
1 / 31

Discrete mathematics

Petr Ková̌r & Tereza Ková̌rová
petr.kovar@vsb.cz

VŠB – Technical University of Ostrava

Winter Term 2022/2023
DiM 470-2301/02, 470-2301/04, 470-2301/06

The translation was co-financed by the European Union and the Ministry of Education, Youth and Sports from the Operational
Programme Research, Development and Education, project “Technology for the Future 2.0”, reg. no.

CZ.02.2.69/0.0/0.0/18 058/0010212.

This work is licensed under a Creative Commons “Attribution-ShareAlike 4.0 International” license.

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

2 / 31

About this file

This file is meant to be a guideline for the lecturer. Many important pieces
of information are not in this file, they are to be delivered in the lecture:
said, shown or drawn on board. The file is made available with the hope
students will easier catch up with lectures they missed.

For study the following resources are better suitable:

Meyer: Lecture notes and readings for an
http://ocw.mit.edu/courses/electrical-engineering-and-

computer-science/6-042j-mathematics-for-computer-science

-fall-2005/readings/”(weeks 1-5, 8-10, 12-13), MIT, 2005.

Diestel: Graph theory http://diestel-graph-theory.com/

(chapters 1-6), Springer, 2010.

See also http://homel.vsb.cz/~kov16/predmety dm.php

3 / 31

Lecture overview

Algorithms for discrete structures

implementing basic structures
implementing sets
list of all selections or arrangements
generating random numbers
combinatorial explosion

4 / 31

7. Algorithms for discrete structures
In this chapter we describe how to implement some structures and
algorithms introduced in Part I.

Some structures are easy to implement, some require a rather elaborate
approach. They often differ in memory requirements or CPU time
requirements.

Usually a general approach is more time/space consuming, on the other
hand the generality must not necessarily be payed for by significantly
slower algorithm.

This chapter is dedicated to selected implementations of structures and
algorithms.

5 / 31

7.1. Implementing basic structures

sequences

mappings

relations

permutations

A (finite) sequence (a0, a1, . . . , an−1)
we implement as a one-dimensional field a[], where a[i] = ai .

Example

We have a (finite) sequence (7, 5, 5, 7, 5, 6, 6).
We store the sequence in an array p = [7 5 5 7 5 6 6].

6 / 31

Mappings

Mapping f : A→ B
Let us take a finite A = {a0, a1, . . . , an−1} and B = {b0, b1, . . . , bm−1}.
Wework with subscripts only and implement the mapping as a sequence –
field f[], in which f[i]=j stands for f (ai) = bj .

This is particularly suitable when A and B are integer sets with small
integers. For different sets we have to “translate” elements in A, B into
their indices (usually CPU time consuming).

for elements in A we can use hash tables
for elements in B we use structured data types or pointers

Example

We have a mapping f : [0, 5]→ [0, 5], where f (0) = 4, f (1) = 5, f (2) = 3,
f (3) = 3, f (4) = 2, f (5) = 2.
We store the mapping in a field f = [4 5 3 3 2 2].

7 / 31

Example

Take a mapping f : {A,B,C ,D,E} → {x , y , z ,w},
where f (A) = w , f (B) = z , f (C) = w , f (D) = x , f (E) = w .
Mapping is stored in a field f = [3 2 3 0 3].
Poťrebujeme pomocná pole X = [A B C D E], Y = [x y z w].

Example

Take a mapping f : R× R→ R, where f (x , y) = x2 + 3y .
Cannot be stored in a field! Not possible to store R.

Example

Take a mapping f : [−5 : 5]× [−5 : 5]→ R, where f (x , y) = x2 + 3y .
Mapping is stored in a two-dimensional field with 11× 11 (approximate?)
values.

Example

Take a mapping f : [−5 : 5]× [−5 : 5]→ R, where f (x , y) =
√

x + y .
Mapping is stored in a two-dimensional field with 11× 11 (approximate!)
values.

8 / 31

Binary relations

Binary relation R on the set A
For finite and small A = {a0, a1, . . . , an−1} we implement relation by
a two-dimensional field (matrix) r[][], in which
r[i][j] = 0 when (ai , aj) 6∈ R and
r[i][j] = 1 when (ai , aj) ∈ R.

