖ .

This completes the proof. �

18 / 40

The algorithm finds the maximum flow with value ‖f ‖. Moreover, after the
algorithm stops, one can easily find the minimum cut with value ‖C‖.
First we give the following observation:

Corollary

If all capacities in the network S have nonnegative integer values, has the
maximum flow also integer value.

The maximum flow always fully saturates the edges of some edge cut, thus
the value of such flow equals the sum of capacities of this edge cut.
Especially, if all weighs are integer values, so will be the maximum flow.

Note

We point out that omitting the requirement on integer capacities one can
come up with examples of simple networks with irrational capacities for
which Ford-Fulkerson algorithm does not stop after finitely many steps.

Moreover, the iterated flow does not have to converge toward the
maximum flow.

19 / 40

Generalizations of networks and their applications

The method shown above we can generalize to

1 multiple sources and sinks,

2 allow unoriented edges in a network,

3 introduce capacities of vertices,

4 transport several products in one network,

5 pose minimal capacities on edges (something has to flow).

Instead of providing new of modifying the previous algorithms for each of
the problems, we show how to modify the network.

The more complex problems will be transformed to the basic problem for
which Ford-Fulkerson’s algorithm can be used.

20 / 40

1) Multiple sources and sinks
If there are multiple sources or sinks in the network, we can transform the
problem easily to a single source/sink problem.

zk

z2

z1

...

sl

s2

s1

...

zk

z2

z1

...

sl

s2

s1

...

z s

∞

∞

∞

∞

∞

∞

One can also introduce the source/sink capacities by taking the
corresponding edge capacities instead of ∞.

21 / 40

2) Unoriented edges
In some real life application the orientation of edges is given (e.g. in sewage
system, traffic corridors in road networks, . . .) In other applications the
orientation of edges can be arbitrary (information or computer networks).
Ford-Fulkerson algorithm is designed for oriented graphs.

Unoriented edges can be simply represented by a pair of edges with the
same capacity and opposite orientation.

u v
c

u v
c

c

Yet, once the algorithm stops, the flow on the unoriented edge is given by
the difference of flows on both oriented edges.

22 / 40

3) Vertex capacities
Naturally, constraints can arise not only for vertices, but also for vertices
(crossings, nodes).
A network with vertex capacities can easily be translated into a network
where just edges have capacities.

v

c
v1 v2

c

Each vertex with a given capacity c we replace by a pair of vertices joined
by an edge with capacity c (we double the vertex).

Arcs incoming to v will come into v1 and arcs outgoing from v will go out
from v2.

23 / 40

4) Several products in one network
For multiple products transfered in one network the problem is complex.
The algorithm for a maximum multi-product flow is beyond this course.

We show, how to translate an unoriented graph into an oriented network
with given capacities.

Beware, it is not sufficient to take two opposite arcs:

u v
c

u v
c

c

The sum of flows transfered in one direction and another product
transfered in the opposite direction must not exceed the capacity.

u v
c u

x

y

vc

This conversion guarantees the total capacity for several products.

24 / 40

5) Minimal capacities of edges
If there are besides the maximal capacities also minimal capacities given,
i.e. there is a nonzero flow required, the solution does not need to exist.

This problem is beyond the scope of this course.

FYI: J. Demel, Grafy, SNTL, Praha, (1989).

25 / 40

Matching in bipartite graphs

There is a surprising variety of applications of the maximum flow
algorithm. We show how to translate the search for maximum matching
into the search for maximum flow.

Definition

Matching in (bipartite) graph G is a subset of independent edges
M ⊆ E (G) (no two edges in M share a vertex).

There are two graphs on six vertices. In the graph on the left the matching
has at most one edge, while in the second graph there is a matching that
covers all vertices.

26 / 40

Algorithm Maximum matching in a bipartite graph

Let G be a bipartite graph vertex set split into two partite sets U and W :

1 we construct a network S : we add the source z and sink s, all vertices
in U we join to z and all vertices in W to s, all edges are oriented
from the source to the sink; their capacity is 1;

2 we find a (integer) maximum flow in S using previous algorithm;

3 maximum matching in G contains edges with non-zero flow.

Proof By a corollary the maximum flow will have integer flow, the flow on
each edge is either 0 or 1.

Each vertex in U is the end-vertex of precisely one edge with capacity 1,
thus each vertex will be in at most one edge of the matching. Similarly for
vertices in W . Thus the edges with non-zero flow form a matching, they
share no end-vertex.

The matching is maximum. A matching with more edges would correspond
to a flow in S with higher value, which leads to a contradiction. �

27 / 40

u1

u2

u3

u4

u5

u6

w1

w2

w3

w4

w5

w6

G

U W

We are given a bipartite graph G .

28 / 40

u1

u2

u3

u4

u5

u6

w1

w2

w3

w4

w5

w6

z s

S

U W

Let us construct the corresponding network S :

we add a source vertex z and a sink vertex s,

all vertices in U we join with z and all vertices in W we join with s,

all edges of the network S are oriented from z to s; all capacities
are 1.

29 / 40

u1

u2

u3

u4

u5

u6

w1

w2

w3

w4

w5

w6

z s

S

U W

Using the Algorithm we find the maximum flow in the network S . By
Corollary all values of the maximum flow are integers.

