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Abstract. The main goal of this work is to explore Paschke’s scalar quantum mechanics (SQM)
adequately, in a broad context. In accordance with this goal, we study in an introductory part the
motivations leading to SQM. Namely, we notice certain technical difficulties of Bohr’s formulation
of quantum mechanics and we present Feynman’s proof of the Maxwell equation, which directly
motivated Paschke’s work. Next, we describe language of spectral geometry which is in the
formulation of SQM broadly employed. The main part of the thesis deals thoroughly with the
central notions of SQM. We show the necessity of the axioms of scalar quantum mechanics
and demonstrate their geometric and/or physical meaning. Next, we study nontrivial dynamical
systems within the context of the SQM. A system describing the electric Aharonov–Bohm effect,
which illustrates the topological obstructions for the existence of a Hamiltonianis, is also presen-
ted. After a historical analysis of Dirac’s relativistic theory of electron, we deal with a possible
extension and an application of the ideas of SQM in the final part. We examine the vacuum
given by a complex structure on phase space. which provides a soldering form for internal degrees
of freedom furnishing them thus with spatial significance and eventually allowing them to be
interpreted as spinors.



Abstrakt. Hlavńım ćılem předložené disertačńı práce je studium Paschkeho formulace skalárńı
kvantové mechaniky (SQM) v co neǰsirš́ım kontextu. Proto je práce rozčleněna na úvodńı část,
kde studujeme motivace vodoućı k pojmu SQM, zejména technické problémy Bohrovské formu-
lace kvantové mechniky a Feynman̊uv d̊ukaz Maxwellových rovnic, který byl př́ımou inspiraćı
k Paschkeho práci. Dále popisujeme zásadńı body spektrálńı geometrie, která je v Paschkeho
SQM využita. Hlavńı část práce spoč́ıvá ve studiu podmı́nek SQM. Zejména ukazujeme, že
Paschkeho podmı́nky jsou nejen dostačuj́ıćı, ale i nutné, tedy, že žádná nemůže být zeslabena bez
d̊usledk̊u na fyzikálńı vlastnosti popisovaných systémů. Dále studujeme v rámci SQM netriviálńı
systémy, zejména formulujeme systém popisuj́ıćı elektrický Aharonov̊uv–Bohmův efekt. T́ım
ilustrujeme topologické překážky existence Hamiltoniánu. V závěrečné části studujeme his-
torii relativistického poisu elektronu a rozšǐrujeme myšlenky SQM na relativistivký kontext.
Ukzujeme, že vakuum volné kvantové teorie pole, které je popsáno komplexńı strukturou na
fázovém prostoru, dodává Infeldovy–van der Waerdenovy symboly vnitřńıch stupň̊u volnosti a
tedy poskytuje popis vztahu vnitřńı geometrie ke geometrii prostoru, což umožňuje interpretovat
vnitřńı stupně volnosti jako spinory.



Introduction

Recently, a new attempt by M. Paschke [32] has appeared to construct quantum theory with
minimal assumptions. It has been inspired by Feynman’s proof of the Maxwell equations and
Paschke calls it scalar quantum mechanics (SQM). The main goal of this work is to explore this
notion adequately, in a broad context. In accordance with this goal, the thesis is divided into an
introductory motivation part, the main part dealing thoroughly with the central notion of SQM
and a final part dealing with a possible extension and an application of the ideas of SQM.

The first part of the work (Chapter 1 and 2) is devoted to a careful study of the motivations
leading to SQM. In Chapter 1, we recall basic postulates of the orthodox Bohr formulation of
quantum mechanics and notice some of its difficulties to draw a comparison to the algebraic
formulation of geometric considerations by Paschke.

Next, we recall Feynman’s proof of the Maxwell equations, which came to being in 1948
thanks to Feynman’s doubts over dogmas of quantum mechanics. After a short review of Feyn-
man’s proof in the version reported by F. Dyson in 1990 we study the impact of Feynman’s proof
in the new paradigm of 1990s, i.e. we study a heritage of Feynman’s proof. We put Paschke’s
work into the context of generalizations of Feynman’s proof.

The exposition in Chapter 1 is based on the author’s talk [S1] dealing with Bohr formulation
and paper [A2], which is a shortened version of the author’s talk [C5], dealing with Feynman’s
proof.

In Chapter 2 we describe language of spectral geometry which is employed in the formulation
of SQM. However, in the discussion we also prepare some notions necessary for the application
in the final Chapter. The exposition comprises some recent work in progress, which has not been
published yet.

In Chapter 3, we address the central notions of Scalar quantum mechanics. We discuss
the necessity of the axioms of SQM and clearly demonstrate their geometric and/or physical
meaning. We show that reasonable nonrelativistic quantum mechanics is exactly specified by
the axioms given by Paschke.

We also treat some nontrivial systems showing the range of applicability of the studied frame-
work. Next, a system describing the electric Aharonov–Bohm effect is presented. It illustrates
the topological obstructions for the existence of a Hamiltonian.

The text of this chapter, which is the core of the work, has been published in Journal of
Mathematical Physics, see [A3]. A slightly modified and shortened report will appear in [A5]. A
preliminary version of the paper was presented at the Workshop on Noncommutative Manifolds
in ICTP Trieste [C2] and the 9th International Conference on Squeezed States and Uncertainty
Relations Besançon [C3]. Abstract of the latter presentation was published in [A1].

In Chapter 4 we first give a historical account of incipient problems in Dirac’s relativistic
theory of electron. In this part an extended version of the author’s paper [A6] is included. It
turns out that difficulties of a relativistic theory are closely related with spin and its soldering
form.

Then we turn to the discussion of soldering structures (in a certain context called Infeld–
van der Waerden symbols) which have seldom been examined properly. Choosing one of the
proposed approaches we show in the final Section that a complex structure on phase space
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provides a soldering form for internal degrees of freedom. The exposition of the Section 4.4 has
been accepted for publication in Electronic Journal of Theoretical Physics, [A4]. This is a joint
work with T. Kopf and A. Lampartová.

To sum it up, the work has a wide scope. In addition to mathematical parts, which are
based on clear physical considerations and applications, this work contains thorough remarks on
historical background and context of the studied problems. It reflects author’s growing passion
for history of science.

However, one of the formal problems connected with this thematic breadth is the very dif-
ferent citing style in the aforementioned fields. That is why in the historical parts the references
are mainly given in the footnotes (apart from the papers directly used in the mathematical parts
of the thesis). In these citations more complete information, e.g., the full name of the journal,
the journal number if applicable etc., is provided.
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Chapter 1

Feynman’s proof of the
Maxwell equations:
a quantum mechanics apocrypha

The word apocrypha mostly stands for a biblical text not included the Biblical Canon. Therefore,
we first recall the “Biblical Canon of Quantum Mechanic”, the unified formulation carried by
Niels Bohr, which grew from two different points of view — Heisenberg’s matrix mechanics and
Schrödinger’s wave mechanics — and which have won recognition through the interpretation
of Bohr’s Copenhagen school. The attention is then drawn to technical difficulties of Bohr’s
formulation. In the physics expositions they are, in fact, often neglected.

However, there exists yet another formulation of quantum mechanics, different in approach
and outlook, but in common situations equivalent. It is the so-called path integral formulation
by Richard Feynman. It emanates from Dirac’s remarks on the relation of classical action prin-
ciple to quantum mechanics. Based on the notion of action-at-a-distance, which appeared in
Feynman’s doctoral thesis (1942), it was fully developed in 1948 (“The Space-Time Formulation
of Nonrelativistic Quantum Mechanics”).1

In the second part of this chapter we dwell upon Feynman’s proof of the Maxwell equations.
Here we again meet the word apocrypha, this time in its original Greek meaning of that “what
was hidden away”. Feynman accomplished his proof in early autumn 1948, showed it to Freeman
Dyson in October 1948, but he had never published it. This was done as late as in 1990, two
years after Feynman’s death. We review Dyson’s version of the proof and give notice of a new
research inspired by Feynman proof. In particular, we explain the role of Feynman proof by the
formulation of scalar quantum mechanics.

1.1 Bohr formulation of quantum mechanics

Quantum mechanics as it stands today arose in a short period between 1925 and 1927. This
period of time is often called “quantum revolution”, since the understanding of physical world
had drastically changed.

There is vast amount of literature on the history of quantum mechanics. From the physicists’
point of view, there are works by active physicists like, e.g., F. Hund, or mathematician B.L. van
der Waerden.2 For a more historical and less technical account one can consult books by Helge

1More details, e.g., in the preface of L.M. Brown (ed.), Feynman’s thesis: a new approach to quantum theory
(World Scientific, Singapore, 2005). Thorough exposition of the path integral formulation can be found in R.P.
Feynman and A.R. Hibbs, Quantum mechanics and path integrals (McGraw-Hill, New York, 1965).

2F. Hund, Geschichte der Quantentheorie (BI, Mannheim, 1967). B. L. van der Waerden, Sources of Quantum
Mechanics (Dover, New York, 1968).

10



Feynman’s proof 11

Kragh, Mara Beller and others.3 A very quick but nice account was given by Brown4 whereas
a huge description elaborated by J. Mehra and H. Rechenberg was strictly criticised.5

Let us recall the very basic facts only.
In 1925 Werner Heisenberg formulated matrix description of spectroscopy (emission and

absorption of light by atoms), which superseded the conception of Niels Bohr. Based on it,
foundations of matrix mechanics were laid in a joint work of Max Born and Pascual Jordan
(“Zur Quantenmechanik” from autumn 1925) and in the famous ‘Dreimännerarbeit’ of Born,
Heisenberg, and Jordan (“Zur Quantenmechanik II”, spring 1926).

In 1926 Erwin Schrödinger (in series of four papers “Quantisierung als Eigenwertproblem”)
introduced his wave mechanics based on a quantum mechanical evolution equation of motion,
a differential equation for a wave equation. There are disputes over how much he was influenced
by considerations of Louis de Broglie. He also proved (still in 1926) that both approaches to
quantum theory, wave and matrix mechanics, are equivalent.6 The wave functions introduced
by Schrödinger provided a first representation of quantum states.

Statistical interpretation of wave function by Max Born (from summer 1926) was an im-
portant step in formulation of the new probability rules.7

Generalization of the Schrödinger wave function and its statistical interpretation were in-
corporated into matrix mechanics (and the related q-number theory of Paul Dirac) through
what came to be known as transformation theory. Independently, Dirac and Jordan developed
this new formalism in late 1926 and published it in early 1927.8 In April 1927 David Hilbert,
J. [János, Johann, John] von Neumann and Lothar Nordheim submitted an exposition of Jor-
dan’s version of transformation theory;9 they highlighted some of the mathematical problems in
the transformation theory. These problems provided an important stimulus for von Neumann
to develop the formalism of Hilbert spaces for quantum mechanics.

Based on quantitative assertions of the latter Dirac work and philosophical views shared
with Bohr and Jordan, Heisenberg formulated the uncertainty principle (in more philosophical
works sometimes called indeterminacy principle) during his stay in Copenhagen in spring 1927.
According to this principle there exist physical quantities, e.g. position and velocity, which
cannot be measured simultaneously with an arbitrary precision.10

During the autumn 1927, the cornerstone of the interpretation of quantum mechanics had
emerged. It was based on indeterminacy principle (W. Heisenberg), complementarity principle

3Helge Kragh, Quantum generations: a history of physics in the twentieth century (Princeton Univ. Press,
Princeton, 1999). M. Beller, Quantum dialogue: the making of a revolution (Univ. of Chicago Press, Chicago,
1999).

4L M Brown, Quantum mechanics, in: I. Grattan-Guinness (ed.), Companion encyclopaedia of the history and
philosophy of the mathematical sciences (Routledge, London 1994), 1252–1260.

5J. Mehra and H. Rechenberg, The Historical Development of Quantum Theory, Vol. I–VI/2 (Springer, New
York, Berlin, 1984–2001). Flaws of the first four volumes were pointed out by P. Forman, A Venture in Writing
History, Science 220 (1983), 824–827.

6E. Schrödinger, Über das Verhältnis der Heisenberg–Born–Jordanschen Quantenmechanik zu der meinen,
Annalen der Physik, IV. Folge, 79 (1926) 734–756; (Volume 384, Issue 8). Cf. also B.L. van der Waerden, From
matrix mechanics and wave mechanics to unified quantum mechanics, Notices AMS 44 (1997) (3) 323–328.

7A. Pais, Max Born’s Statistical Interpretation of Quantum Mechanics, Science 218 (1982) 1193–1198.
8P.A.M. Dirac, The physical interpretation of the quantum dynamics, Proceedings of the Royal Society of

London. Series A, Mathematical and Physical 113 (1927) 621–641; P. Jordan, Über eine neue Begründung der
Quantenmechanik, Zeitschrift für Physik 40 (1927) 809–838. The two theories are equivalent, at least formally.

9D. Hilbert, J. v. Neumann and L. Nordheim, Über die Grundlagen der Quantenmechanik, Mathematische
Annalen 98 (1927) 1–30.

10W. Heisenberg, Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik, Zeitschrift
für Physik 43 (1927) 172–198. Historical backgroud is studied in M. Beller, Pascual Jordan’s Influence on the
Discovery of Heisenberg’s Indeterminacy Principle, Archive for History of Exact Sciences 33 (1985) 337–349.
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(Niels Bohr),11 correspondence principle (Bohr, Heisenberg and Paul Ehrenfest)12 and strictly
acausal and probabilistic interpretation (Max Born). Formally, it was based on the axiomatic
Hilbert space theory (J. von Neumann).

At the Fifth Solvay Conference in October 1927 Niels Bohr articulated this interpretation
and defended it successfully in tough discussions against the objections raised by the opponents,
mainly by Einstein, Schrödinger and de Broglie. However, disputes over the interpretation be-
tween Einstein and Bohr lasted more then 20 years.13 Still, the interpretation gained ascendancy
as the correct view of quantum phenomena incredibly quickly.14 In honour of its Father, the
paradigm was called Copenhagen interpretation.

There is a course of notation changes neatly connected with the diverse attempts to quantum
theory. In the thesis we largely use the so called bra-ket notation invented by Paul Dirac in
1938. It is widespread in the physics literature. The name is derived from the use of angle
brackets, as Dirac denoted the inner product on a Hilbert space H by 〈ϕ | ψ〉 = 〈ϕ| · |ψ〉, with
the the right term |ψ〉 called ‘ket’ denoting a vector in a Hilbert space H and the left term 〈ϕ|
called ‘bra’, which is understood as a dual to |ϕ〉, thus a linear functional on H.

However, Dirac was fond of inventing new notation and terminology. He also originated the
use of square brackets [A,B] for Poisson symbols, which was soon taken over to symbolize the
quantum mechanical commutator. In 1926 he decided to let the symbol h, commonly used for
Planck constant, denote the quantity

h

2π
= 1.054 571 628(53) · 10−34 J s

called “Dirac’s h” at that time (later rather reduced Planck constant). In 1930 he introduced the
symbol ~ for the reduced Planck constant to avoid misunderstandings. Also the names bosons
and fermions for particles with symmetric (antisymmetric respectively) eigenfunctions stem from
Dirac, concretely from one of his lectures in 1945.15

1.1.1 Postulates of quantum mechanics

Let us briefly summarize the basic postulates of the Bohr formulation of quantum mechanics.
At the same time we provide examples for later reference to the technical difficulties of the
formulation in the next section.

(a) State of a physical system is given by normalized vector (equivalence class, more
precisely) |ψ〉 in a separable complex Hilbert space H with inner product 〈φ | ψ〉. Two vectors
represent the same state if they differ by a phase factor only.

The Hilbert space H is usually implemented by co called physical Hilbert space L2(Q) with
configuration space Q. For Q = R, the Hilbert space

L2(R) =
{
f : R → C

∣∣∣∣ f measurable ∧
∫

R
|f(x)|2 dx <∞

}
,

consists of Lebesgue measurable complex-valued functions on R which are square integrable with
respect to the inner product 〈f | g〉 =

∫
R f

∗(x)g(x) dx.

11Classical concepts cannot be combined freely in quantum mechanics; this is the source of the so-called wave-
particle duality N. Bohr, The quantum postulate and the recent development of atomic theory, Nature 121 (1928)
580–590.

12Within the limit for large quantum numbers, a quantum description should recover the classical description.
13Description of later discussions was given by J. Mehra and H. Rechenberg, The Historical Development of

Quantum Theory, Vol. VI/2 (Springer, Berlin, 2001), 1197–1208.
14J.T. Cushing, Quantum mechanics: historical contingency and the Copenhagen hegemony (The Univ. of

Chicago Press, Chicago, 1994).
15H.S. Kragh, Dirac – A Scientific Biography (CUP, Cambridge, 1990), p. 17, 23 and 36.
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(b) Time evolution of state of the system can be described by Schrödinger equation

(1.1) i~
∂

∂t
|ψ〉 = H|ψ〉,

with Hamiltonian operator H.
(c) Measurable quantities, so called physical observables, are represented by densely-

defined linear (i.e. agreeing with the superposition principle) Hermitian (i.e. A = A†, in physics
literature the same as self-adjoint) operators on H.

(d) Possible values of an observable A in any state belong to the spectrum of A. The
spectral values of a Hermitian operator are real.

In general spectrum consists of point spectrum, absolute continuous and singular continuous
spectra. Below we study some special cases where A has only point spectrum. Then, the possible
outcomes of measuring A are given by eigenvalues λi of the operator A, i.e., solutions of the
eigenvalue equation A|ai〉 = λi|ai〉 with the corresponding eigenvectors |ai〉.

(e) Measurement probabilities and wave function collapse. For a system in a state
|ψ〉 =

∑
ψi|ai〉, the probability of measuring the value λk of the quantity A is equal to |〈ak | ψ〉|2.

As |〈ak | al〉|2 = δkl, we measure out the eigenvalue λi with probability 1 for a system in
eigenstate |ai〉.

The measurement affects the state of the system. If the result of the measurement is λk, then
the state of the system immediately after the measurement is |ak〉. This phenomenon is called
wave function collapse.

(f) Correspondence principle. Relations of dynamical variables in classical mechanics
and corresponding operators in quantum mechanics differ from each other in the ordering of
operators at the most. Classical limit of a quantum system can be obtained, providing the limit
exists at all, with large quantum numbers n −→ ∞, which makes Planck constant negligible,
~ −→ 0.