Example

We have a relation R ⊆ [0, 4]2, where R = {(0, 0), (0, 4), (1, 3)(2, 4)}.
Relation R can be stored in a two-dimensional field

R =

1 0 0 0 1
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

9 / 31

Properties of relations

Take a binary relation R on the set {0, 1, . . . , n − 1} given by the field
r[][].

Check if the relation r is reflexive, O(n)

for (i=0; i<n; i++)

if (!r[i][i]) { // all ones?

printf("Not reflexive!");

return -1;

}

Check if the relation r is symmetric, O(n2)

for (i=0; i<n; i++)

for (j=i+1; j<n; j++)

if (r[i][j]!=r[j][i]) { // a symmetric matrix?

printf("Not symmetric!");

return -1;

}

10 / 31

Properties of relations (continued)

Is the relation r transitive? Verify for each tripple

∀i , j , k : r [i][j] ∧ r [j][k] ⇒ r [i][k].

Check if the relation r is transitive, O(n3)

for (i=0; i<n; i++)

for (j=0; j<n; j++) {

if (!r[i][j]) continue; // skip

for (k=0; k<n; k++) {

if (!r[j][k]) continue; // skip

if (r[i][k]) continue; // has to be!

printf("Not transitive!");

return -1;

}

}

11 / 31

Example

We have a relation R ⊆ [0, 4]2, where R = {(0, 0), (0, 4), (1, 3)(2, 4)}
stored in a two-dimensional field

R =

1 0 0 0 1
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

Relation is not reflexive.
Relation is not symmetric.
Relation IS transitive.

Question

How to test antisymmetry?
How to test linearity?
What is the time-complexity of these test?

12 / 31

Permutations

A permutation we implement as a bijective mapping
p : [0, n − 1]→ [0, n − 1].

Example

We have a permutation π =

(
0 1 2 3 4 5
4 2 1 3 0 5

)
, π can be stored in a field

p = [4 2 1 3 0 5]

How to verify, the one dimensional field describes a permutation? It is
enough to verify if p is onto (surjective).

Check whether p[] is a permutation, O(n)

for (i=0; i<n; i++) u[i] = 0; // an auxiliary field

for (i=0; i<n; i++) if (p[i]>=0 && p[i]<n) u[p[i]] = 1

else printf("Not a permutation!"); // out of range

for (i=0; i<n; i++)

if (u[i]!=1)

printf("Not a permutation!");

13 / 31

Permutations (continued)

Composition of p[] and q[] is the permutation r[], O(n)

for (i=0; i<n; i++)

r[i] = q[p[i]];

We can obtain a list of all cycles by the code:

Cycle notation of an n-element permutation p[] of [0, n − 1], O(n)

for (i=0; i<n; i++) u[i] = 0; // an auxilliary field

for (i=0; i<n; i++) if (u[i]==0) { // not used

printf("\n(%d",i); u[i] = 1; // start cycle

for (j=p[i]; j!=i; j=p[j]) { // next in this cycle

printf(",%d",j); u[j] = 1;

}

printf(")"); // close cycle

}

14 / 31

7.2. Set implementation
Set are not easy to implement. The problems include

search for a particular element (not a specified list index),
guarantee non-repetitive elements.

Characteristic function of a subset
The universe U = {u0, u1, . . . , un−1}, from which elements are taken, has
to be known. Subsets X ⊆ U are implemented as fields x[], where

x[i] =

{
1 for ui ∈ X

0 otherwise.

Advantages: easy to search for a particular element, unions by using the
OR function, intersection by AND function.

Disadvantage: suitable only for small universe U !

15 / 31

Example

The set A = {2, 3, 5} in a universe U = [1, 10] is implemented using a
characteristic function in a field A = [0 1 1 0 1 0 0 0 0 0].

Example

The set A = {2, 3, 5} in a universe U = [1, 100] is implemented using a
characteristic function in a field A = [0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0
0 0
0 0 0 0 0 0].
The set B = {1}, B = [1 0
0 0
0].

To find the union A ∪ B on U use binary OR. To find the intersection
A ∩ B use binary AND.

Example

The set A = {2, 3, 5} in the universe U = N cannot be implemented.

16 / 31

List of elements
The set X is implemented as a list of elements. The list of k elements
in X is stored in a field x[], we can write

X = {x[1], x[2], . . . , x[k]} for the field x[] of length k.

Advantage: work for big or even unspecified universe.

Instead of a field one can use a dynamic linked list, then it is easy to add
or remove elements from the list.