30 / 40

u1

u2

u3

u4

u5

u6

w1

w2

w3

w4

w5

w6

G

U W

The maximum matching contains just those edges of G with non-zero flow.

31 / 40

k-connectivity
Earlier we defined k-connectivity of graphs. Without proof we stater
Menger’s Theorem:

Theorem (Menger’s theorem)

Graph G is k-edge connected if and only if there are at least k
edge-disjoint paths between any two vertices (the paths can share vertices).
Graph G is k-vertex connected if and only if there are at least k
internally-disjoint paths between any two vertices (the paths share only
end-vertices).

Now we prove the theorem using the algorithm for maximum flow in a
network.

32 / 40

First we notice that by definition of (vertex) k-connectivity holds:

Lemma

Let u, v be two vertices in G and k > 0 a natural number. Then between
u and v there exist in G at least k edge-disjoint paths if and only if after
removing any k − 1 edges remain u and v in the same component.

Proof
”⇒” Follows by the definition of edge k-connectivity of a graph.
”⇐” Let G be a graph and let u and v be any pair of vertices in G . Let
vertex u be the source and v the sink, we assign capacity 1 to each edge.
Using Ford-Fulkerson’s algorithm find the maximum flow from u to v .

The value of the flow is at least k , otherwise the value of the minimum
cut is smaller than k . By removing the cut-edges we get a disconnected
graph, while there are less than k removed edges which is not possible.

Thus, the edges with flow 1 form different (edge-disjoint) paths from u
to v . (The second Mengers Theorem is proven similarly.) �

33 / 40

System of distinct representatives

Definition

Let M1,M2, . . . ,Mk be non-empty sets. System of distinct representatives
for M1,M2, . . . ,Mk is a sequence of distinct elements (m1,m2, . . . ,mk),
such that mi ∈ Mi for i = 1, 2, . . . , k .

Example

Find the distinct representatives for the given system.

x1
x2

x3

x4
x5

x6 x7
M1

M2

M3

One of the solutions.

x1
x2

x3

x4
x5

x6 x7
M1

M2

M3

34 / 40

An important and well known result is the following theorem

Marriage Theorem

Let M1,M2, . . . ,Mk for k > 0 be non-empty sets. There exists a system of
distinct representatives for these sets if and only if

∀J ⊂ {1, 2, . . . , k} :
∣∣∣⋃

j∈J
Mj

∣∣∣ ≥ |J|,
meaning the union of and j sets in this system has at least j elements.

Marriage Theorem gives a sufficient and necessary condition for a set if
distinct representatives to exist for a given set-system.

The find the system of representatives is difficult, yet sometimes by
choosing a certain collection of sets one can disprove the existence of
distinct representatives.

Note

Marriage Theorem is in some literature called
”
Hall’s Theorem“.

35 / 40

Proof
Denote by x1, x2, . . . , xm all vertices in the union M1 ∪M2 ∪ · · · ∪Mk . We
define a network S on the vertices {1, 2, . . . , k} ∪ {x1, x2, . . . , xm} ∪ {u, v}.
Moreover we add edges {u, i} for i = 1, 2, . . . , k , {xj , v}
for j = 1, 2, . . . ,m and edges {i , xj} for xj ∈ Mi .

The construction of the network S is analogous as in Algorithm for
maximum matching.
Each path from u to v is of the form u, i , xj , v . It describes each
representative xj ∈ Mi uniquely. The system of distinct representatives
correspond to k vertex-disjoint paths from u to v .

Let X be any minimal subset of vertices in G , such that removing all
vertices of X from G no path from u to v remains. By a lemma have all
such sets a system of distinct representatives if and only if each such
separating set X has et least k elements.

We define J = {1, 2, . . . , k} \ X .

36 / 40

J
X

1

2

3

...

k

x1

x2

x3

x4

...

xm

u v

G

Now each edge leaving J (besides u) goes to vertices in X ∩ {x1, . . . , xm},
because no path from u to v exists. Thus∣∣∣⋃

j∈J
Mj

∣∣∣ = |X ∩ {x1, . . . , xm}| = |X | − |X ∩ {1, . . . , k}| = |X | − k + |J|.

From this |X | ≥ k for all (minimal) separating sets X if and only if∣∣∣⋃j∈J Mj

∣∣∣ ≥ |J| for all J. This completes the proof. �

37 / 40

Example

We finish the lecture by providing a couple of examples on the maximum
flow and minimum cut algorithm.

Example

What is the maximum flow in this network (G , z , s,w)?
And where is the minimum cut in the network?

z

v1 v2

v3 v4

s

5

5

3

2 7

3

1

2

3 2

Network (G , z , s,w).

38 / 40

Last example

Example

What is the maximum flow in this network (G , z , s,w)?
And where is the minimum cut in the network?

z

v1 v2

v3 v4

v5 v6

s

9

3

1

2

5

4

9

5

2
1

0

8

1

6

9

1

2

Network (G , z , s,w).

39 / 40

The end

Thank you for your attention

Please do not forget about the evaluation.
Especially comments.

40 / 40

Exam dates

“early” exam (?)

Good luck with your exam!