1.1.2 Technical difficulties of Bohr quantum mechanics

Bohr’s formulation of quantum mechanics suffers from some technical difficulties which are
only rarely mentioned in elementary physics literature. In rigorous mathematical treatment
these difficulties can be improved. Nevertheless, with increasing rigor the theory is getting more
complicated. Let us illustrate it on some instructive examples.

Operators, spectra and eigenvectors

For some important operators, e.g. position operator X and momentum operator P , the vectors
corresponding to spectral values λ are not normalizable, hence, there do not exist eigenvectors
in strict sense.

Let position operator X on H = L2(R) be defined by

(1.2) X|ψ(x)〉 = |xψ(x)〉

on a dense domain dom(X) = {ψ ∈ L2(R) |
∫

R x
2|ψ(x)|2 dx <∞} ⊂ L2(R).

The eigenvalue equation X|ψ(x)〉 = λ|ψ(x)〉 gives the spectrum σ(X) = R and functions
ψλ(x) = δ(x− λ) are corresponding eigenvector candidates. However, they are not square inte-
grable, as

∫
R δ

2(x− x′)dx = δ(0) 6∈ R. Hence, ψλ(x) 6∈ H.
Let momentum operator P on L2(R) be defined by

(1.3) P |ψ(x)〉 = |−iψ′(x)〉

on a dense domain dom(P ) = C1(R) ∩ L2(R). The spectrum σ(P ) = R again and the plane
waves,

ψp(x) =
1√
2π

eipx ,
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which are solutions of the eigenvalue equation, apparently do not belong to H. They do not fulfil
necessary condition of square integrability as limx−→±∞ ψp(x) 6= 0.

We can overcome this difficulty by restricting ourselves to so-called test functions forming a
dense subspace in H. It can be taken as the space C∞c (R) of smooth functions f : R −→ R with
compact support. However, in most cases the Schwartz space S(R) of smooth rapidly decreasing
functions on R is the preferred choice, see [36, Vol. I, Section V.3]. Its advantage is that Fourier
transform is in an isometry S(R) −→ S(R). The dual space of S(R), i.e. the space of tempered
distributions S ′(R), contain all the ‘interesting’ objects, in particular also δ(x) and eipx.

Time evolution in quantum mechanics

Let us first note that time is not observable in quantum mechanics.
There exist three conceptions of time evolution. In Schrödinger picture the state of a system

evolves with time and observables do not depend on t. In Heisenberg picture time evolution
is expressed by time-dependent observables and the state vectors are time-independent. For
Dirac or interaction picture it is specific that both states and observables carry part of the time
dependence, however, in a sensibly chosen manner.

In this section we work in Schrödinger picture. Time evolution of a quantum mechanical
dynamical system can be described with the help of time evolution operator U . If |ψ, t0〉 is a
state of the system in time t0, then

|ψ, t〉 = U(t, t0)|ψ, t0〉.

for any later time t. We set t0 = 0 and denote U(t) = U(t, 0). The operator-valued function
U(t) is called a strongly continuous one-parameter unitary group if it satisfies the following three
conditions.

(a) U(t) is a unitary operator: U †U = 1l .
(b) U(t)U(s) = U(t+ s) for all t, s ∈ R.
(c) If t −→ t0, then U(t)|ψ〉 = U(t0)|ψ〉, for all |ψ〉 ∈ H. Especially U(0) = 1l.

Theorem 1.1 (Stone). Let U(t) be a strongly continuous one-parameter unitary group on
a Hilbert space H. Then there is a self-adjoint operator A on H with U(t) = eitA.

If A is bounded, we can define the exponential by

eitA =
∞∑

n=0

(it)nAn

n!
.

If A is unbounded and self-adjoint, we can define the exponential using functional calculus, cf.
[36, Vol. I, Section VIII.3].

If the assumptions of Stone theorem hold, then there exists a generator of time evolution,
i.e. Hamiltonian H. It is then obtained by a simple calculation and it reads

(1.4) H = i
d
dt

∣∣∣∣
t=0

U(t).

However, the Hamiltonian H is again an unbounded operator on H = L2(R) and we meet
the same difficulties in treating the spectral values as above by X,P . Spectrum of H, e.g. for
hydrogen atom, consists of several discrete values and a continuous part.

Commutation relations and representations of operators

Again we consider a single particle on R. Commutation relations for position and momentum
operators

(1.5) [X,X] = 0, [P, P ] = 0, [X,P ] = i1l ,
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with [A,B] := AB − BA, define fundamental properties of position and momentum operators.
Schrödinger representation of X and P , defined in (1.2) and (1.3), is usually used in literature
without proving the following hypothesis:

Hypothesis 1.2. Commutation relations (1.5) uniquely determine the representation (1.2)
and (1.3) of X and P .

Moreover, as wel shall show, the answer is partial only. The operators X and P are un-
bounded, hence, only densely defined with dom(X),dom(P ) ( H. The same holds for their
commutators in (1.5). On the contrary, the right-hand sides of (1.5) are bounded operators.
Weyl, who first made an attempt at formulation of the hypothesis,16 proposed to overcome this
difficulty by rewriting the operators into exponential form (it was made precise only later with
the help of Stone theorem). Only in this restricted sense, i.e., for the exponential form of (1.5),
the answer is positive and it is known under the name Stone–von Neumann theorem (the name
was given to it by G. W. Mackey in 1949).

Theorem 1.3 (Stone–von Neumann). Let U(r) = exp(iAr), V (s) = exp(iBs), s, r ∈ R, be
unitary strongly continuous representations of the group of translations in a Hilbert space H
fulfilling Weyl relations

(1.6) U(r)V (s) = eis·rV (s)U(r).

Then there exists a decomposition H =
⊕

α∈I Hα, where the subspaces Hα are invariant with
respect to U(r), V (s) for all s, r. For every α ∈ I there exists a unitary operator Sα with

(SαU(r)S−1
α ψ)(x) = ψ(x+ r),

(SαV (s)S−1
α ψ)(x) = eis·xψ(x).

In particular, every irreducible (unitary, strongly continuous) representation of Weyl relations
is unitarily equivalent to Schrödinger representation

(1.7) (U(r)ψ)(x) = ψ(x+ r),

(1.8) (V (s)ψ)(x) = eis·xψ(x).

The idea of the proof was presented by Marshall Harvey Stone (in 1930)17 and the “strong
proof” was completed by John von Neumann.18

Remark 1.4. It is easy to show that the representation (1.7), (1.8) is equivalent to the
Schrödinger representation (1.2) and (1.3). For the position operator we get

(V (s)ψ)(x) = eisX ψ(x) =
∞∑

k=0

(is)kXk

k!
ψ(x)

(1.2)
=

∞∑
k=0

(is)k

k!
xkψ(x) = eis·xψ(x).

16In the first edition of his book Gruppentheorie und Quantenmechanik from 1928, see [44, §46, p. 207–210].
17M. H. Stone, Linear Transformations in Hilbert Space, III. Operational Methods and Group Theory, Proceed-

ings of the National Academy of Sciences of the USA 16 (1930)(2) 172–175.
18Weyl in the second edition of his Gruppentheorie und Quantenmechanik (November 1930) disinguished between

“proof” and “strong proof”. He also noted that “durchgeführt ist ein solcher Beweis auf anderer Grundlage, wie
ich einer brieflichen Mitteilung entnehme, kürzlich von J. v. Neumann” (a footnote to page 248). It was published
in J. v. Neumann, Die Eindeutigkeit der Schrödingerschen Operatoren, Mathematische Annalen 104 (1931) 570–
578. For the history of the Stone–von Neumann theorem see Jonathan M. Rosenberg, A Selective History of
the Stone–von Neumann Theorem, in: Operator algebras, quantization, and noncommutative geometry, Contemp.
Math. 365 (AMS, Providence, 2004) 123–158.
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The equivalence for momentum operator is obtained by differentiating (1.7) with respect to
the parameter. For the left-hand side we get

d
dr

∣∣∣∣
r=0

eirP ψ(x) = iPψ(x)
(1.3)
=

dψ(x)
dx

,

which renders d/dr|r=0ψ(x+ r), thus providing the desired equivalence.

1.2 Heritage of Feynman’s proof

According to Grattan-Guinness,19 there are two types of writing on the history of mathematics,
or more generally history of any science: history and heritage. Both of them are legitimate and
important, but it is mostly heritage what is produced by professional mathematicians. However,
“the confusion of the two kinds of activity is not legitimate,” Grattan-Guinness, p. 165.

By history we understand attempts to recount the details of the development of a notion, its
origin and the chronology of progress, as far as it can be determined.

The history of Feynman’s proof of the Maxwell equation can be told in a brief and simple
narrative.20 In October 1948 it was found out by Richard P. Feynman, but remained unpub-
lished. Feynman reported on it only informally to Freeman Dyson and Cécile Morette-de Witt.21

Only after Feynman’s death Dyson disclosed his letters from that time, containing a remark on
Feynman’s proof.22 In 1990 Dyson recovered a version of Feynman’s proof from his later notes
and also put Feynman’s proof to his view of historical context, see [13].

Heritage, on the other hand, describes the impact of a notion upon later work, especially
in the forms which it may take, or be embodied, in later contexts. Some modern form of the
studied notion is usually the main focus with attention paid to the course of its development.
In the account of heritage mathematical relationships will be noted, but historical ones in the
above sense will hold much less interest.

1.2.1 Dyson’s version of Feynman’s proof

Let us briefly recall Feynman’s proof in the form reported by Freeman J. Dyson. We have
given further details in lecture [C5], see also [A2]. Thorough exposition of Feynman’s proof is
due to A. Holfter [20].

Theorem 1.5 (Feynman–Dyson). Let us assume a particle exists with position xj (j =
1, 2, 3) and velocity ẋxj satisfying Newton’s equation

(1.9) mẍxj = Fj(x, ẋx, t)

with commutation relations

(1.10) [xj , xk] = 0,

19I. Grattan-Guinness, The mathematics of the past: distinguishing its history from our heritage, Historia
Mathematica 31 (2004) 163–185.

20That is why we are concerned with more interesting questions of heritage of Feynman’s proof. However, we
present our rather historical work later in Section 4.1.

21“Feynman had an amazing proof of the Maxwell equations from Quantum Mechanics which I published after
his death. He didn’t want to publish it, he said it was just a joke,” Web of Stories, Interview of Freeman Dyson
by Sam Schweber from June 1998, Transcript, part 77: Meeting Feynman with Cecil Morette – the proof needed
[online, cit. 30. 5. 2010], http://webofstories.com/play/4385. We discuss the reasons why it was not published
below.

22He read from them for the first time in the talk “Feynman in 1948” at Feynman Memorial Session in 1988.
Shortened version of the talk was published in F.J. Dyson, Feynman at Cornell, Phys. Today 42 (1989)(2) 32–38.
Full text appeared only later in F.J. Dyson, From Eros to Gaia (Pantheon Books, New York, 1992), § 34.
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(1.11) m[xj , ẋxk] = i}δjk.

Then there exist fields E(x, t) and B(x, t) satisfying the Lorentz force equation

(1.12) Fj = Ej + εjklẋxkBl

and the Maxwell equations

(1.13) ∇ ·B = 0,

(1.14)
∂B

∂t
+∇× E = 0.

Remark: The other two Maxwell equations

(1.15) ∇ · E = 4πρ,

(1.16)
∂E

∂t
−∇×B = 4πj,

merely define the external charge and current densities ρ and j.

Dyson’s version of the proof [13] was repeated and commented many times in the literature.
We refer to thorough treatment by Holfter [20] stressing the geometry hidden in the original
and by Cariñena & al. [4] formulated in the language of Poisson geometry.

Before sketching the proof let us make some brief comments. The essential idea seems to be
using velocity ẋxi instead of momentum pi in the commutation relation (1.11), which renders the
dynamics better. Also, key ingredients of the proof are properties of the commutator, namely

(i) Jacobi identity (expressing associativity)

(1.17) [A, [B,C]] + [C, [A,B]] + [B, [C,A]] = 0,

(ii) Leibniz rule (giving the structure of derivatives)

(1.18) [A,BC] = [A,B]C +B[A,C],

(1.19)
d
dt

[A,B] =
[
dA
dt
, B

]
+

[
A,

dB
dt

]
.

Sketch of the proof. Total time derivative of (1.11), using (1.19) and (1.9) gives m[ẋxj , ẋxk]+
[xj , Fk] = 0. Hence, [xi, Fj ] is antisymmetric with respect to swapping the indices. In the next
step, regarding Jacobi identity, we get [xk, [xi, Fj ]] = 0 and [xi, Fj ] depends on x and t only.
Thus, [xi, Fj ] = −(i}/m)εijkBk and we can define

(1.20) Bl =
m2

2i}
εlkm[ẋxk, ẋxm].

Equation (1.13) follows by another application of Jacobi identity.
Next Lorentz force equation (1.12) is taken into account. It is satisfied by assuming it to be

definition of electric field E. Similarly as above for B it is shown that E = E(x, t).
Faraday law (1.14) is proved by total time derivative of (1.20) using (1.12) in the Newton’s

law (1.9). �

However, to understand properly the history of Feynman’s proof, one has to see it in its
historical context, i.e., in the context of the development of Feynman’s ideas on quantum physics.
In summer 1948 Feynman tried hard to ‘crack the riddle’ of Quantum electrodynamics (QED).
For him the proof of Maxwell equations was confirmation of the basic dogmas of quantum
mechanics. He made sure for himself that the renormalization problem in QED can not be
solved by introducing more general particle theory outside the standard framework. As noted by
Dyson, the proof told him that there are no models that could not be described by an ordinary
Lagrangian or Hamiltonian. From Feynman’s point of view the proof was a failure, not a success.
Therefore, he was not interested in publishing it.
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1.2.2 Feynman’s proof in a new paradigm

“It is not only a historical relic of a failed program. It also raises some new questions.”

F. Dyson, [13, p. 211]

After the publication of Feynman’s proof with Dyson’s editorial comment in 1990, see [13], it
was not considered to be just a historical feature, it inspired immediately new research directions.
We review the discussion about symmetries in Feynman’s proof and then we discuss relation
with the inverse problem of the calculus of variations first pointed out by Hojman and Shepley.
Generalizations of Feynman’s proof to arbitrary (even noncommutative) configuration spaces
are also mentioned. They are then discussed more thoroughly in the next Chapter, as they
led to the notion of scalar quantum mechanics, the central notion of this thesis. Finally, we
also mention some attempts to introduce new particle dynamics into Feynman’s proof. We
shall discuss including of the internal degrees of freedom into Feynman’s proof in Section 1.2.3.
However, it is closely connected with extension of Feynman’s problem on internal degrees of
freedom. Namely, the internal space usually renders the configuration space noncommutative.

Dyson emphasized a question concerning a then fashionable theory of symmetries. The
Maxwell equations are relativistically invariant, while Newtonian assumptions (1.9)–(1.11) are
nonrelativistic. “The proof begins with assumptions invariant under Galilean transformations
and ends with equations invariant under Lorentz transformations. How could this have hap-
pened?”

Immediate comments focused mainly on this question.23 It was stressed that the answer lies
in the nonhomogeneous Maxwell equations (1.15), (1.16), which were taken just to define sources
ρ and j. They are of course not Galilean invariant. Dombey pointed out that an earlier definition
by Levy-Leblond

∇ · E = 4πρ, ∇×B = 4πj,

keeps Galilean invariance. However, in this so-called magnetic limit one must give up magnetic
forces between electric currents. The other authors solved the issue by asserting that full set of
Maxwell equations can not be derived from Galilean transformation.

Feynman’s proof and the inverse problem of the calculus of variations

S.A. Hojman and L.C. Shepley considered Feynman’s proof in the context of the inverse
problem of the calculus of variations. From this point of view, Feynman’s proof tells us that
we can quantize only such equations (1.9), which are describable in the form of Euler–Lagrange
equations with Lagrangian L of electromagnetic form.

Hojman and Shepley were looking for a variational integrating factor (variational multiplier),
i.e a nonsingular symmetric matrix wij with elements depending on t, x and ẋx, and a function
L(t, x, ẋx) such that

wij(ẍxj − f j) =
d
dt
∂L

∂ẋxi −
∂L

∂xi .

The necessary and sufficient condition for the existence of a Lagrangian L are the well-known
Helmholtz conditions of the (weak) inverse problem of the calculus of variations.24 If L exists,
then the variational integrating factor is given by

wij =
∂2L

∂ẋxi∂ẋxj .

23 Four independent comments, by N. Dombey, R.W. Brehme, J.L. Anderson and I. E. Farquhar, appeared in
American Journal of Physics 59 (1991)(1) 85–87. Further, it was commented by A. Vaidya and C. Farina, Can
Galilean mechanics and full Maxwell equations coexist peacefully? Physics Letters A 153 (1991)(6–7) 265–267;
and H.P. Noyes, Preprint SLAC-PUB-5588 (November 1991).

24More precisely Helmholtz conditions for integrating factor. See, e.g., O. Krupková, The Geometry of Ordinary
Variational Equations, Lecture Notes in Mathematics 1678 (Springer, Berlin, 1997).
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They generalized Feynman’s assumption (1.11), assuming

(1.21) [Xi, ẊX j ] = i~Gij ,

with capital letters denoting quantum mechanical operators, where the commutators form a
symmetric array, Gij = Gji. They proved that matrix inverse of the classical analogue of Gij

became wij , satisfying Helmholtz conditions, hence, giving a Lagrangian. The existence of a
Lagrangian essentially comes from (1.10). The explicit form of L is determined by (1.21). In
accordance with the well-known fact L is determined up to an overall multiplicative constant
and an addition of a total time derivative.

In further comments Hughes used variational multipliers of the trivial form wij = δij ,25 i.e.,
such that employ only strong variationality conditions.26 Variational multipliers of slightly more
general form wij = eλt δij , λ ∈ R were used in a comment by Moreira.27

Later, J.F. Cariñena, L.A. Ibort, G. Marmo and A. Stern used the inverse problem of the
calculus of variations in the study of Lagrangian realizations of Poisson brackets defining a
particle with internal degrees of freedom, see [4, Section 8].

Feynman’s proof on arbitrary configuration spaces

Using Poisson geometry J.F. Cariñena, L.A. Ibort, G. Marmo and A. Stern generalized
Feynman’s proof to arbitrary configuration spaces of classical mechanics, see [4, Section 5–7].