Disadvantage: determining if a particular object is in the set (often used
operation) is costly – one has to go through the entire list.

Example

The set A = {2, 3, 5} in the universe U = [−MAX INT ,MAX INT] is
implemeted as a field A = [2, 3, 5].

Example

The set A = {3, 5, 2} in the universe U = [−MAX INT ,MAX INT] is
implemeted as a field A = [3, 5, 2].

17 / 31

Test if element x is in the set a[] of size n, O(n)

for (i=0; i<n; i++) { // traverse all field a[]

if (a[i]==x) break; // is x in a[]?

}

if (i<n) printf("Element x is in field a[]"); // found?

Union of two set in fields a[],b[] into the field c[], O(n2)

for (i=0; i<m; i++)

c[i] = a[i]; // all m elements from a[]

for (i=0,k=m; i<n; i++) { // next n elements from b[]

for (j=0; j<m; j++)

if (b[i]==a[j]) break; // if b[i] in a[]

if (j<m) continue; // skip

c[k++] = b[i]; // or add it to c[]

}

18 / 31

Ordered list of elements
An easy modification of the previous implementation.
The elements in the list are ordered according some rule (length, size,
lexicographic, etc.)

Advantage: on can use binary search in the set of elements by bisection in
the list (see Example).

Example

The set A = {2, 3, 5} in the universe U = [−MAX INT ,MAX INT] is
implemented as a field A = [2, 3, 5].

Example

The set A = {3, 5, 2} in the universe U = [−MAX INT ,MAX INT] is
implemented as a field A = [2, 3, 5].

19 / 31

Binary search for k in an ordered field p[] of length n

int a = 0; b = n-1;

while (a<b && p[a]!=k) { // k found?

c = (a+b)/2;

if (p[c]<k) a = c+1; // no, it will be bigger

else b = c; // no, it will be smaller

}

if (p[a]!=k) printf("The number k not in the list.");

Just dlog2 ne searching steps.

Adding a new element x to the set in a field a[] requires O(n)
operations:

find the proper place, O(dlog2 ne)
copy or “shift” part of the field, O(n)

Similarly, when removing elements.

20 / 31

Union of two ordered list in fields a[], b[] of size m, n into an
ordered field c[] of size l, O(n + m)

int i=0, j=0, k, l=0;

for (k=0; k < m+n; k++) {

if (i >= m) { // if a[] exhausted

c[l++] = b[j++];

continue;

}

if (j >= n) { // if b[] exhausted

c[l++] = a[i++];

continue;

}

if (a[i] == b[j]) { // just one copy

j++;

continue;

}

c[l++] = (a[i] < b[j]) ? a[i++] : b[j++];

}

21 / 31

Summary

How large is the universe?

Will we (and how often) modify the structure of the set?

Will we (and how often) search the set?

Will we (and how often) construct unions of sets?

... pick the approriate model.

22 / 31

7.3. Listing selection and arrangements
Often we have to traverse all selections or arrangements of a given type:

different mappings,
k-permutations,
k-combinations without repetitions.

Simple traversing of all ordered pairs (triples, etc.)
All ordered pairs of indices i,j we traverse in a nested loop

2-permuations with repetition, O(n2)

for (i=0; i<n; i++) // nested loop

for (j=0; j<n; j++) {

// process a particular ordered pair (i,j)

}

All unordered pairs of indices i,j are traversed similarly

2-combinations, O(n2)

for (i=0; i<n; i++) // just "above the diagonal"

for (j=i+1; j<n; j++) {

// process a particular unordered pair {i,j}

}

23 / 31

Processing all permutations of an n-element set A in a[]

All n! permutations are processed by a recursive algorithm (Heap 1963).

Heap’s algorithm – permutations of n elements

int i, a[];

permutation(n, a[]) {

if (n==1)

// process permutation in a[]

else

for (i=0; i < n-1; i++) {

permutation(n-1, a[]);

if (n even)

swap(a[i], a[n-1]);

else

swap(a[0], a[n-1]);

}

permutation(n-1, a[]);

}

Function swap(x,y) simply swaps the content of x and y.