Analysing hidden assumptions of Feynman’s proof, M. Paschke achieved a generalization
of the original quantum-mechanical Feynman’s proof to arbitrary configuration spaces, avoiding
a choice of local coordinates at the same time, see [32]. He came to the notion of scalar non-
relativistic quantum mechanics, which is studied thoroughly in the next Chapter.

Feynman’s proof was also generalized for some noncommutative configuration spaces. In
2003 two independent papers appeared, where the authors considered Feynman’s proof on Moyal
deformed Rn.

A. Boulahoual and M. B. Sedra28 studied two types of noncommutativity on Moyal
deformed R3. First they assume

(1.22) [xj , xk]∗ = iθjk, with θjk ∈ C,

where [ · , · ]∗ is a so-called Moyal bracket defined by ∗-product. They claim that fields E,B in
the Lorentz force have no spatial dependence, hence, this form of noncommutativity induces
static Maxwell equations, cancelling the charge and current densities.

The second type of noncommutativity consists in the assumption

(1.23) m[xj , ẋxk] = δjk + imθjkf(x, t)

in addition to the first type. They claim to derive a nontrivial noncommutative extension of the
homogeneous Maxwell equations.

However, it was later shown by J.F. Cariñena and H. Figueroa in [5] that their conclusions
are not correct.

25R.J. Hughes, On the Feynman’s proof of the Maxwell equations, American Journal of Physics 60 (1992)(4)
301–306.

26However, his historical comments to the inverse problem are inaccurate. Cf. my paper J. Kot̊ulek, Z historie
inverzńıho variačńıho problému: Odvozeńı podmı́nek silné variačnosti, Pokroky matematiky, fyziky a astronomie
48 (2003)(3) 222–238.

27Ildeu de Castro Moreira, Comment on “On the Feynman’s proof of the Maxwell equations” by R.J. Hughes,
American Journal of Physics 61 (1993)(9) 853.

28Noncommutative geometry framework and the Feynman’s proof of Maxwell equations, Journal of Mathemat-
ical Physics 44 (2003)(12), 5888–5901.
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A. Holfter [20] discussed Moyal deformed Rn, i.e. he took

(1.24) [xj , xk] = iθjk, θjk ∈ C, j, k = 1, . . . , n,

instead of (1.10), providing noncommutativity of local coordinates. He was able to deduce that
the external force F is linear in velocities and he got some properties of E and B fields, but did
not derive the Maxwell equations.

Then, in [20, Section 6.8], he considered a noncommutative configuration space given by the
algebra A = C∞(Rm)⊗Mn(C), which can be used to describe spinning particle on R3.

J.F. Cariñena and H. Figueroa in [5] follow up using Poisson geometry developed in [4].
They drop locality assumption for a classical particle on configuration manifold Q by setting

(1.25) {xi, xj} = gij(x)

with gij an antisymmetric matrix such that the Poisson bracket {· , · } fulfils Leibniz rule (1.18).
With the help of Jacobi identity they show that gij must be constant. (The dependence of g on
ẋx’s is studied later in their paper.)

They derived a generalization of the first Maxwell equation (1.13)

(1.26) ∇B = − 1
m
B · ∇̇∇ ×B,

which reduces to (1.13) if field B is independent of ẋx’s. Similarly, their resulting second Maxwell
equation

(1.27) (∇× E)k = −∂B
∂t

+
1
m

(
(∇̇∇ · E)Bk − (E · ∇̇∇)Bk −B · ∂E

∂ẋxk

)
reduces to (1.14) if fields B,E are independent of ẋx’s. So, in the limit, they obtained a smooth
transition into the commutative case, contrary to what is claimed by Boulahoual and Sedra.

Finally, they consider gij(x, ẋx) and generalize simultaneously also (1.11) to

(1.28) m{xi, ẋxj} = δij + fij(x, ẋx),

with fij another antisymmetric matrix compatible with the Poisson bracket properties. They
claim to derive “equations a bit more involved, but similar” to (1.26) and (1.27). Nevertheless,
the corresponding formulae are not stated.

Continuing their previous work from 2003, M. Paschke and T. Kopf [25] generalized
the notion of scalar quantum mechanics to some noncommutative configuration spaces, again
in coordinate-free manner. This work, published only in 2007, provided algebraic version of
Feynman’s proof on noncommutative spaces.

They studied several important models, e.g. the algebra A = C∞(Q)⊗Mn(C) which leads to
non-Abelian Yang–Mills theories, the two-point model with A = C∞(Q)⊗(C⊕C) or noncommu-
tative tori Tn

θ . They examined models over Moyal-deformed plane R2
θ with results in accordance

with those of J.F. Cariñena and H. Figueroa [5].

1.2.3 Including internal degrees of freedom

We finish this chapter by a few short remarks on Feynman’s proof with internal degrees of
freedom. Namely, our work presented in Section 4.4, i.e., a derivation of spin soldering from
rather general physical considerations, can be understood as a form of Feynman’s proof for
spinning particles, thus particles with internal degrees of freedom “soldered” to the spacetime
geometry.

In August 1990 a paper by C.R. Lee [28] appeared where the motion of a particle with
isospin under the influence of non-Abelian gauge field is studied and homogeneous Yang–Mills
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equations are obtained. However, Farquhar criticized the approach,29 as it does not furnish
the (non-homogeneous) equations with necessary transformation properties. The same critique
refers also to the original Dyson version of Feynman’s proof.30 A special relativistic version of
the arguments by Lee was published by Tanimura, [38].

However, the isospin is an example of internal degree of freedom which does not possess
soldering structures.

Shogo Tanimura was the first to ask if we can involve spin in the arguments of Feynman’s
proof, see [38, p. 247]. He remarks that he “naively expects that the Lie algebra of the local
Lorentz group

[Sµν , Sρσ] = −i ~(gµρSνσ − gνρSµσ − gµσSνρ + gνσSµρ)

leads to the equation for force which electromagnetic and gravitational fields exert over a particle
with spin” according to van Holten:31

mµ̈µ = egµνFνρẋx
ρ −mΓµ

νρẋx
ν ẋxρ +

e

2m
gµν(∇νFρσ)Sρσ +

1
2
Rµ

νρσẋx
νSρσ,

where e is electric charge of the particle, which has been absorbed in the definition of Fµν in the
previous sections; ∇ denotes covariant derivative with the Levi-Civita connection Γµ

νρ; Rµ
νρσ

is the Riemann curvature tensor and Sρσ is intrinsic angular momentum tensor, that is, spin.
The derivation is, however, “left for a future work”.

Chihong Chou generalized Feynman’s proof to spinning particles on a flat (2+1)-dimensional
spacetime in [6]. He assumed, in addition to Feynman’s assumptions, the existence of Hamil-
tonian evolution, in order to utilize the framework of symplectic geometry, cf. [38, p. 233].
Moreover, he did not consider deriving anything like soldering form.

Thorough exposition of Feynman’s proof with internal degrees of freedom by J.F. Cariñena,
L.A. Ibort, G. Marmo and A. Stern appeared in 1995, see [4].32

29Comment in Physics Letters A 151 (1990)(5) 203–204.
30See also footnote 23.
31J.W. van Holten, On the electrodynamics of spinning particles, Nuclear Physics B 356 (1991)(1), 3–26.
32However, a part of the exposition is based on an earlier paper of one of the authors, namely A. Stern and

I. Yakushin, Deformed Wong particles, Physical Review D 48 (1993)(10) 4974–4979.



Chapter 2

Notion of spectral triple

In spectral geometry, the space is usually described by the notion of spectral triple (D,A,H). It
consists of a distinguished unbounded self-adjoint operator D (e.g., Dirac or Laplace operator,
depending on situation) and an algebra A, both (faithfully) represented on a Hilbert space H.
However, the concrete spectral triples may differ slightly in details. For example, we should add
some other structures for D to play the role of Dirac operator 6D (operators specifying the spin
structure, etc.). Note that we do not restrict the order of D from the beginning.

Although we are going to modify some attributes of the spectral triples, let us recall the
features which we build upon. First, the operator D allows us to define a concept of smoothness
and we can require the algebra to meet its criteria.

2.1 Smoothness in spectral geometry

Motivated by physics, the operator D is often explicitly chosen to be a differential operator. Its
commutator with a coordinate operator results in a differential expression. Hence, the existence
of this differential expression (or its properties) refers to some requirements for smoothness of
the coordinate.

Let us begin with some illustrative examples. We choose A = C∞(S1), the commutative
algebra of complex-valued functions on a circle, and Hilbert space H = L2(S1, S1×C) consisting
of square integrable sections of the complex line bundle π : S1×C −→ S1, cf. Section 3.2 below.

Example 2.1. Let D = −i(∂/∂ϕ) be differential operator of the first order. This can be
expressed by

[D, a] ∈ A ∀a ∈ A,

whereas [D, a] = −i(∂a(ϕ)/∂ϕ) by Lemma 3.3, equation (3.5b), below. Equivalently, we can
write it in the following form

[[D, a], b] = 0 ∀a, b ∈ A.

The fact that a ∈ A possesses derivative of the n-th order implies that the operator

[D, [D, [D, . . . [D︸ ︷︷ ︸
n times

, a] · · ·]]] = (−i)n∂
na(ϕ)
∂ϕn

is bounded.

Example 2.2. Let D = −∂2/∂ϕ2 be Laplace operator. As the operator is of the second
order, the corresponding condition reads as

[[D, a], b] ∈ A ∀a, b ∈ A,

22
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or, equivalently by [[[D, a], b], c] = 0 for all a, b, c ∈ A.
The equality

[D, a] = −∂
2a(ϕ)
∂ϕ2 − 2

∂a(ϕ)
∂ϕ

∂

∂ϕ
,

cf. Lemma 3.3, equation (3.5c) below, defines a differential operator of the first order containing
first two derivatives of a(ϕ). Hence, the existence of [D, a] ensures the existence of the first two
derivatives of a(ϕ).

In these examples, where D is a differential operator, the smoothness reflects the existence
of derivatives. However, based on a spectral decomposition of D, our notion of smoothness will
be more abstract.

Let us recall that spectrum σ(D) of the operator D is a set of complex numbers λ such that
the mapping D − λ1l : dom(D) −→ H is not a bijection. A subset of eigenvalues λ ∈ σ(D) with
corresponding eigenvectors ψλ ∈ H satisfying the equation

D|ψλ〉 = λ|ψλ〉

is called point spectrum. For the values λ ∈ σ(D) not contained in point spectrum, the operator
D−λ1l is not continuously invertible and there exist only generalized corresponding eigenvectors,
for an example see Section 1.1.2.

Example 2.1. (continued) As the spectrum of D = −i(∂/∂ϕ) contains only discrete
eigenvalues, the situation is particularly simple. The eigenvalue equation

−i
∂

∂ϕ
ψλ(ϕ) = λψλ(ϕ)

is easily solved by separation of variables, ψλ(ϕ) = ψ0ei λϕ , ψ0 ∈ C, λ ∈ R. Employing the
boundary condition ψλ(0) = ψλ(2π), i.e. ei λ0 = e2πi λ we get λ ∈ Z. Hence, σ(D) = Z with
corresponding 1-dimensional eigenspaces C · ei ϕn.

Example 2.2. (continued) The spectrum ofD = −∂2/∂ϕ2 is once again purely discrete.
The eigenvalue equation

− ∂2

∂ϕ2ψλ(ϕ) = λψλ(ϕ)

is solved by

ψλ(ϕ) = C1ei
√

λϕ + C2e−i
√

λϕ , C1, C2 ∈ C.

Employing boundary conditions

ψλ(0) = ψλ(2π),
∂

∂ϕ

∣∣∣∣
ϕ=0

ψλ(ϕ) =
∂

∂ϕ

∣∣∣∣
ϕ=2π

ψλ(ϕ),

we get
√
λ ∈ Z, hence, σ(D) = {0, 12, 22, 32, . . .} = {0, 1, 4, 9, . . .},1 with 1-dimensional eigenspace

C·1l corresponding to the eigenvalue n = 0 and with 2-dimensional eigenspaces C·ei ϕn+C·e−i ϕn

corresponding to all other eigenvalues n 6= 0.
1From the physical point of view it is the energy spectrum of a free particle on a circle, in the system of units

set by ~ = m = 1.



Spectral triples 24

A point spectrum with finite-dimensional eigenspaces is a typical result for Dirac and Laplace
operators on compact manifolds. We have devoted our study to this situation, which is both
interesting and nontrivial, as we believe. However, the case of noncompact manifold, which is
not treated in the thesis, is important as well. We have already noticed some inconveniences
related to this more complicated situation in Section 1.1.2.

Our eigenvectors from the examples above are smooth functions from H = L2(S1, S1 × C).
Nevertheless, H contains many functions that are not differentiable and are, therefore, not
contained in the domain of either the unbounded operator D or its power Dn for any n ∈ N. It
enables us to define the smoothness with respect to D as a notion on the Hilbert space H. For
this we shall now study the reasons why there are some vectors not contained in the domain of
D.

First, let us number the eigenvalues of D. We take {(λ, ψλ)}, a set of couples with a discrete
eigenvalue λ ∈ σ(D) and a corresponding eigenvector ψλ. If the eigenspace corresponding to λ
has dimension m, then there are m couples with the first term λ in the set. Next, we number
the elements of {(λ, ψλ)} with integers by |λ|, say n −→ (λ, ψλ)n, where the order of the couples
with |λi| = |λj | does not matter. It induces a numbering n −→ λn of the eigenvalues λ of D.

IfD has purely point spectrum, as we assume, then there exists a basis ofH consisting merely
of eigenvectors of D. Any v ∈ H can be decomposed into components from the eigenspaces of
D:

v =
∑

λ∈σ(D)

vλ.

In this form we can easily describe how D acts on v. If the result exists, it is given by

Dv =
∑

λ∈σ(D)

Dvλ =
∑

λ∈σ(D)

λvλ.

The sum on the right-hand side is finite if

(2.1)
∥∥∥ ∑

λ∈σ(D)

λvλ

∥∥∥2
=

∑
λ,µ∈σ(D)

〈λvλ | µvµ〉 =
∑

λ∈σ(D)

|λ|2‖vλ‖2 <∞,

where we used 〈vλ | vµ〉 = 0 for λ 6= µ. The condition (2.1) on v is nontrivial, as |λ| −→ ∞. If we
require ‖Dnv‖2 <∞, it is getting even more strict with increasing n:

(2.2)
∑

λ∈σ(D)

|λ|2n‖vλ‖2 <∞.

We see that v is smooth only if its components in eigenspaces corresponding to high eigenval-
ues decrease sufficiently quickly. Particularly, we can take the smooth vectors from the following
subspaces:

Hfin = {v ∈ H | vλ 6= 0 for only finite number of λ ∈ σ(D)},

H∞ =
{
v ∈ H

∣∣∣ ∑
λ∈σ(D)

|λ|2n‖vλ‖2 <∞∀n ∈ N
}
.

A bounded operator T : H −→ H is called smooth (with respect to D) if it preserves smooth
vectors from H∞ ⊂ H. More precisely, we require its restriction to H∞ to be a mapping T |H∞ :
H∞ −→ H∞.

Example 2.3. Consider D with σ(D) = N and 1-dimensional eigenspaces Hn, n ∈ N,
Hilbert space H =

⊕
n∈NHn with basis formed by eigenvectors |ϕn〉 ∈ Hn, ‖ϕn‖ = 1 and

operator T : H −→ H given by

(2.3) T |ϕn〉 = |ϕ2n〉
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The operator T is clearly bounded. Indeed, for |x〉 =
∑

n x
n|ϕn〉 ∈ H we get

‖Tx‖2 =
〈
T

∑
n

xnϕn

∣∣∣ T ∑
m

xmϕm

〉
=

∑
m,n

(x∗)nxm〈Tϕn | Tϕm〉 =

=
∑
m,n

(x∗)nxm〈ϕ2n | ϕ2m〉︸ ︷︷ ︸
δmn

=
∑

n

|xn|2 = ‖x‖2.

Hence,

‖T‖ = sup
‖T |x〉‖
‖|x〉‖

= 1.

Take a vector |v〉 =
∑

n 2−n/2|ϕn〉. As ‖Dk|v〉‖2 =
∑

n n
2k2−n is convergent, the vector |v〉

is smooth. However, ‖Dk|Tv〉‖2 =
∑

n(2n)2k2−n is divergent for k ≥ 1 and T is not smooth.
Intuitive explanation for this is that T maps eigenvectors with small eigenvalues with respect

to D onto vectors with high eigenvalues. It differs widely from a diagonal operator to D.

We note that, if T is smooth with respect to D, then [D,T ] is bounded.

If we restricted ourselves to a subspace

(2.4) HK =
⊕

λ∈σ(D)
|λ|≤K

Hλ,

where the operator D is bounded, ‖D|HK
‖ = K, all problems with D would disappear. Never-

theless, every attempt on establishing locality leads to violation of HK .

2.2 Spectral construction of A
Having discussed operator D, we should add an algebra A now. However, it seem to be a very
strong restriction to require A to contain only operators smooth with respect to D. Connes was
trying for a long time to do without it or to replace it by something else, but the operator D
alone does not specify the geometry. However, this is core of the problem of hearing the shape
of a drum.2

We specify the algebra indirectly by introducing some structures on spectral decomposition
of H with respect to D. This information on D allows us to reconstruct coordinates, which are
automatically smooth. Nevertheless, this procedure preserves some freedom of choice. Restric-
tions imposed by the procedure on spectral geometry remain to be studied.

Intuitively, we understandD being fundamental multi-dimensional or perhaps no-dimensional
object. Introducing the dimension means regular numbering of the eigenspaces of D. The num-
bering function is called transporter p and we require that its spectrum is formed by regular
numbers, that it has isomorphic eigenspaces and that it is in accordance with D in the following
sense: D and p have common eigenspaces and there is a sensible relation of the corresponding
numberings. Let us state it more precisely.

Definition 2.4. An unbounded self-adjoint operator p is called transporter with respect to
D if the following conditions are satisfied:

(a) σ(p) = Z.
(b) Pλ ∼ Pµ for λ, µ ∈ σ(p). More precisely, projectors Pλ on the eigenspaces corresponding

to λ are related by unitary transformations: Pλ = U−1PµU .

2The problem was posed by Mark Kac in the famous paper “Can one hear the shape of a drum?” See American
Mathematical Monthly 73 (1966)(No. 4, part 2) 1–23. In two dimensions it remained open until 1992, when it was
solved by Gordon, Webb, and Wolpert. The answer is that we can deduce some information, but for many shapes
we cannot hear the shape completely.
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(c) [p,D] = 0.
(d) Let Λ(n) = {λ | ∃|ψ〉 : D|ψ〉 = λ|ψ〉 ∧ p|ψ〉 = n|ψ〉}. There exist C, k,N ∈ N such that for

all n ∈ Z with n > N it holds

sup
Λ(n+ 1)

Λ(n)
< C · λ2k ∀λ ∈ Λ(n).

Remark 2.5. (i) The definition might be adjusted according to the interesting cases under
consideration, e.g. to guarantee the properties only asymptotically, for high eigenvalues of p and
D.

(ii) As n-dimensional geometry admits more than one transporter, it is necessary to clarify
their relation. We work here with the commuting set of transporters only, i.e. {pi} with [pi, pj ] = 0
for all i, j.

Relations among the eigenspaces of transporter p are governed by rising operator u:

Definition 2.6. Unitary operator u is called rising operator of transporter p if

(2.5) [p, u] = u.

Proposition 2.7. Contraction of operator u on the eigenspace of p corresponding to eigen-
value n,

u|Hn : Hn −→ Hn+1

is an isometry.

Proof. The operator u is unitary, hence isometry. Contraction of isometry is isometry. It remains
to show that for v ∈ Hn is uv ∈ Hn+1:

p|uv〉 (2.5)
= (up+ u)|v〉 = u(p+ 1)|v〉 = u(n+ 1)|v〉 = (n+ 1)|uv〉,

where the third equality follows from the fact that |v〉 ∈ Hn is eigenvector of p corresponding to
eigenvalue n, hence, p|v〉 = n|v〉. �

Remark 2.8. In the latter definition, a relation between pi and uj or between ui and uj

for i 6= j is not specified in the n-dimensional case (n > 1). Clearly, a possible choice is

(2.6) [pi, uj ] = δijuj ,

(2.7) [ui, uj ] = 0

However, this assumption could be too restrictive. Namely the second relation should not be a
postulate, but rather just a description of a special case.

Proposition 2.9. Let u be a rising operator of transporter p. Then its spectrum, σ(u) =
{λ = eiφ | φ ∈ R}, is unit circle in C.

Let |ψ〉 be a common eigenvector of operators p and D. Then for every λ ∈ σ(u) there exists
a functional on H∞ with the eigenvalue λ, which is of the form

(2.8) 〈ψλ| =
∑
n∈Z

λ−nun〈ψ|.

Proof. Let 〈ϕ| be a continuous linear functional on H∞, i.e. 〈ϕ| ∈ (H∞)∗, let T : H −→ H, let
T ∗ be smooth. Then operator T acts on 〈ϕ| by

〈Tϕ | ψ〉 = 〈ϕ | T ∗ψ〉 ∀|ψ〉 ∈ H∞.
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Using condition (d) from Definition 2.4 we get that u, u∗ are smooth. Then, functional 〈ψλ|
is well defined on H∞ 3 ψ∞:∑

n∈Z

(λ−nun〈ψ|)|ψ∞〉 =
∑
n∈Z

(λ∗)−n〈ψ | (u∗)nψ∞〉,

where |(u∗)nψ∞〉 is smooth.
Finally, we show that 〈ψλ| is functional with the eigenvalue λ:

〈uψλ|
(2.8)
=

〈
u

∑
n∈Z

λ−nunψ
∣∣∣ =

∑
n∈Z

λ−nun+1〈ψ| =

= λ
∑
n∈Z

λ−(n+1)un+1〈ψ| m=n+1= λ
∑
m∈Z

λ−mum〈ψ| =

= λ〈ψλ|. �

With the help of smooth rising operators we can now construct the algebra of coordinates.
We take space of polynomials in ui and complete it in suitable topology so that all algebra
elements are smooth. Commonly studied cases, e.g. n-dimensional torus Tn, can be rephrased
in the proposed framework rather easily. We are concerned with the problem of rephrasing the
noncommutative torus T2

θ.

Example 2.10. Let p and q be two commuting transporters with respective spectra σp = Z,
σq = Z. The common eigenspaces are non-degenerate (1-dimensional) and are numbered by
eigenvalue np = nq for np, nq < n and by (np, nq) for np ≥ n and nq ≥ n. Thus an orthogonal
basis for the Hilbert space in terms of eigenvectors of p and q can be given as follows:

p|m〉 = m|m〉 for m < n,

q|m〉 = m|m〉 for m < n,

p|np, nq〉 = np|np, nq〉 for | np |≥ n and | nq |≥ n,

q|np, nq〉 = nq|np, nq〉 for | np |≥ n and | nq |≥ n.

Note that p and q satisfy the properties of a transporter separately for low and high parts
of the spectrum but not throughout. The eigenspaces of p for eigenvalues m, −n < m < n are
1-dimensional while the eigenspaces for the other eigenvalues are infinite dimensional. The same
is true for q. In particular, p and q are transporters in an asymptotic sense, as forseen in Remark
2.5.

In addition, two ladder operators u, v will be defined:

u|m〉 = |m+ 1〉 for −n < m < n− 1,
v|m〉 = |m+ 1〉 for −n < m < n− 1,
u|n〉 = |n, n〉,
v|n〉 = |n, n〉,

u|−n,−n〉 = |−n+ 1〉,
v|−n,−n〉 = |−n+ 1〉,
u|np, nq〉 = |np + 1, nq〉 for (np < −n and nq ≤ −n) or (np ≥ n and nq ≥ n),
v|np, nq〉 = |np, nq + 1〉 for (np ≤ −n and nq < −n) or (np ≥ n and nq ≥ n),

u|−n,−nq〉 = |n, nq〉 for nq < −n,
v|−np,−n〉 = |np, n〉 for np < −n.

The situation can be summarized by the following diagram, in which vertices denote vectors
of the orthogonal basis of the Hilbert space and full arrows (resp. dotted arrows) denote their
mapping by u (resp. v):
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−n+1

..
0 ..n−1

++VVVVVVVVVVVVVVVVV

++

(−n,−n)

jjUUUUUUUUUUU
jj

(−n,−n−1)

((QQQQQQQ
oo (−n,−n−2)

((QQQQQQQ
oo oo

(n,n)

��

// (n,n+1)

��

// (n,n+2)

��

//

(−n−1,−n)

OO

''

(−n−1,−n−1)

OO

oo (−n−1,−n−2)

OO

oo oo

(n+1,n)

��

// (n+1,n+1)

��

// (n+1,n+2)

��

//

(−n−2,−n)

OO

''

(−n−2,−n−1)

OO

oo (−n−2,−n−2)

OO

oo oo
OO

(n+2,n)

��

//

OO

(n+2,n+1)

��

//

OO

(n+2,n+2)

��

//

1

With these definitions, the space is for low values of the spectrum effectively 1-dimensional
(a fuzzy circle) while it is effectively 2-dimensional for values of the spectrum large in their
absolute value. Between these two classical regimes there is a concommutativity between u and
v so that this is not just a space of classical geometries of different dimensions glued together.

In physical terms, the space in this example is classically 1-dimensional at low energies and
classically 2-dimensional at high energies and not a classical space at intermediate energies.

Example 2.11. Let H denote a separable Hilbert space generated by an orthonormal basis
|n1, n2〉, n1, n2 ∈ Z. Let p1, p2 be given transporters

p1|n1, n2〉 = n1|n1, n2〉,

p2|n1, n2〉 = n2|n1, n2〉.

Let u1, u2 be corresponding rising operators defined by

u1|n1, n2〉 = λn2 |n1 + 1, n2〉,

u2|n1, n2〉 = |n1, n2 + 1〉,

with λ = e2πi θ a complex phase. Then we get, by a direct computation,

[pi, uj ] = δijuj , [pi, pj ] = 0, u1u2 = λu2u1.

Rising operators do not commute in this case, cf. Remark 2.8. The Schwartz space S(Z2) of series
in u1, u2 with rapidly decreasing coefficients generate (represented) algebra of noncommutative
torus T2

θ. For λ = 1 this algebra is of course isomorphic to the algebra C∞(S1×S1,C) of ordinary,
commutative torus.

In order to complete defining of the spectral triple a distinguished operator should be added.
It can be defined with the help of the transporters. The choice D = p2

1 + p2
2 corresponds to the

Laplace operator. For introducing the Dirac-type operator it is necessary to double the Hilbert
space, which allows one to fulfil the requirements of spin geometry, see [7].

A possible physical interpretation of the distinguished operator D identifies it with the
Hamiltonian H of the dynamical system. Time evolution is then given by Schrödinger equation

i
∂

∂t
|ψ〉 = H|ψ〉, with |ψ〉 ∈ H, D ≡ H.

If D is a Dirac operator, the spin structure needs a separate commentary. That is why the
next example is formulated on a spacetime to which Hamiltonian formulation gives a spectral
description of space geometry.
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Example 2.12. We consider 3-dimensional spacetime with the signature sign gµν = (−++)
of the metric gµν . Compact surfaces at time t0 are supposed in the form of T2 = S1×S1. Clifford
bundle over the global hyperbolic spacetime R× T2 is given by the generators γµ with

γµγν + γνγµ = 2gµν ,

and it allows to write down the Dirac equation

(γµ∂µ −m)ψ = 0

on the associated spinor bundle S(T2×R) ∼= C∞(T2×R)⊗C4. However, we chose the topologi-
cally trivial case for simplicity reasons, although S(T2 × R) could bear a nontrivial topological
structure.

As we consider the space without curvature, it is possible to choose global coordinates on
S(T2 × R) so that the generators γµ are constant and they are of the form

γ0 =
(
−iσ2 0

0 iσ2

)
, γ1 =

(
σ1 0
0 σ1

)
, γ2 =

(
σ3 0
0 σ3

)
,

where σ1, σ2 and σ3 are Pauli matrices.
The subspaces of

Γ = γ0γ1γ2 =
(

1l2 0
0 −1l2

)
determine the spinors of respective chirality and dynamics governed by Dirac equation preserves
these subspaces. Thus, we can restrict ourselves to chiral spinors with bundles SL and SR with

S = SL ⊕ SR, SL ∼= SR ∼= C∞(T2 × R)⊗ C2.

In what follows, we consider SL only. With the restriction on SL we get

γ0 = −iσ2, γ1 = σ1, γ2 = σ3.

From Dirac equation modified to the form of Schrödinger equation (A.10) we read of the Hamil-
tonian

(2.9) H = iγ0(γk∂k −m) = iσ3∂1 − iσ1∂2 + σ2m,

which comprises space Dirac operator. It is the distinguished operatorD of the spectral geometry
of the torus.

We can easily obtain its spectrum with the corresponding eigenvectors: operatorH commutes
with H2 and, consequently, they have common eigenbasis. However, H2 = −(∂2

1 + ∂2
2 −m2)1l2

is Laplace operator (except for the sign) with eigenspaces

(2.10) |k1, k2〉 ⊗ C2 = ei k1x1+i k2x2 ⊗ C2

with eigenvalues m2 + k2
1 + k2

2, where k1, k2 ∈ Z. The whole subspace corresponding to an
eigenvalue λ is given by direct sum of subspaces from (2.10) corresponding to λ.

However, it is supposed tacitly that the length of the torus great circles is equal to 2π. For
different lengths, say L1 and L2, the eigenspaces are

|k1, k2〉 ⊗ C2 = e2πi(k1(x1/L1)+k2(x2/L2)) ⊗ C2

and the eigenvalues of H2 are

m2 +
(

2πk1

L1

)
2

+
(

2πk2

L2

)
2

.
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The eigenfunctions of H belong to the eigenspaces |k1, k2〉 ⊗ C2 of H2 and have eigenvalue
±

√
m2 + k2

1 + k2
2 . Contrary to the situation with H2, every eigenvalue ±

√
m2 + k2

1 + k2
2 of H

occurs exactly once in the eigenspace |k1, k2〉 ⊗ C2, as can be proved by a direct computation:

Hψ± = ±
√
m2 + k2

1 + k2
2 ψ±, with ψ± = |k1, k2〉 ⊗

(
k2

k1 ±
√
m2 + k2

1 + k2
2

)
.

We named the orthogonal projector P+ on direct sum of the eigenspaces H with positive
eigenvalue,

⊕
k1,k2∈Z2

(
|k1, k2〉 ⊗

(
k2

k1 +
√
m2 + k2

1 + k2
2

))

positive energy projector. Denoting P− = 1l− P+ we get

H = (P+ − P−)
√
H2 .

Next, denoting sign of H by sgnH = P+ − P− and absolute value of H by |H| =
√
H2 , we can

write down the polar decomposition of H

(2.11) H = sgnH · |H|.

In this context, complex structure

(2.12) J = i sgnH = iP+ − iP−

bears the physical significace.



Chapter 3

A spectral formulation of
non-relativistic QM

Recently, new attempts have appeared to construct quantum theory with minimal assumptions.
One by L. Hardy in 2001, see [17], is constructed from the point of view of probability the-
ory. Another by M. Paschke from 2003, called scalar quantum mechanics [32], is inspired by
Feynman’s proof of the Maxwell equations. Paschke calls it scalar quantum mechanics (SQM).
He uses purely algebraic definitions of geometric concepts to define quantum mechanics (for one
non-relativistic particle) over an arbitrary manifold Q and shows that his axioms are sufficient to
prove the existence of a Hamiltonian with desired properties. More recently, the notion of SQM
was discussed in [25] and [33]. However, the necessity of all axioms remains to be elucidated. In
this chapter, we justify each axiom as indispensable and present its physical and/or geometric
meaning.

The chapter is organized as follows: Section 3.1 recalls the definition and main properties of
SQM. In Section 3.2, we study two dynamical systems on the circle (Q = S1), a simple example
of a configuration space with nontrivial topology, i.e. not diffeomorphic to Rn for some n. We
construct a Hamiltonian for each of them. One Hamiltonian is time-independent while the other
varies in time. A generalization to Q = S2 is outlined as well. In Section 3.3, we consider SQM
stepwise with one of the axioms violated letting the other axioms hold and we show that a certain
essential property of the quantum world fails to hold. In Section 3.4, we illustrate topological
obstructions for the existence of the Hamiltonian on multiply connected configuration spaces.
More precisely, we show that for such Q that H1(Q) 6= 0, there may not exist a Hamiltonian
with a potential in A = C∞0 (Q).

3.1 Scalar quantum mechanics

In this section, we review the concept of SQM as introduced by Paschke in [32]. It is captured by
the algebra A = C∞0 (Q) of smooth real-valued functions on Q vanishing at infinity, where Q is a
smooth orientable configuration manifold. The observables are constructed from a representation
of the algebra on the Hilbert space H = L2(Q, E), i.e. the space of square integrable sections of
the complex line bundle π : E → Q. A particular dynamical system is uniquely determined by
assigning a time evolution operator U on a corresponding Hilbert space H.

Definition 3.1. Let A = C∞0 (Q). The system {At | t ∈ R} of unitary representations of
the algebra A is called scalar quantum mechanics over Q if the following conditions hold:

(a) Localizability: Representations of the operators at ∈ At are isomorphic to the repre-
sentations of the functions f ∈ C∞0 (Q) on the Hilbert space H = L2(Q, E).

(b) Scalarity: The commutant of At, i.e. the set of the operators that commute with all
at ∈ At, contains merely (complex) functions on Q and complex multiples of the identity

31
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operator. Thus, ∀t ∈ R,

A′t = (At)C + C1l,

where (At)C denotes the complexification of At and is ( · ) is the closure in the weak
topology.

(c) Smoothness: The time evolution is smooth with respect to the strong topology and the
following holds

i[At, ȦAt] ⊂ At, ∀t ∈ R.

(d) Positivity: For every self-adjoint operator at, the inequality

−i[at, ȧat] ≥ 0

holds.
(e) Nontriviality: If there exists an operator at such that [at, ȧat] = 0, then ȧat = 0.

The above axioms do not use a metric structure on Q. Indeed, the metric is characterized
by the corresponding SQM and it can be reconstructed from the given time evolution. For all
t ∈ R, it holds (cf. [32, Lemma 3.2]):

(3.1) gt(dat,dbt) = −i[at, ḃbt],

where gt is the inverse Riemannian metric and the length scale has been fixed by setting ~ = 1
and m = 1, cf. [32, Remark 3.3].

We also note that this approach corresponds to the Heisenberg picture of the traditional
formulation of quantum mechanics—the configuration observables (elements of At) depend on
t and quantum states (vectors in H) are kept fixed.

Let us recall the main result from [32]:

Theorem 3.2 ([32]). Under the assumptions (a)–(e), there exists for all t ∈ R a unique
Riemannian metric gt given by (3.1), a unique covariant derivative ∇(At, gt) on the complex
line bundle π : E → Q and a closed one-form φ = ϕ1 dϕ2 such that for all bt ∈ At the following
holds:

(3.2) ḃbt = −i[bt,∆(At, gt)],

(3.3) b̈bt = −i[ḃbt,∆(At, gt)]− i[bt, ∂∆(At, gt)/∂t]− iϕ1[ϕ2, ḃbt],

where

∆(At, gt) =
1
2

dimQ∑
i,j=1

gij
t

(
−i

∂

∂qi − (At)i

)
·
(
−i

∂

∂qj − (At)j

)
is the covariant Laplacian in local coordinates qi on Q. If φ = dϕt is exact, then there exists a
Hamiltonian which is of the form

(3.4) H(t) = ∆(At, gt) + ϕt.

One may be surprised that the very general axioms of Definition 3.1 specify the admissible
dynamics so tightly—spatial derivatives are governed by a second-order Hamiltonian and the
time derivatives fulfill Heisenberg equation of motion (3.2) and Newton’s law expressed by (3.3).
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Lemma 3.3. Let q denote a local coordinate on the configuration manifold Q. For any
vector ψ(q) from a dense subspace H∞ of the Hilbert space H = L2(Q, E), the following operator
identity holds:

(3.5a) [at,dn
q ] = −

n−1∑
k=0

(n
k

)
(dn−k

q at)dk
q ∀n ∈ N,

where the differential operators dn
q := dn/dqn are defined on H∞ and the operator at(q) ∈ At

acts on the states ψ(q) by pointwise multiplication.
The identities for n = 1 and 2,

(3.5b) [at,dq] = −dqat,

(3.5c) [at,d2
q ] = −d2

qat − 2(dqat)dq.

are of particular interest and we use them frequently.