24 / 31

Processing all mappings
All nk mapping of a k-element set into and n-element set

map : {0, 1, . . . , k − 1} → {0, 1, . . . , n − 1}
we traverse by the following code: k nested cycles not necessary!

k-permutations with repetition of n elements, O(nk)

int i, map[k];

map[i = 0] = -1;

while (i>=0) {

if (++map[i]>=n) // increase by 1

{ i--; continue; }

if (++i<k) // ’erase’ next element

{ map[i] = -1; continue; }

// process the mapping (map[0], ..., map[k-1])

i--;

}

For each choice we verify

if it exceeded n, then we return to the previous level,
if this was the last choice for the k-th element, otherwise next level.

25 / 31

Processing all k-permutations (without repetitions) on n elements

k-permutations without repetition of n elements, O(nk)

int i, j, arrange[k];

arrange[i = 0] = -1;

while (i>=0) {

if (++arrange[i]>=n) // increase by 1

{ i--; continue; }

for (j=0; j<i; j++) // does it repeat?

if (arrange[i]==arrange[j]) break;

if (j<i) continue; // skip repeated

if (++i<k) // ’erase’ next elements

{ arrange[i] = -1; continue; }

// process k-permutation (arrange[0],...,arrange[k-1])

i--;

}

For each choice we verify
if it exceeded n, then we return to the previous level,
if this is not a repeated element, then we skip it,
if it was the last k, otherwise proceed by the next level.

26 / 31

Processing all k-combiations
We traverse all k-combinations (without repetition) on n elements.
It is similar to the previous case, but now we produce
ordered k-tuples. Hence every k-combination is obtained just once.

k-combinations (without repetition) of n elements, O(nk)

int i, select[k];

select[i = 0] = -1;

while (i>=0) {

if (++select[i]>=n) // increase by 1

{ i--; continue; }

if (++i<k) {

select[i] = select[i-1]; // sorted already!

continue;

}

// process the k-combinaton (select[0],...,select[k-1])

i--;

}

We do not have to check for repeated selections, since the elements of the
selection are ordered.

27 / 31

7.4. Generating random numbers
We investigate really random sequence of bits in a computer.

Where do we require random numbers/bit sequences?

generating random (large) private keys (for SSL certificates).
Using random passwords for SSL encryption (if not random, it can be
broken!).

Resolving packet collisions on Ethernet by random pauses before next
transmission.

Used by probability algorithms, random bits can boost computation
performance.

In statistical analysis of real events, modelling real chaotic and
physical experiments, etc.

28 / 31

Various random number generators
Elemental pseudorandom generators
Use various formulas as

x := (A · x + B) mod C .

We iterate this and certain bits x are used as the random sequence.

Disadvantage: depends heavily on previous iterations and predictable.

Pseudorandom generators with external input
Similar formulas as in the previous case with additional input from external
physical processes (key press delays, disk reading delays, network statistics,
etc.)

Problems: dependence on external conditions, can be influenced by the
environment, each bit is “costly”.

Hardware random generators
Based on quantum noise (in semiconductors).

Problems: translation into a uniform bit sequence, confidence in quantum
mechanics.

29 / 31

7.5. Combinatorial explosion
In software based solution of problems in discrete mathematics we often
require algorithms such as:

Traverse all cases.

Then we may encounter the phenomenon called exponential combinatorial
explosion.

fast growth of the factorial.

tale about corn on chessboard fields

If the number of traversed cases grows exponentially, them even for an
input increased by 1 the computational time increases many times.
In many situation in input of size 10 can be solved in seconds on a 386
processor, but the input of size 15 cannot be counted on most powerful
machines in the world.

Remember this phenomenon when designing your algorithm with “brute
force”!

By choosing an appropriate algorithm, data structure or input limitation
we can achieve tremendous increase of performance.

30 / 31

Example

How many (non-isomorphic!) tournaments of n teams (disregards the
round order, disregard the team numbers).

n=2 1 tournament

n=4 1 tournament

n=6 1 tournament

n=8 6 tournaments

n=10 396 tournaments

n=12 526 915 620 tournaments

n=14 1 132 835 421 602 062 347 tournaments

n=16 ?

If we distinguish the team numbers, then for n = 14 is
98 758 655 816 833 727 741 338 583 040 tournaments.

31 / 31

Next lecture

Part II Introduction to Graph Theory

Chapter 1. The graph

motivation

definition of a graph

degree of a vertex

	About file
	Overview
	7. Algorithms for discrete structures
	7.1. Implementing basic structures
	7.2. Set implementation
	7.3. Listing selection and arrangements
	7.4. Generating random numbers
	7.5. Combinatorial explosion