Proof. For any ψ(q) ∈ H∞ and q0 ∈ Q, we compute([
at(q),dq

]
ψ

)
(q0) = at(q0) ·

(
dqψ(q)

)
|q=q0 − dq

(
at(q) · ψ(q)

)
|q=q0

= −
(
dqat(q)

)
|q=q0ψ(q0),

which gives (3.5b), and the assertion follows by induction. �

Remark 3.4. SQM provides a compact description of dynamical systems systems formu-
lated in usual QM in a special coordinate system and including many more assumptions. Hence,
usual QM is a special case of SQM.

3.2 Examples of SQM over circles and spheres

It is quite instructive to construct a Hamiltonian in some model cases. In order to stress the role
of topology in SQM we concentrate on topologically nontrivial configuration spaces.

In the first example, a particularly simple one, we demonstrate the construction of a Hamil-
tonian, where the topology of Q does not play any role. Despite this, the example is useful
because it serves as an essential ingredient in constructing counterexamples in Section 3.3.
Next, we describe the dynamics of a free particle on a sphere, which is a result of a straightfor-
ward generalization of the case Q = S1. The subsequent example illustrates construction of a
time-dependent Hamiltonian.

3.2.1 Time-independent case without potentials: a free particle on S1

Let us fix the setup first. It consists of the algebra A = C∞(S1), its representation on the Hilbert
space H = L2(S1, S1 × C) and the Fourier basis |m〉 = eimϕ ,m ∈ Z on H. The states of the
system with respect to this basis have the form |ψ〉 =

∑
m cm|m〉. Finally, the dynamics can be

defined by assigning a time evolution operator

U(t)|ψ〉 =
∑
m∈Z

cme−im2t |m〉.

First, we compute the total time derivative of the arbitrary operator at = U †(t) · a · U(t):

(3.6) ȧat = U †(t)[(im2|m〉〈m|), a]U(t).
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If we switch to the coordinate basis and denote dn
ϕ = dn/dϕn, we can write

(3.7) ȧat = i[at,d2
ϕ].

Next, we demonstrate that axioms (a)–(e) are fulfilled:
(a) Localizability is obvious.
(b) Scalarity: As the configuration manifold Q is compact, 1l ∈ At and we shall prove that

(At)C = A′t.
We show that At ⊂ A′t. Let a ∈ At (subscript t being suppressed). Then there exists a

sequence {an} in At such that an → a in the weak topology.
For arbitrary ψ1, ψ2 ∈ H, b ∈ At we get

〈ψ1|[a, b]|ψ2〉 = 〈ψ1|[an + a− an, b]|ψ2〉

= 〈ψ1|[an, b]︸ ︷︷ ︸
=0

|ψ2〉+ 〈ψ1|[a− an, b]|ψ2〉

= 〈ψ1|(a− an)|bψ2〉 − 〈b∗ψ1|(a− an)|ψ2〉
n−→∞−→ 0

by the definition of convergence in the weak topology, as b∗ψ1, bψ2 ∈ H.
To sum it up, we get 〈ψ1|[a, b]|ψ2〉 = 0 for all ψ1, ψ2 ∈ H and all b ∈ At. Hence, a ∈ A′t.
The reversed inclusion At ⊃ A′t follows by standard results from the theory of operator

algebras as well, see, e.g., [37].
(c) Smoothness: The time evolution is obviously smooth and

(3.8)
i[at, ḃbt] = i[at, i[bt,d2

ϕ]]
(3.5c)
= −[at,−d2

ϕbt − 2dϕbt dϕ] = 2[at,dϕbt dϕ]

(3.5b)
= −2dϕbt dϕat ∈ At ∀at, bt ∈ At.

(d) Positivity: Using (3.8), we easily get

(3.9) −i[at, ȧat] = 2dϕat dϕat = 2(dϕat)2,

which is nonnegative.
(e) Nontriviality: According to the assumption, we have an operator at ∈ At such that

[at, ȧat] = 0. We shall show that ȧat = 0 as well. This follows by a simple calculation:

ȧat
(3.7)
= i[at,d2

ϕ]
(3.5c)
= −i d2

ϕat − 2i(dϕat)dϕ = 0,

since dϕat = 0 by assumption and (3.9).

We proceed with constructing the metric on Q. Its inverse is given by, cf. [32, Lemma 3.2],

(3.10) gt(dbt,dct)
(3.1)
= −i[bt, ċct]

(3.8)
= 2dϕbt dϕct,

so the metric gt = 1
2 is static.

The total derivative of (3.7) gives us äat = −[[at,d2
ϕ],d2

ϕ]. It is only consistent with (3.3) when
−d2

ϕ = ∆. The Hamiltonian is then of the form H = −d2
ϕ + ft, where φ = dft. From (3.3) it

follows (cf. also [32, Lemma 3.9]) that ft = 0 and

(3.11) H = −d2
ϕ.

Remark 3.5. If the existence of the Hamiltonian is ensured, we can compute it directly
from the given time evolution, as U(t) = T (exp[i

∫ t
0 H dt]). It is then of the form

(3.12) H(t) = i
dU(t)

dt
· U(t)−1.

For the time-independent Hamiltonians, we can utilize Stone’s theorem expressed in the formula
U(t) = exp[iHt]. (The Hamiltonian is the generator of the time evolution U .) It is then obtained
by a simple calculation and it reads

(3.13) H = i
d
dt

∣∣∣∣
t=0

U(t).
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3.2.2 A free particle on sphere S2

Assume the algebra At = C∞(S2), its representation on the Hilbert space H = L2(S2, S2 × C)
and the Fourier basis |`,m〉 = Y`,m(θ, ϕ), `,m ∈ Z with ` ≥ 0, |m| ≤ `, on H. Let the dynamics
of the system be defined by the time evolution operator

(3.14) U(t)|ψ〉 =
∑
`,m

c`,me−i(`(`+1)/2)t |`,m〉.

The total time derivative of the arbitrary operator at in the coordinate basis reads

(3.15) ȧat = i[at, cot θdθ + d2
θ + sin−2 θd2

ϕ].

Next, we demonstrate that axioms (a)–(e) are fulfilled:
(a) Localizability is obvious.
(b) Scalarity follows by the same arguments as in the preceding section.
(c) Smoothness: The time evolution is obviously smooth and

(3.16)

i[at, ḃbt] = i[at, i[bt, cot θdθ + d2
θ + sin−2 θd2

ϕ]]

=−[at, [bt, cot θ]dθ + cot θ[bt,dθ]]− [at, [bt,d2
θ]]

− [at, [bt, sin−2 θ]d2
ϕ + sin−2 θ[bt,d2

ϕ]].

The functions cot θ and sin−2 θ commute with any function in At. However, as they are un-
bounded, they are not in the commutant of At. Next, [bt,dθ] ∈ At and the first term is equal
to zero. The second term can be computed analogously like in the preceding section, see (3.8).
The third term is treated by combining the above procedures. Summarizing the results, we get

(3.17) i[at, ḃbt] = −2dθbt dθat − 2 sin−2 θdϕbt dϕat ∈ At, ∀at, bt ∈ At.

This function may appear to be singular at the poles of the sphere, where the spherical coor-
dinates are not defined (formally θ ∈ {0, π}). But under closer inspection it turns out to be
smoothly extendable to the poles.

(d) Positivity: Using (3.17), we easily get

(3.18) −i[at, ȧat] = 2(dθat)2 + 2 sin−2 θ(dϕat)2 ≥ 0.

(e) Nontriviality: In accordance with the assumption, we have an operator at ∈ At such
that [at, ȧat] = 0. With (3.18), it follows that dθat = 0 = dϕat and the assertion ȧat = 0 follows
by a simple calculation:

ȧat
(3.15)
= i[at,cotθdθ]+i[at,d2

θ]+i[at, sin−2 θd2
ϕ]

(3.5bc)
= −i cotθdθat−i(d2

θat+2dθat dθ)−i sin−2 θ(d2
ϕat+2dϕat dϕ)

= 0.

We proceed with constructing the metric on Q again. Its inverse is given by, cf. [32, Lemma
3.2],

(3.19) gt(dbt,dct)
(3.1)
= −i[bt, ċct]

(3.17)
= 2dθbt dθct + 2 sin−2 θdϕbt dϕct,

and

gij =
1
2

(
1 0
0 sin2 θ

)
.
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The Laplacian ∆(at) = −1
2g

µν∇µ∇ν(at) = − cot θdθat − d2
θat − sin−2 θd2

ϕat corresponding to
this metric expressed in spherical harmonics is

∆|`,m〉 =
`(`+ 1)

2
|`,m〉.

It coincides with the Hamiltonian of the time evolution (3.14).
We have seen that in terms of SQM this is an easy generalization of the preceding case.

Particularly in comparison with the usual derivation, cf. [40, Chapter I], it is obvious that SQM
offers a direct and concise description of systems, which must be solved in the usual description
with special techniques.

SQM on homogeneous spaces Moreover, we show that SQM on S2 can be easily rephrased
in the language of harmonic analysis on compact Lie groups and their homogeneous spaces,
thus pointing to the essentials of this more general setting. The sphere S2 is a homogeneous
space O(3)/O(2) with the action of the compact Lie group O(3) of orthogonal transformations
on R3. The algebra A = C∞(S2) consists of smooth vectors under the induced action on the
representation Hilbert space H = L2(S2) built upon the Haar measure. This compares to the
localizability axiom.

Moreover, we can naturally construct from this representation a Fourier basis in H deter-
mined by irreducible representations. They possess a quadratic Casimir operator, which is just
the Laplace operator. Indeed, by theorem 3.2 it differs from the Hamiltonian by not more than
a function ϕt ∈ At, which for a free particle is equal to zero. Thus, the Casimir operator exactly
generates the time evolution.

In this framework, SQM can be easily formulated on Sn for any n ≥ 2; for details see [18].

3.2.3 A system with a time-dependent Hamiltonian: a particle on
an expanding circle

Now, let the dynamics of the system be defined by

U(t) = exp[−im2G(A)(t)],

where G(A) is an arbitrary increasing function of time. We use Remark 3.5, especially (3.12), to
compute the Hamiltonian. In coordinate representation, it is given by H(t) = −g(A)d2

ϕ, where
g(A)(t) = dG(A)(t)/dt. Now, we can compute the total time derivative of an arbitrary operator
at, cf. (3.2),

(3.20) ȧat = i g(A)[at,d2
ϕ].

It is obvious that axioms (a)–(e) hold, we shall only comment briefly the positivity axiom: The
expression

(3.21) −i[at, ȧat]
(3.8)
= 2g(A)dϕat dϕat = 2g(A)(dϕat)2

is nonnegative if g(A) is nonnegative, that is, if G(A) is increasing, which we assume.

Remark 3.6. The function g(A) is the inverse Riemannian metric on Q and it governs the
velocity of expansion of the circle,

g(A)(t) =
1

2R2(t)
,

where R is the radius of the circle Q.

Remark 3.7. A particle on an expanding sphere can be defined analogously.
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3.3 The necessity of the axioms of SQM

In this section, we show that none of the axioms of SQM can be dropped. We consider SQM
stepwise with just one of them violated and in all four cases we find a significant property of
the quantum world which fails to hold.

The localizability axiom only sets up the framework of smooth manifolds, C∗-algebras and
their representations on Hilbert spaces. We work mainly on one-dimensional manifolds S1 and
R here.

We keep the notation of Section 3.2.1 (the objects with subscript t or without subscript),
because we utilize it in the following constructions. When we need a simpler notation, the
subscript t is dropped.

3.3.1 The scalarity axiom implies Newton’s law

The axiom is to be broken by choosing a “larger” Hilbert space, where an operator exists that
commutes with all at ∈ At, but that does not fall into At. Thus, we suppose that

(3.22) A′t ) At.

We construct such system by modifying the example of Section 3.2.1 as follows. We consider
the algebra A = C∞(S1) represented on the Hilbert space H(1) = H⊗C2 = L2(S1, S1×C)⊗C2

and denote the representation simply by A(1) = At⊗1lC2 . Note that all operators of Section 3.2.1
can be expressed in the form A(1) 3 a(1) = at ⊗ 1lC2 , where at is represented on H.

The dynamics is defined with the help of the time evolution operator U(t) of Section 3.2.1.
It reads U(1)(t) = (U ⊗ UC2)(t) = e−im2t ⊗ e−ifj(t)σj , where f j are arbitrary functions and the
summation convention on index j has been used. According to Remark 3.5, we can compute the
Hamiltonian from (3.12):

H(1)(t) = i
d(U ⊗ UC2)

dt
· (U ⊗ UC2)−1

= i
dU
dt

· U−1 ⊗ UC2 · (UC2)−1 + iU · U−1 ⊗ dUC2

dt
· (UC2)−1

= H ⊗ 1lC2 + 1l⊗HC2 ,

where HC2 = ḟf j(t)σj . We only demand that the f ’s are Hermitian operators, i.e., real functions
on C. We note that ḢH (1) = 1l⊗ f̈f j(t)σj .

However, the rest of the axioms of SQM is fulfilled. Let us demonstrate it.
(c) Smoothness: The time evolution is obviously smooth and the required inclusion follows

from (3.8):

(3.23)

i[a(1), ḃb(1)] = i[a(1), i[b(1),H(1)]]

= −[a(1), [bt ⊗ 1lC2 ,H ⊗ 1lC2 + 1l⊗HC2 ]]

= i[at, i[bt,H]︸ ︷︷ ︸
=ḃbt

]⊗ 1lC2 − [a(1), [bt ⊗ 1lC2 , 1l⊗HC2 ]︸ ︷︷ ︸
=0

]

(3.8)
= −2dϕbt dϕat ⊗ 1lC2 ∈ A(1) ∀a(1), b(1) ∈ A(1).

(d) Positivity: Using (3.23) and (3.8), we easily get

−i[a(1), ȧa(1)] = −i[at, ȧat]⊗ 1lC2 = 2(dϕat)2 ⊗ 1lC2 ≥ 0.

(e) Nontriviality follows by the same reasoning as in the example of Section 3.2.1, since
0⊗ 1lC2 = 0(1).
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We interpret Newton’s law as a rule assuring that the second time derivative of any operator
b is fully determined by b and ḃb. For a choice b = qi, with a local coordinate qi, the interpretation
is particularly apparent, as Newton’s law is usually expressed in the form q̈q i = F (t, q, q̇q) for some
function F . In this sense, equation (3.3) can be considered as Newton’s law.

An operator b(1) on H(1) that illustrates the effects of the condition (3.22), i.e. b(1) ∈ A′(1) \
A(1) , can be constructed with the help of an arbitrary Pauli matrix σi (i = 1, 2, 3). It is of the
form b(1) = bt ⊗ σi, where bt is again represented on H.

Let us compute its time derivative. From (3.2), it follows that

(3.24) ḃb(1) = −i[b(1),H(1)] = i[bt,d2
ϕ]⊗ σi + 2εijk bt ⊗ ḟf jσk,

where the summation convention on indices j, k has been used. The second time derivative can
be obtained by a tedious calculation

b̈b(1) = −i
d
dt

[b(1),H(1)]

= −i[i[bt,d2
ϕ]⊗ σi,−d2

ϕ ⊗ 1lC2 ]− i[i[bt,d2
ϕ]⊗ σi, 1l⊗ ḟf jσj ]

− i[2εijk bt ⊗ ḟf jσk,−d2
ϕ ⊗ 1lC2 ]− i[2εijk bt ⊗ ḟf jσk, 1l⊗ ḟfmσm]

− i[bt ⊗ σi, 1l⊗ f̈f jσj ],

using (3.24), and this becomes

(3.25)
b̈b(1) =−[[bt,d2

ϕ],d2
ϕ]⊗ σi + 4i εijk [bt,d2

ϕ]⊗ ḟf jσk

+ 4(δimδjk − δikδjm) bt ⊗ ḟf j ḟfmσk + 2εijk bt ⊗ f̈f jσk,

(summation over j, k,m).
There remains the second derivative of the function f (steming from HC2) that cannot

be determined from b(1) and ḃb(1). Hence, we cannot express the second time derivative of an
arbitrary operator b(1) from the first and zeroth one and b̈b(1) cannot be expressed in the form
of Newton’s law (3.3).

3.3.2 The smoothness axiom restricts order of the Hamiltonian

The smoothness condition is also called the second-order condition, because it guarantees that
the Hamiltonian is of second-order at the most. Indeed, a violation of this axiom could admit too
wild time evolutions of the systems, e.g., such that are governed by a higher-order Hamiltonian.
Whether this is indeed the case, hinges upon to what degree such examples are ruled out by
one of the other axioms, positivity. The impact of the positivity axiom is highly nontrivial (for
results on the positivity of commutators see [23, 22, 15]). We are thus forced by the present
knowledge on this problem to relax the positivity condition and will in fact show that it cannot
be satisfied, e.g. by any differential operator of order higher than 2.

We construct a system on the bundle π : R × C −→ R that is determined by the time
evolution operator U(2)(t) = exp[it · exp[−p2]]. We immediately see that this time evolution is
generated by the Hamiltonian

H(2) = e−p2
=

∞∑
n=0

(−1)n

n!
p2n,

which is “of order ∞”. This Hamiltonian is a well defined self-adjoint operator on the Schwartz
space S(R), the space of smooth complex functions f on R such that

lim
|x|→∞

|x|mf (n)(x) = 0, ∀m,n = 0, 1, 2, . . . ,
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see [36, Section V.3]. It follows from the well-known result that the Fourier transformation is an
isometry of S(R).

We recall that S(R) is dense in L2(R,R × C). According to Plancherel’s theorem, see [36,
Theorem IX.6], the Fourier transform map on S(R) extends uniquely to a linear isometry of
L2(R) and, consequently, H(2) is a well-defined operator on entire Hilbert space H.

In order to illustrate the smoothness requirement for this particular system, we shall compute
the time derivative of an arbitrary operator a(2) ∈ A(2) = C∞0 (R),

ȧa(2)(x) = −i[a(2)(x),H(2)] = −i
∞∑

n=0

(−1)n

n!
[a(2)(x), p

2n].

In the coordinate representation, where p|ψ〉 = −i dxψ, we get

ȧa(2)(x) = −i
∞∑

n=0

(−1)n(−i)2n

n!
[a(2)(x),d

2n
x ]

(3.5a)
=

∞∑
n=0

2n−1∑
r=0

(−1)n+1(−i)2n+1

n!

(2n
r

)
(d2n−r

x a(2))d
r
x,

where (−1)n+1(−i)2n+1 = −i for all n ∈ N. We proceed with computing the commutator
i[b(2), ȧa(2)]:

(3.26)

i[b(2), ȧa(2)] = i
∞∑

n=0

2n−1∑
r=0

(−i)
n!

(2n
r

)
[b(2), (d

2n−r
x a(2))d

r
x]

(3.5a)
= −

∞∑
n=0

2n−1∑
r=0

r−1∑
s=0

1
n!

(2n
r

)(r
s

)
(d2n−r

x a(2))(d
r−s
x b(2))d

s
x

and then show that the latter expression does not fall into A(2). For this, it is sufficient to outline
that it does not commute with an operator c(2) ∈ A(2). But this is obvious, as the commutator
cuts the order of free derivatives by one and the sum remains to be infinite.

Should it fall into A(2), the summation index s would have to be at the most equal to 1 (so
as n) and we get that H(2) would have to be of second order.

However, the operator defined by (3.26) does not commute even after an arbitrary finite
number of commutations with operators from A(2)!

Next, we briefly comment the fact that other axioms apart from positivity axiom are fulfilled:
(a) Localizability is obvious.
(b) Scalarity follows by the same arguments as in Section 3.2.1.
(d) Positivity: The positivity requirement was relaxed in this example due to the above

comments.
Let us note that it follows from (3.5a) that any differential operator of order n ≥ 3 can not

fulfill positivity requirement, as the first and the second commutator are sums of differential
operators of order i for all i ∈ {0, 1, . . . , n−1} and they both contain operator dx with spectrum
equal to R, cf. also remarkable work of Kato [23]. However, our example shows that positivity
of the Hamiltonian is not sufficient for the positivity axiom to hold.

It is clear from literature that we are concerned with a delicate question. Research of positive
commutators started in 1960’s by pioneering works of Putnam and Kato. In 1978 Reed and
Simon [36, vol. IV, p. 158] admitted that it is “not easy to construct directly” any pairs of
operators a,H such that −i[a,H] ≥ 0. As a consequence of the attempts to understand the
spectrum of the Hamiltonian in the scattering theory the positive commutator method of Mourre
was established, cf. [22]. Its rapid development has continued since early 1980’s, cf. Georgescu,
Gérard and Møller [15]. This theory is not applicable in our case, as they look for any operator
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for which the commutator with H is positive whereas we need every multiplication operator to
give positive commutator with H. The question remains open for a further research.

(e) Nontriviality: In accordance with the assumption, we have an operator a(2)(x) ∈ A(2)

such that [a(2)(x), ȧa(2)(x)] = −i[a(2)(x), [a(2)(x),H(2)]] = 0. As H(2) = f(p) is a differential
operator of order n > 2, it is only possible if a(2)(x) = const, cf. [23, Theorem I]. As a ∈ C∞0 (R),
we get a(2)(x) = 0. But then also ȧa(2)(x) = 0.

The smoothness axiom also specifies the form of the canonical commutation re-
lations. This axiom generalizes Feynman’s assumption of the standard Heisenberg relation
m[xj , ẋxk] = i}δjk, see [13, eq. (3)]. It relaxes the particular form of the latter commutator and
we only require that it is a function of operators from At, i.e. operators which act by pointwise
multiplication. In the global coordinates (xi)i=1,...,n on Rn, we recover the Heisenberg relation
back.

3.3.3 The consequences of positivity and nontriviality

The axioms of positivity and nontriviality are closely connected. They determine positive defi-
niteness of the metric and proper boundedness of the spectrum of the corresponding Hamilto-
nian. They are discussed first separately but also violated concurrently to produce an example
exhibiting an indefinite metric, which is interesting on its own right.

The positivity axiom ensures positive definite metric

The positivity axiom is easily broken by the time reversal in the ordinary SQM system, e.g. that
of Section 3.2.1. The time evolution operator is then given by

U(3)(t)|ψ〉 =
∑
m∈Z

cmeim2t |m〉.

It is of course generated by a Hamiltonian

(3.27) H(3) = d2
ϕ

and all axioms apart from (d) are fulfilled.
Let us illustrate the violation of positivity. The total time derivative of an operator at is

given by ȧat = −i[at,d2
ϕ] and we easily get that

(3.28) −i[at, ȧat] = −2(dϕat)2 ≤ 0.

We proceed with constructing the metric on Q. Its inverse is given by

(3.29) g(3)(dbt,dct) = −i[bt, ċct] = −2dϕbt dϕct,

so the metric g(3) = −1
2 is negative definite. Finally, let us note that spectrum of H(3) is semi-

bounded from above and by a proper choice of time direction one can always achieve positivity.

The nontriviality axiom: trivial means unquantized

The nontriviality condition guarantees that the Hamiltonian is at least of second order. We shall
construct a model where there exists an operator at ∈ At such that

(3.30) [at, ȧat] = 0 and ȧat 6= 0.

We consider SQM over R, i.e. A(4) = C∞0 (R),H(4) = L2(R,R × C), with the time evolution
given by U(4)(t)|ψ〉 = ψ(x− t). Let us compute its generator:

ψ(x− t) =
∞∑

k=0

(−t)k

k!
dkψ

dxk = e−tdx ψ(x).
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According to (3.13), it is generated by the Hamiltonian H(4) = −i dx. As in the preceding
sections, we compute the time derivative ȧa(4) of an operator a(4),

(3.31) ȧa(4) = −i[a(4),−i dx] = dxa(4),

and test the other SQM-axioms:
(b) Scalarity: The assertion follows by the same arguments as in Section 3.2.1.
(c) Smoothness: The time evolution of the system is obviously smooth and for every a(4), b(4) ∈

A(4) it holds

(3.32) i[a(4), ḃb(4)] = i[a(4),dxb(4)] = 0 ∈ A(4),

because dxb(4) ∈ A(4) and because A(4) is commutative.
(d) Positivity: Using (3.32), we easily get −i[a(4), ȧa(4)] = 0 ≥ 0.

We illustrate the behavior of the system on the position operator x(4). From (3.31) it follows
that ẋx(4) = dxx(4) = 1l and the momentum operator is given by p(4) = m1l. Let us compute the
canonical commutation relation:

(3.33) [x(4), p(4)] = m[x(4), 1l] = 0,

the position operator commutes with the momentum operator and, therefore, this model de-
scribes an unquantized mechanical system.

Let us try to construct the Hamiltonian from the definition. From (3.32) it follows that the
metric g(4) is degenerate, even identically zero. Thus, the construction of the covariant Laplacian
breaks down, H(4) is not of the form (3.4) and its spectrum σ(H(4)) = R has neither a lower nor
an upper bound!

Violating both positivity and nontriviality allows indefinite metrics

We discuss SQM on the torus T = S1 × S1 as a product of two SQM over the circle that
has been worked out in Section 3.2.1. Thus, we consider the algebra A(5) = C∞(T) represented
on H(5) = L2(T,T × C). The product states are of the form |ψ〉 =

∑
m,n cmn|m,n〉, where

|m,n〉 = |eimφ1 , einφ2〉 and φ1 and φ2 denote the angular coordinates on the corresponding
circles.

Let the dynamics of the system be defined by the time evolution operator

U(5)(t)|ψ〉 =
∑

m,n∈Z
cmn(φ1, φ2)e−im2t ein2t |m,n〉.

As in Section 3.2.1, we first compute the total time derivative of an arbitrary operator a(5)(φ1, φ2)
that is by virtue of (3.6) and (3.7)

(3.34) ȧa(5) = i[a(5),d
2
φ1

]− i[a(5),d
2
φ2

].

So we can construct a Hamiltonian with the same procedure as in Section 3.2.1 or compute it
with the help of Remark 3.5, in particular by eqn. (3.13). Be it this way or the other, it is of the
form H(5) = d2

φ2
− d2

φ1
.

Next, we demonstrate that other axioms are fulfilled. In doing so, let us suppress the index (5).
(b) Scalarity: The assertion follows by the same argument as in the preceding sections.
(c) Smoothness: The time evolution is obviously smooth and ∀a, b ∈ A it holds

(3.35)

i[a, ḃb] = i[a, i[b,d2
φ1

]−i[b,d2
φ2

]]

= −[a,−d2
φ1
b−2dφ1bdφ1

]+[a,−d2
φ2
b−2dφ2bdφ2

]

= [a,d2
φ1
b]︸ ︷︷ ︸

=0

+2[a,dφ1bdφ1
]︸ ︷︷ ︸

∈A

−[a,d2
φ2
b]︸ ︷︷ ︸

=0

−2[a,dφ2bdφ2
]︸ ︷︷ ︸

∈A

= −2dφ1bdφ1a+2dφ2bdφ2a ∈ A.
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With the help of the smoothness axiom (3.35), we can easily illustrate the violation of the
axioms and its consequences.

The positivity condition

(3.36) −i[a, ȧa] = 2(dφ1a)
2 − 2(dφ2a)

2

results obviously indefinite. Let us consider an operator a with [a, ȧa] = 0. We can apply (3.35)
to get

ȧa = −2(dφ1a)dφ1 + 2(dφ2a)dφ2 ,

which is zero only if dφ1a = 0 = dφ2a. This describes a subset of operators fulfilling the nontriv-
iality axiom.

Nevertheless, we can construct a metric on T, only it fails to be Riemannian. More precisely,
(T, gT) is a pseudo-Riemannian manifold with metric

gT =
(1

2 0
0 − 1

2

)
,

and the spectrum of the Hamiltonian H(5) has neither a lower nor an upper bound!

3.4 Topological aspects of SQM on multiply connected
configuration spaces

We have already seen an example of a system on a multiply connected space, namely on S1, see
Section 3.2.1, but in the case of a Hamiltonian without potentials, the nontrivial topology of the
configuration manifold does not play any role.

The construction presented here has been inspired by one of the most famous experiments
showing topological effects in quantum theory, namely the Aharonov–Bohm effect in its electric
form, see analysis by W. Moreau and D.K. Ross in [30]. Thus, the results have clear physical
background and consequences.

We again modify the example of Section 3.2.1 in this construction; we keep the configuration
manifold Q = S1, the algebra of observables A = C∞(S1) and its representation on the Hilbert
space H = L2(S1, S1 × C) and set up the time evolution so as to violate the existence of a
Hamiltonian with a potential in At. It reads:

U(t) =
∑
m∈Z

eiEmt |m〉〈m|.

Let the states of the system with respect to the coordinate basis be of the form

(3.37) ψm(ϕ) = 〈ϕ | m〉 = C1 Ai(ϕ− Em) + C2 Bi(ϕ− Em),

where Ai and Bi are Airy functions, see, e.g., [1, 43]. Here, on Q = S1, the wave functions have
to fulfill the following conditions:

(3.38a) ψm(0) = ψm(2π),

(3.38b) ψ′m(0) = ψ′m(2π).

Provided these conditions on E hold, the spectrum of H is discrete as in the case without
potential, cf. Section 3.2.1. However, the spectrum cannot be given by a simple closed formula.
The Hamiltonian is then of the form ĤH = P̂P 2 + X̂X , where X̂X is the local potential of a constant
one-form. Note, that X̂X 6∈ At = C∞(S1), as it is not continuous in ϕ = 0.
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Remark 3.8. Let us stress that the resulting wave functions (21)–(22) in the analysis of
the electric Aharonov–Bohm effect in [30] are just asymptotic expansions of our Airy functions
(3.37).

In the coordinate representation, where H = −d2
ϕ + ϕ, we can easily describe properties of

the system. The time derivative of the arbitrary operator at ∈ At can be expressed with the
help of the Heisenberg equation of motion in the form

(3.39) ȧat = −i[at,H] = i[at,d2
ϕ]− i[at, x],

where the last term is zero by the smoothness axiom. Next, we compute the metric from (3.1),

(3.40) gt(dbt,dct)
(3.1)
= −i[bt, ċct]

(3.39)
= [bt, [ct,d2

ϕ]]
(3.8)
= 2 dϕbt dϕct,

and the metric gt = 1
2 agrees with the metric from Section 3.2.1!

We can proceed with the construction of H almost up to the end. We can construct the
covariant Laplacian ∆ = −d2

ϕ, but in the last step we do not succeed, as a global non-zero
one-form φ = dϕt cannot have a global potential. Indeed, as ϕt 6∈ At, the one-form φ is not
exact and the assumptions of the theorem 3.2 are not completely met. Hence, no Hamiltonian
with the required properties exists.

Remark 3.9. There is a certain correspondence between SQM and the Haag–Kastler ax-
ioms for quantum field theory in 0+1-dimensions, see [16]. The main aspect is that both settings
are algebraic, the spacetime is given by (sub)algebras of observables rather than by local coor-
dinates and topology plays a prominent role in it. There is also a similarity in their positivity
requirements. The main difference is that SQM is not relativistic invariant.

3.5 Postulation of the soldering form

Finally, let us note that the algebraA = C∞0 (Q)⊗M2(C) provides for a description of spin degrees
of freedom, however fails to relate these to the space-time geometry, not providing anything like
a soldering form.

However a soldering form could be easily postulated. We can proceed with introducing certain
additional structures, e.g., as in [4]. For a formulation more in the spirit of Connes’ axioms [7],
the structures obtained in Section 4.4 would have to be utilized.

Alternatively, we can change the underlying physical principles. For relativistic formulation
of quantum mechanics the soldering form comes for free from physical data. We shall study this
situation in the next Chapter.



Chapter 4

Spin and soldering structures in
relativistic QM

It was clear from the beginning that the new quantum mechanics should incorporate the prin-
ciples of the theory of relativity. As early as in his first communication on wave mechanics from
January 1926, Schrödinger mentioned by words that he had solved also a relativistic eigenvalue
equation (later called Klein–Gordon equation) but he had not published it, as it gave the wrong
fine structure of the hydrogen spectrum. First it seemed that Klein–Gordon equation could be a
meaningful candidate for a relativistic quantum mechanical equation.1 But soon Dirac, Heisen-
berg, Pauli and others raised significant objections against it and started to look for a new
equation. It turned out that relativistic invariance had enforced more substantial changes in the
quantum theory.

Dirac’s electron theory is considered to be one of the highlights of inter-war mathematical
physics. However, the historical depiction of its genesis is often distorted by taking a starry-
eyed point of view of much later recollections. In Section 4.1 the idealized picture of Dirac’s
heroic achievements are closely inspected and history of problems with negative energies and its
interpretation by hole theory is put straight. We do not want to dispraise the value of Dirac’s
achievements, we just show how spinose his pathway to glory was.

In Section 4.2 we recall a generalization of scalar quantum mechanics to relativistic framework
proposed in [24]. Next, general discussion of a notion of soldering form is made. It is understood
in rather general form as a structure that “solders” the fibres of a vector bundle to the external
geometry. Three possible ways to separate “extrinsic” and “intrinsic” structures are proposed.

Finally, in Section 4.4, we examine the vacuum of free quantum field theory given by a com-
plex structure on phase space. The vacuum gives a soldering form for internal degrees of freedom
providing them thus with spatial significance and eventually allowing them to be interpreted as
spinors. To show more clearly the possibilities and limitations, the example of a (discretized)
torus is discussed.

4.1 Spinose pathway to glory: Dirac’s electron theory 1928–1933

In many papers on Dirac’s equation a starry-eyed point of view is taken from later recollections
and interviews.2 It is clear from sources that Dirac had to struggle for his relativistic theory

1According to Dirac late recollections, Bohr was to have been satisfied with it, cf. below. However, Klein was
Bohr’s assistant.

2Deterrent examples are A. Pais, Playing with equations, the Dirac way, In: B.N. Kursunoglu and E. P. Wigner
(ed.): Reminiscences about a great physicist: Paul Adrien Maurice Dirac (CUP, Cambridge, 1987), 93–116, or
J. Mehra and H. Rechenberg, The Historical Development of Quantum Theory, Vols. IV and VI/1 (Springer,
1982, 2001). Mehra and Rechenberg even believe that Dirac’s recollections are “quite definite and consistent”,
hence, they assume it “quite reliable”. Let us quote one of their determinative remarks: “In contrast to Kragh,
we would not overemphasize the nonreliability of Dirac’s own account,” see Vol. VI/1, p. 290.

44
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of electron. For nearly two years he has not succeeded in finding a solution to the problem of
negative energies. Even after he had proposed the hole theory, he had to modify it because of
severe critique. The utmost problems were clarified at the turn of 1932–1933 and Dirac won
the Nobel Prize. However, his theory has won recognition of one of the highlights of inter-war
mathematical physics only later.

The history of the Dirac equation is studied in a number of essays.3 History is often distorted
by uncritical quotations of recollections from 1960s and 1970s.4 These papers are more or less
describing heroic achievements of Paul Dirac, the main character.5 If there are any inconsistencies
found in his recollections, they are immediately elucidated or excused.

Kragh has indeed pointed out that “recollections of events forty years back in time are likely
to contain distortions and inaccuracies,” [26, p. 53], but we think that the problem is deeper.
Recollections are told with some intention and deciphering of the intensions enables one to
review authenticity of the information properly.

Dirac possessed an exceptional charisma, as the recollections of his colleagues are responsible
for the growth of Dirac’s myth.6 It has been forming gradually, at least since World War II, but
probably already since 1930s. Nowadays, Dirac is considered to be one of the most important
physicists ever lived and Dirac’s equation to be one of the greatest achievements of twentieth
century physics, but in the studied period of time, the attitude to Dirac was quite different. The
more restrained and critical contemporary remarks are, the more pompous and grandiose later
comments are. The expressions like ‘magic’, ‘dream’ or ‘miracle’ has appeared in this connection
only since 1960s.

4.1.1 Dirac’s career

Dirac’s childhood and boyhood was probably affected by hard-handed upbringing of his father.
Psychologically sensitive analysis was given recently by Farmelo [14], who added humbly that
we can not be sure about his story. It rests mainly on Dirac’s later recollections and it has no
support in the sources. On the other hand, it would explain not only Dirac’s personality and
behaviour, but also his working style.

In 1918–21 Dirac got a first-class degree in electrical engineering in Bristol, in other two
years he got degree in mathematics at Bristol University and in August 1923 he next started
hid PhD study in Cambridge. In contrast with Werner Heisenberg, who was only a year older,

3There are two comprehensive biographies, Kragh [27] concentrates on Dirac’s scientific life, whereas Farmelo
[14] studies more his personal and ‘inner’ life, it is close to be a psychological novel. Among the topical papers, H. S.
Kragh, The genesis of Dirac’s relativistic theory of electrons, Archive for the History of Exact Sciences 24 (1981),
31–67, is great at its scope and F. Wilczek, The Dirac Equation, in: H. Baer and A. Belyaev (ed.), Proceedings of the
Dirac Centennial Symposium (Florida State University, Tallahassee, 2002), 45–74, is interesting by its point of view
of state-of-the-art in the quantum theory. Many of the papers contained in Dirac’s Festschrifts Aspects of Quantum
Theory (1972) and The Physicist’s Conception of Nature (1973) celebrating his 70th; Reminiscences about a great
physicist: Paul Adrien Maurice Dirac (1987) planned to celebrate his 80th, but set out only posthumously; Tributes
to Paul Dirac (1987) from Dirac Memorial Session in 1985; Paul Dirac, the man and his work (1998) celebrating
dedication of a plaque to him in Westminster Abbey in 1995 or Proceedings of the Dirac Centennial Symposium
(2002) are to be used with a special caution.

4See interviews by T. Kuhn & al. at the beginning of 1960s, Sources for History of Quantum Physics (American
Philosophical Society, Philadelphia, 1967). Transcript of interview with Dirac is digitized in Oral histories at
Niels Bohr Library & Archives: Interview of Dr. P. A. M. Dirac by Thomas S. Kuhn on May 7, 1963 [online
at http://www.aip.org/history/ohilist/4575 3.html]. However, a significant part of Dirac’s later publications are
recollections, cf. Dirac’s bibliography in R.H. Dalitz, The collected works of P.A.M. Dirac, 1924–1948 (CUP,
Cambridge, 1995).

5A. Pais, Playing with equations, the Dirac way, in: B.N. Kursunoglu and E.P. Wigner (ed.): Reminiscences
about a great physicist: Paul Adrien Maurice Dirac (CUP, Cambridge, 1987), 93–116. Pais also takes over Dirac’s
recollections without having examined their correctness. Already P. Forman, A Venture in Writing History, Science
220 (1983), 824–827, severely criticized the so-called heroic history of quantum mechanics.

6“These works, written by scientists who knew Dirac personally, express physicists’ homage to a great col-
league,” H. S. Kragh, Dirac – A Scientific Biography (CUP, Cambridge, 1990), p. ix.
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he did not prove his brilliance within his studies: “His contributions were interesting, but not
remarkably so, and not of striking originality,” [27, p. 12]. But his self-confidence was growing
and his time was only to come. In 1925 he studied his final year in Cambridge, he was at the
right time in the right place.

After graduation in June 1926 Dirac spent a year on the Continent, in Copenhagen with
Niels Bohr and in Göttingen with Max Born and Werner Heisenberg. After having returned
to Cambridge in November 1927, he was elected a Fellow of St. John’s College. His scientific
reputation was rapidly growing. After all, the formulation of the relativistic equation for one
electron at the turn of 1927–28 brought fame to him.7 In 1930 he wrote one of the most influential
books on Quantum Mechanics, The Principles of Quantum Mechanics [10] and he was elected
a Fellow of Royal Society of London (in his 28 years). In 1932 he took the Lucasian Chair of
Mathematics at Cambridge University. In the next year 1933 he won the Nobel Prize.

4.1.2 Relativistic quantum theory of the electron

In 1926 the first attempts for a relativistic version of quantum mechanics (more precisely
Schrödinger’s wave mechanics) appeared. Schrödinger’s eigenvalue equation for a free electron

(4.1) Eψ = Hψ,

with H = p2/2m a non-relativistic kinetic energy, is not Lorentz invariant. After transition from
classical to quantum mechanics accomplished by

(4.2) E −→ i~
∂

∂t
, p −→ −i~∇,

it gives a differential equation of the first order in time derivative and of the second order in
spatial derivatives:

(4.3) i~
∂ψ

∂t
= − ~2

2m
∇2ψ.

Nevertheless, the theory of relativity demands an equal footing for space and time.
One attempt, carried out first by Oskar Klein, utilized the classical relativistic expression for

the energy

(4.4) E2 = p2c2 +m2c4

and set H = +
√
p2c2 +m2c4 into the Schrödinger equation (4.1). The result is

(4.5) i~
∂ψ

∂t
= c

√
p2
1 + p2

2 + p2
3 +m2c2ψ.

It is possible to expand the square-root operator in an infinite series of derivative operators,
but there was little faith in such a process. However, at least for some time, Pauli seriously
considered this equation.8

As in Fourier expansion ofH derivatives of any order appeared, the problem of unsymmetrical
time and space derivatives remained. Moreover, Klein found it impossible to include external
fields in relativistically invariant way. So, he decided to get rid of the square root by squaring

7 He published his first important results (introducing Poisson brackets to QM, perturbation theory and so-
called Fermi–Dirac statistics) only a month after his rivals (Born–Jordan–Heisenberg, Heisenberg and Fermi).
This is thoroughly discussed by Kragh [27]. I believe it is one of the reasons of his withdrawnness. After it all, he
longed for a break-through even more.

8 Despite its unpleasant form, Pauli regarded it as in itself sensible and preferred it to (4.6): “Herr Pauli
regards the relativistic wave equation of second order with much suspicion,” Kudar to Dirac, December 21, 1926,
quoted according to [27, p. 54].
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the whole equation,9 or (which turns to be the same) using directly the relativistic expression
for the energy (4.4) in quantization procedure (4.3) and got the equation

(4.6) −~2∂
2ψ

∂t2
= (−~2∇2c2 +m2c4)ψ.

This equation was independently obtained by several other physicists and now it is known under
the name Klein–Gordon equation.10 Its 4-dimensional form allowed to define a 4-vector of charge
and a current densities satisfying the continuity equation. Nevertheless, as already mentioned,
it did not give the correct fine structure of the hydrogen spectrum.

The other ‘heuristic’ approach, based on ideas of W. Pauli, was carried out by Jordan and
Heisenberg in spring 1926. They tried to include relativistic effects as perturbations. So, they
derived the first approximation to the fine structure formula and added a term referring to the
electron spin. “Despite of its empirical success, the theory was not genuinely relativistic and
could not explain the described phenomena,” cf. [27, p. 52].

Motivations: Dirac’s attitude to the Klein–Gordon equation

There are different opinions on Dirac’s exact intention. Was he trying to get the simplest possible
relativistic quantum theory? Or was he trying to derive a relativistic description of the spin?
Dirac himself expressed his intention several times, but particular versions are inconsistent.

In November 1926, Dirac seems to have considered the Klein–Gordon theory as a serious
candidate for a relativistic quantum mechanics, however, only for a short time. He even thought
about Klein’s idea of a 5-dimensional theory embracing both quantum mechanics and general
relativity for some time.11 But he soon abandoned those ideas. The main objection probably
was that the Klein–Gordon equation was not an evolution equation. The second derivatives with
respect to time did not allow a proper quantum mechanical interpretation; it was in variance
with the general transformation theory of him and Jordan.

Dirac liked to tell a story about Bohr asking him “what are you working on now?” Dirac
replied that he was trying to get a satisfactory relativistic theory of the electron. Then Bohr
said, “But Klein and Gordon have already solved that problem.” In the next part of the story
Dirac’s recollections seriously contrast:

1963: “I remember it disturbed me quite a lot that Bohr was so satisfied with it
because of the negative probabilities that it led to.”12

1974: “I was quite taken aback. It rather surprised me that such an emminent physi-
cist as Bohr should be satisfied with the Klein–Gordon equation and I started to
explain why I was not satisfied with it. But just then the lecture started and I was
never able to finish it.”13

1977: “I didn’t have time to explain my objections fully to Bohr on that occasion,
but I could see where his opinions lay, and that was the opinion of most physicists

9It is allowed to square the eigenvalue equation Aψ = Bψ if [A,B] = 0.
10It was first obtained by Schrödinger but remained unpublished. In spring 1926 it was first published by Oskar

Klein. Then, during 1926, it was thoroughly studied by L. de Broglie, V. Fock, W. Gordon, E. Schrödinger,
J. Kudar and others. See H. Kragh, Equation with many fathers: the Klein–Gordon equation in 1926, American
Journal of Physics 52 (1984) 1024–1033.

11[27, p. 53], according to a letter from Heisenberg to Pauli, November 4, 1926 [19, Vol. I, p. 352].
12Interview of Dr. P.A.M. Dirac by Thomas S. Kuhn on May 7, 1963, Niels Bohr Library & Archives, American

Institute of Physics, College Park, MD USA, [online at http://www.aip.org/history/ohilist/4575 3.html]. However,
it was shown by Kragh that the problem of the negative probabilities appeared much later, see H. S. Kragh, The
genesis of Dirac’s relativistic theory of electrons, Archive for the History of Exact Sciences 24 (1981), p. 64.

13P.A.M. Dirac, An historical perspective on spin, in: J.B. Roberts (ed.), Proc. Summer Studies of High-Energy
Physics with Polarized Beams, July 22–26, 1974 (Argonne National Laboratory, Argonne, 1975). Rep. ANL/HEP
75-02, p. XXXII–8.
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of that time, perhaps all of them.”14

1975/78: “It rather opened my eyes to the fact that so many physicists were quite
complacent with a theory which involved a radical departure from the basic laws of
QM, and they did not feel the necessity of keeping to these basic laws in the way
that I felt.”15

This is one of the Dirac’s late stories. As we do not know Bohr’s opinion on the Klein–Gordon
theory from independent sources, we have to ask what the story tells us. All these facets indicate
that it was told with the only aim: to show Dirac as a visionary who foresees the progress in
quantum mechanics better than Bohr, the leader of the community himself!

Kragh accepted that the story is true, even though he admitted that “Dirac’s accounts of the
event are not entirely consistent.” My opinion is that Dirac wanted to get a relativistic equation
for a quantum particle. The incorporation of the spin was a secondary aim, which was added
later in the course of solving proposed conditions.

This hypothesis would also explain why Dirac succeeded. He proceeded indirectly (regard-
less if consciously or unconsciously). He derived his equation from basic principles of quantum
mechanics and special relativity theory. It was a product of mathematical reasoning, he would
have never introduced it with an empiricist approach: “Dirac’s success in finding the accurate
equation shows the great superiority of principle over the empirical method.”16 Several eminent
physicists, namely Wolfgang Pauli in Zürich, Eugene Wigner and Pascual Jordan in Göttingen,
C.G. Darwin in Cambridge, Hendrik Kramers in Utrecht, Yakov Frenkel, Dimitri Iwanenko and
Lev Landau in Leningrad tried to proceed empirically and simply construct a pair of equations
to represent the fine structure of the hydrogen spectrum, see [27, p. 59–60].

Linearization of the relativistic energy expression

“Our problem is to obtain a wave equation of the form (H − E)ψ = 0, which
shall be invariant under a Lorentz transformation and shall be equivalent to (1)
[Klein–Gordon equation] in the limit of large quantum numbers.”

P.A.M. Dirac [8, p. 613]

Dirac finished his paper The Quantum Theory of the Electron [8] after a year of concentrated
efforts during Christmas 1927. It was published within three weeks of January 1928, in a great
haste, as Dirac feared to be outrun again (cf. footnote 7). It is probably Dirac’s best paper.
Surely it is the most famous one.

Dirac started with the same equation (4.5) as Klein, but before putting it into the Schrödinger
equation, he argued that “the symmetry between p0 and p1, p2, p3 required by relativity shows
that, since the Hamiltonian we want is linear in p0, it must also be linear in p1, p2, p3.” So,
he tried to express the sum of the squares as a square of some modified terms, which would
transform it into a linear form

(4.7) (p0 + α1p1 + α1p1 + α1p3 + β)ψ = 0,
14P.A.M. Dirac, The Relativistic electron Wave Equation, Proc. European Conf. on Particle Physics, Budapest,

Hungary, July 4–9, 1977, Preprint KFKI-1977-62, p. 10. However, Dirac knew very well that other physicists were
also trying to improve or supersede the Klein–Gordon equation. e.g., Pauli (cf. footnote 8). Also Heisenberg rec-
ognized the significance of linearity in Schrödinger’s equation and considered equations of the Klein–Gordon type
to be without prospect, cf. W. Heisenberg, Über den anschaulichen Inhalt der quantentheoretischen Kinematik
und Mechanik, Zeitschrift für Physik 43 (1927), p. 184.

15P.A.M. Dirac, Directions in Physics: lectures delivered during a visit to Australia and New Zealand, Au-
gust/September 1975. (Wiley, New York, 1978), p. 15.

16C.G. Darwin, The wave equation of the electron, Proceedings of the Royal Society of London. Series A,
Mathematical and Physical, Vol. 118 (1928), p. 664.
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Multiplying with the conjugate equation, comparing with the Klein–Gordon equation (4.6) and
setting β = α4mc gave him the conditions

(4.8) α2
µ = 1, αµαν + αναµ = 0 (µ 6= ν), µ, ν = 1, 2, 3, 4,

which are similar to propreties of Pauli spin matrices. However, there are just three of them in
M2(C),

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Then he got another smart idea, he proposed αs to be 4×4 matrices and he used Pauli matrices
to construct them: he first defined17

(4.9) σ′i =
(
σi 0
0 σi

)
, ρ1 =

(
0 1
1 0

)
, ρ2 = i

(
0 −1
1 0

)
, ρ3 =

(
1 0
0 −1

)
,

and then he got18

(4.10)

α1 = ρ1σ
′
1 =

(
0 σ1

σ1 0

)
, α2 = ρ1σ

′
2 =

(
0 σ2

σ2 0

)
,

α3 = ρ1σ
′
3 =

(
0 σ3

σ3 0

)
, α4 = ρ3 =

(
1 0
0 −1

)
.

This is usually called the Dirac representation of α-matrices, as the solution of the conditions
(4.8) is not unique. Other important solutions are due to Majorana and Weyl, confront, e.g.,
Thaller [39, p. 36].

The wave equation (4.7) takes the form

(4.11) (p0 + ρ1σ · p + ρ3mc)ψ = 0

and it is called Dirac equation.

Features of the Dirac equation

At this stage, Dirac’s equation was only an inspired guess [27, p. 60]. But more detailed analysis
immediately followed. The next step was a proof that the Dirac equation is Lorentz covariant.
Namely, in the form of (4.11) Lorentz covariance is not manifest. Putting γr = ρ2σ

′
r and γ4 = ρ3,

Dirac introduced a different representation of his matrices, later called Dirac γ-matrices and
transformed his equation into the manifestly covariant form

(4.12)
(
i

4∑
µ=1

γµpµ +mc
)
ψ = 0,

with p0 = i p4. Proving the correct transformation properties of γµ yields Lorentz covariance,
see [8, p. 615–617].

Subsequently, Dirac studied an electron in an arbitrary electromagnetic field with a scalar
and vector potential A0 and A, respectively. Substituting

p0 −→ p0 +
e

c
A0, p −→ p +

e

c
A,

17We are forced to denote the four-dimensional Pauli matrices with a prime, σ′i, while Dirac denotes them
with the same symbol σi as the original Pauli matrices. We also denote by 0 and 1 zero and unit 2× 2 matrices
respectively.

18Kragh [27, p. 60] mixes up the role of ρs, σs and αs.
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he got a Hamiltonian which differs from the previous relativity Hamiltonian of Klein and Gordon
by the following two extra terms

e

c
σ · (∇×A) and i

e

c
ρ1σ · (∇A0).

The second term is argued not to be observable, as it is pure imaginary.19 The first term gives
exactly the value for the magnetic moment assumed in the spin electron model. Thus, spin is
deduced from the principles of relativistic quantum mechanics. Hence, the Dirac equation is
capable to explain (in first approximation) the correct doublet splitting of hydrogen terms.20

W. Gordon and C.G. Darwin proved quickly that the Dirac equation reproduces exactly the fine
structure of the hydrogen atom.

It was a great success. Yet, Dirac embellished the story in 1970s by insisting on the fact
that he was not interested in explaining the spin and that he did not make use of Pauli’s work.
He even claimed that he discovered Pauli matrices by himself, independently of Pauli.21 This
exaggeration was noticed by Kragh, but excused by asserting that the use of spin matrices was
“heuristic only” [27, p. 60]

Still, one problem of the initial Klein–Gordon equation remained unsolved. Every solution of
the equation gives rise to another solution with negative energy. Dirac knew about this problem
from the beginning: “One gets over the difficulty on the classical theory by arbitrarily excluding
those solutions that have a negative [energy] W . One cannot do this on the quantum theory, . . . ”
[8, p. 612]. In comparison with success of his theory Dirac did not first considered the problem
of negative energies so compelling.22

Reception of Dirac’s theory: prompt appreciation and subsequent animadversion

In the preserved correspondence, we mostly find a positive reception of Dirac’s paper.23 How-
ever, later recollections have more panegyric features. In 1928 a simple collegial appreciation
was expressed, whereas since 1960s it has rather been a homage to the hero of the quantum
generation.24 Dirac depreciated his success in the 1960s claiming that he found out the solution
“by playing around with mathematics.” However, Pais took the claim seriously and considered
it for Dirac’s general way of doing research.

However, in summer 1928 the attitude to Dirac’s theory changed. In June 1928 Dirac was
invited by Heisenberg to give lectures on his theory in Leipzig. Heisenberg was disappointed
that Dirac had not been able to address the problem of negative energies.25 Dirac worked on
the problem, but without any success.

19In 1935 Andrew Lees (a student of Dirac) has shown that the electric moment does not appear in fact, A. Lees,
The electric moment of an electron, Proceedings of the Cambridge Philosophical Society 31 (1935) 94–97;

20Later, Dirac insisted on the assertion that he did not attempt to obtain exact solution, because he was afraid
that the higher order corrections would not come out right. Kragh did not believe it and ascribes it to the haste
in publication motivated by competition and fear of not being the first to publish the idea. “After all, if it had
the crucial importance for Dirac, he would have attempted the exact fine structure formula later, but he did not,”
see [27, p. 61–62].

21P.A.M. Dirac, Recollections of an exciting era, in: C. Weiner (ed.), History of Twentieth Century Physics
(Academic Press, New York, 1977) p. 139.

22“The resulting theory is therefore still only an approximation, but it appears to be good enough” [8, p. 612].
23“Dirac has got a new system of wave equations which does the whole spinning electron correctly, Thomas

correction, relativity and all,” Darwin to Pauli, January 11, 1928, [19, Vol. I, p. 424]; “I admire your last work
about the spin in the highest degree,” Heisenberg to Dirac, February 13, 1928, quoted according to [27, p. 62].

24E.g., Dirac’s derivation of spin “was regarded as a miracle. [. . . ] It was regarded really as an absolute wonder,”
Oral histories at Niels Bohr Library & Archives: Interview of Dr. Leon Rosenfeld by T. S. Kuhn and J. L. Heilbron
at Carlsberg on July 1, 1963 [online at http://www.aip.org/history/ohilist/4847 1.html].

25“I am much more unhappy about the question of the relativistic formulation and about the inconsistency of
the Dirac theory. Dirac was here and gave a very fine lecture about his ingenious theory. But he has no more of
an idea than we do about how to get rid of the difficulty e −→ −e,” Heisenberg to Bohr, June 23, 1928, quoted
according to [27, p. 66].
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At the end of 1928, the situation got even worse. Oscar Klein proved that for a very simple
case of an electron scattering from a potential barrier with sufficient energy Dirac’s theory gives
absurd results. Instead of observed electron tunnelling into a barrier with exponential damping,
the theory predicted that electron would be always transmitted. The result became known as
Klein paradox.26

4.1.3 Hole theory

The problem of negative energy solutions of Dirac’s equation was a peculiar one. Dirac was
bothered by the problem for a very long time. It is usually not stressed that it took him nearly
two years until he came with an attempt at a solution in December 1929. However, Dirac did not
solve it mathematically. He indicated the problem as interpretational and claimed that “. . . all
the states of negative energy are occupied except perhaps a few of small velocity. [. . . ] Only the
small departures from exact uniformity, brought about by some of the negative-energy states
being unoccupied, can we hope to observe. The holes in the distribution of negative-energy
electrons are the protons,” [9, § 2]. On six pages of the paper, there are only four equations.

It is clear that this is a fall-back solution. However, Dirac explained it with the help of the
exclusion principle, a famous theory by Wolfang Pauli, his greatest opponent and critic.27

Dirac stressed the philosophically appealing aspects of the theory: “We require to postulate
only one fundamental kind of particle, [. . . ]. The mere tendency of all the particles to go into their
states of lowest energy results in all the distinctive things in nature having positive energy,” [9,
p. 363–364]. On the other hand, the hole theory did not explain dissymmetry between electrons
and protons, in particular their different masses.

Reactions to the hole theory were rather sceptical.28 Unofficially it was considered to be pure
nonsense.29 Moreover, Heisenberg and Pauli soon proved that the holes must possess the same
mass as the electron. When Tamm and Oppenheimer computed the lifetime of electrons and
protons according to the hole theory, they got absurd results: 10−3 s for proton and 10−9 s for
electron. Treating an electron hole as a proton was not sustainable anymore.

In summer 1931 Dirac had to rethink the concept of holes. When he had eliminated the
impossible, there remained merely one unpleasant and improbable possibility. Dirac followed
the logic of Sherlock Holmes and (unwillingly) concluded that each hole corresponded to “a new
kind of particle unknown to experimental physics, having the same mass and opposite charge
to an electron,”30 Thus, Dirac was compelled to propose new (anti) particles, anti-electron and
also anti-proton.

In autumn 1932, the discovery of the positron by Anderson in USA and its confirmation
by Blackett and Occhialini directly in Cambridge retrospectively proved justness of Dirac’s
hypothesis. Yet, Dirac hesitated to identify his anti-electron with Anderson’s positron. Bohr,

26“Dies dürfte als ein besonders schroffes Beispiel der von Dirac hervorgehobenen Schwierigkeit der relativistis-
chen Dynamik zu betrachten sein.” O. Klein, Die Reflexion von Elektronen an einem Potentialsprung nach der
relativistischen Dynamik von Dirac, Zeitschrift für Physik 53 (1929), 157–165.

27Pauli first appreciated the theory, admittedly merely on account of an intermediated information, “Was ich
höre klingt hoffnungsvoll,” Pauli to Jordan, November 30, 1929, [19, Vol. I, p. 526]. After getting thoroughly
acquainted with Dirac’s work, he reppraised his opinion, “Ich glaube jetzt gar nicht mehr daran!” Pauli to Klein,
February 10, 1930, [19, Vol. II, p. 4], the emphasis is due to Pauli. Animosity between Dirac and Pauli seems to
be enhanced in the description of Kragh [27, p. 112–114]. Farmelo [14] even gave to Pauli the role of the main
villain and Dirac’s archenemy. He also used the animosity as a leitmotiv in a couple of stories from Dirac’s life.

28Heisenberg wrote to Dirac: “it is certainly a great progress. [. . . But] I cannot see yet, how the ratio of the
masses etc. will come out,” December 7, 1930. In a letter to Bohr, Heisenberg expressed his sceptical opinion more
unreservedly (a letter from December 20, 1929).

29Apart from Fermi and Pauli, e.g., Lev Landau commented Dirac’s lecture on the hole theory — delivered at
British Association for the Advancement in Science Congress in Bristol — with a single word “Quatsch” translated
as “rubbish” in [14] and as “nonsense” in [27].

30[11, p. 61]. The metaphor with Sherlock Holmes is due to Farmelo [14].
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Heisenberg and Pauli were also not convinced.31 Opposition to the hole theory was getting
weaker slowly, but it was gradually vindicated.32

Contrary to the opinion frequently repeated in literature, the discovery of the positron was
not a consequence of the theoretical prediction made by Dirac. It was made independently
and, moreover, it took some time until it was generally accepted that Dirac’s anti-electron and
Anderson’s positron are the same thing.

4.1.4 Nobel Prize

At the end of 1933 the decision on the Nobel Prize for 1932 and 1933 should be made. Although
the report, prepared for the Nobel Prize Committee of the Royal Swedish Academy by Carl
Wilhelm Oseen, was very critical in comparison to the present evaluation of Dirac’s work33 and
although Dirac obtained only two nominations,34 on the recommendation of the Committee
Academy decided to give the Prize for 1933 to Heisenberg and to divide the Prize for 1933
between Schrödinger and Dirac, who became the youngest theorist to have received the Nobel
Prize.

Oseen also writes in the report that Dirac could obtain his best results only in the future.
Dirac later published many important results in other physical disciplines. However, he did not
carry out the seemingly achievable refinement of his theory and some interpretational problems
have remained open.35 Dirac later opposed to the development in QED. In particular, he did
not agree with renormalization theory (1948), and he left the mainstream of theoretical physics.
Still, his fame was growing and his ideas were gradually accepted.

We have shown that the value of Dirac’s ideas became appreciated only later. It would
be inaccurate to believe in the starry-eyed point of view of recollections from that later time
describing a harmonic development of science.

4.2 Spectral relativistic quantum mechanics

Relativistic invariance enforces substantial changes in the framework of non-relativistic quantum
theory. Let us modify the notion of scalar quantum mechanics introduced in Section 3.1 to agree
with requirements of special theory of relativity. From the spectral point of view, we would like
to have the following requirements fulfilled, see Kopf and Paschke 2005 [24]:

(a) Order one condition: In contrast to the smoothness requirement of the non-relativistic
SQM, the time evolution satisfies

i[At, ȦAt] = 0, ∀t ∈ R,

cf. Section 3.3.2. Hence, the Hamiltonian generating the time evolution is at the most of first
order and uncertainty relations seem to be dropped.

(b) Stability of the vacuum: A vacuum state is determined by a complex structure J on
the Hilbert space H and it commutes with the Hamiltonian,

[H,J ] = 0.
31“I do not believe on your perception of ‘holes’, even if the existence of the ‘antielectron’ is proved.” Pauli to

Dirac, May 1, 1933, [19, Vol. II, p. 159].
32Pauli suppressed his critique by the end of June 1933: “ich bin also nicht abgeneigt, an eine Art reformierte

Löchertheorie zu glauben,” Pauli to Heisenberg, July 14, 1933, [19, Vol. II, p. 187].
33“[Dirac’s] work is not fundamental in the same sense as Heisenberg’s. [. . . ] He is independent. . . but a

successor in relation to Heisenberg. If one asks if Dirac is a scientific pioneer of the same dimension as Planck,
Einstein or Bohr, the answer must for the present be, I think, definite no. [. . . ] so far it has not left him the time
for really great innovative work. . . It is noteworthy that Dirac’s most original papers stem from the last years,”
Nobel archive, cited according to [27, p. 115–116].

34Schrödinger obtained 11 nominations (i.a. from Bohr and Einstein). The other physicists nominated for the
Prize: Sommerfeld, Bridgman, Davisson and Paschen obtained more nominations than Dirac, see [27, p. 116].

35Very nice and modern account of the problems related to the interpretation of the Dirac equation was given
by Thaller in the first chapter of his book [39].
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However, in accordance with our aim to construct a one-particle theory, this condition may not
be satisfied if particles are produced due to external fields or spacetime curvature.

(c) Physical states: Eigenspace projections P± of J coincide on static spacetimes with the
projections on positive and negative frequencies. In order to ensure suitable spectral properties
of the Hamiltonian, only one of the two eigenspaces of J , the space of positive energy solutions is
considered. Hence, the physical states of the Hilbert space are given by the range of the eigenspace
projection P+ of the complex structure J . Physical observables aphys have to preserve the space
of physical states, i.e.

[aphys, J ] = 0.

Elements a of the algebras A describing the space geometry fail to be observables. This may be
remedied by their restriction to the eigenspaces of J , obtaining thus physical observables aphys:

aphys = P+aP+ + P−aP− for all a ∈ A.

However, starting with a commutative algebra A, its physical counterpart Aphys may no more
commute! Thus uncertainty, lost in its replacement through the order-one condition (a) creeps
in through a back door.

We do not employ the possibility to construct a set of commuting and at the same time
physical observables, as determined by the Newton–Wigner states, and keep the directly received
noncommutative observables, which were already obtained in a remarkable paper by M.H.L.
Pryce in 1948, see [35].

The above requirements give a set of structures necessary for the formulation of the theory,
but they do not fix it entirely. This freedom can be restricted to a large degree by postulating
symmetries.

On an example of a free spinor field on Minkowski spacetime it was argued that physical
observables xphys corresponding to the spatial coordinates xi indeed fail to commute:

[xi,phys, xj,phys] = iεijkSk,

where Sk is the spin vector, see [24]. The latter equation provides us with a structure that
“solders” coordinates on the configuration manifold with spin coordinates. We devote us to
more thorough discussion of this notion in the next Section.

4.3 Soldering structures

In classical geometry, a vector bundle without any additional structure represents in its fibres
purely internal degrees of freedom, with no reference to the external geometry of the space.
Spinor bundles are not of this kind: the spinor bundle is a vector bundle but related to the
external geometry represented by the tangent bundle through a soldering form. The soldering
form “solders” the fibres of the spinor bundle to the external geometry.

Let us consider a fibered manifold π : E −→ Q. Local coordinates on a configuration manifold
Q of a physical system are often referred to as the extrinsic (external) degrees of freedom. On
the contrary, the fibered coordinates on E projected to Q are usually referred to as intrinsic
(internal) coordinates.

However, taking the soldering form conceptually as a special structure relating intrinsic
degrees of freedom locally to extrinsic ones, a generalization to more general, noncommutative
spaces may be attempted. This depends decisively on the meaning of “extrinsic” and “intrinsic”.
Therefore, a definition of a soldering structure will depend on a chosen context and no general
and mandatory definition of soldering form is to be expected. Let us discuss certain possible
notions used to distinguish the extrinsic and intrinsic structures.
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The first possibility is to distinguish the extrinsic and intrinsic structures with the help of
the algebra of coordinates A represented on a suitable Hilbert space H. If [X,A] = 0 then X is
intrinsic, otherwise it is extrinsic. A typical extrinsic operator is angular momentum L. On the
other hand, the spin operators S are intrinsic.

The second possibility is to base the notions of extrinsic and intrinsic structures on the action
of automorphisms of the algebra of coordinates of a space given by a spectral triple (A, D,H),
see e.g. [7].

An automorphism of algebra A is a mapping φ : A −→ A which preserves the algebraic
structure of A, i.e.,

(i) φ is linear, φ(λa+ b) = λφ(a) + φ(b),
(ii) φ preserves multiplication, φ(ab) = φ(a)φ(b),
(iii) φ respects the ∗-operation, φ(a∗) = φ(a)∗.

An automorphism acts on intrinsic degrees of freedom only, if it is so-called inner automor-
phism. Then it is generated by a unitary in the algebra A, i.e., it is of the form αu(φ) = u∗φu,
with φ ∈ A and u unitary. The group Int(A) ⊂ Aut(A) of inner automorphisms is a normal
subgroup that describes intrinsic gauge transformations.

If φ is inner automorphism of a commutative algebra A, then the condition φ(a) = u∗au
gives u(x) = eiφ(x) , φ(x) ∈ R. As A is commutative, u∗au = e−iφ(x) a eiφ(x) = a and φ is just
identity.36

On the other hand, as noted in [7], for highly noncommutative spaces all automorphisms
may turn out to be intrinsic. In that case one would thus expect the concept of a soldering form
to become void of content.

The third possibility is based fundamentally on the unbounded selfadjoint operator D of
spectral geometry, more precisely on its spectral decomposition. This decompostion is not unique
and should not be expected to be.37 If the structures of the decomposition do not fully capture the
nature of D, there remain then degrees of freedom intrinsic to the geometry of the decomposition
which can be soldered to the extrinsic geometry through the remaining information in D thus
giving rise to a soldering form. The implementation of this structures by means of rising operators
of transporters p, developed in Section 2.2, is currently in progress. However, it is already clear
that we can sort out the intrinsic degrees of freedom from the extrinsic ones by means of the
rising operators u of the transporters p: If [X,u] = 0, then X is intrinsic. Otherwise it is extrinsic.

It should be noted that some choices in the setup of the taken path seem to be in some
cases not strictly necessary and in other cases perhaps not the most general ones. Thus the
setup should not be considered to be in its most useful and definitive form and should be rather
understood as open to further improvement. We investigate the first possibility in the next
Section.

4.4 Positive energy projectors and spinors

The vacuum of free quantum field theory is determined by a complex structure J on the one-
particle complex Hilbert space H, the classical phase space. It is shown here that such a structure
can supply a represented algebra A with a soldering form that relates internal degrees of freedom,
i.e., the eigenspaces of A in H with geometric structure. In this way, the standard soldering form
of spin geometry can be recovered.

A case of particular interest is the torus since its spin structure was recently discussed not
only in the classical but also in the noncommutative case [34] in the setting of A. Connes’ axioms
[7] for spectral geometry. Connes’ axioms provide automatically for a spin structure and capture

36For A = C∞(Tn)⊗Mp(C) are the inner automorphisms gauge transformations, e.g. eiφ(x) ⊗ ai1···ip .
37Cf. M. Kac, Can one hear the shape of a drum? American Mathematical Monthly 73 (1966)(No. 4, part 2),

1–23; J. Milnor, Eigenvalues of the Laplace operator on certain manifolds, Proc. Nat. Acad. Sci. 51 (1964) (4),
542; T. Sunada, Riemannian coverings and isospectral manifolds, Annals of Mathematics 121 (1985), 169–186.
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well much of the essentials of geometry. The here presented approach is not intended to achieve
the same degree of completeness but rather to provide an alternative, physically motivated point
of view on structures that may be eventually obtained otherwise.

The example illustrating the chosen approach in this work is the discretized torus T(n1,n2).
Its particularities are spelled out in Section 4.4.1 in order to fix the notation. Section 4.4.2 dis-
cusses invariant vacua given by invariant complex structures and determines their high-frequency
behavior. The soldering form is obtained in Section 4.4.3. Corresponding facts on continuous
tori are mentioned throughout for comparison. The significance of the presented approach is
discussed in the Conclusion.

Given the physical motivation of the taken approach, it is interesting to compare the re-
sults with the situation of an ordinary spin structure, understood as the phase space (space of
initial conditions) of a Dirac field on a corresponding 2 + 1-dimensional flat spacetime. Such a
comparison justifies the interpretation of the high energy limit of the complex structure as the
soldering form. This is worked out in the Appendix, after a short review of basic facts on spin
structures over low-dimensional Minkowski space. It is also shown there for completeness that
while the spin rotation matrix (which would also qualify for a soldering structure) is generally
visible in the commutator of the physical coordinates xi

P , this is not applicable in our case as
the commutator vanishes in the high energy limit in two dimensions.

4.4.1 Preliminaries

The discretized torus T(n1,n2) is the space of the group G = Zn1 × Zn2 . The group G acts on
T(n1,n2) by translations and is the counterpart of the symmetry U(1) × U(1) of the ordinary
(undiscretized) torus T2.

In particular, the action of g = [g1, g2] ∈ G on point x = [x1, x2] ∈ T(n1,n2) is given by:

(4.13) g(x) = [g1, g2]([x1, x2]) = [g1 + x1 modn1, g2 + x2 modn2]

and in the generators V1 = (1, 0) and V2 = (0, 1) of G act by

(4.14)
V1(x) = [1, 0]([x1, x2]) = [x1 + 1 modn1, x2]

V2(x) = [0, 1]([x1, x2]) = [x1, x2 + 1 modn2]

The geometry of the discretized torus T(n1,n2) consists of n1n2 points and can be described
via the Gel’fand transform by an n1n2-dimensional commutative C∗-algebra A = C(T(n1,n2),C)
of complex functions on T(n1,n2). The action of Zn1 × Zn2 on T(n1,n2) induces a corresponding
action on the C∗-algebra A:

(4.15) g(a)(x) = a(g(x)) for all g ∈ G, a ∈ A and x ∈ T(n1,n2)

To simplify calculations, the same notation will be used for the algebra A and its repre-
sentation on H. In addition, it will be assumed that the action of the symmetry group G is
unitarily implemented on H and the same notation will be used for the group and its unitary
representation.

In order to fix H and at the same time to allow for intrinsic degrees of freedom to be later
interpreted as spin, we choose H = L2(T(n1,n2)) ⊗ C2, where L2(T(n1,n2)) is the up to unitary
equivalence unique representation space of the smallest faithful involutive representation of A
with the obvious unitary implementation of the symmetry group G:

(4.16) g(φ)(x) = φ(g(x)) for all g ∈ G,φ ∈ L2(T(n1,n2)) and x ∈ T(n1,n2),

to be extended trivially to H:

(4.17) g(φ⊗ v)(x) = φ(g(x))⊗ v
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for all g ∈ G,φ ∈ L2(T(n1,n2)), v ∈ C2 and x ∈ T(n1,n2).
More generally, one may take H = L2(T(n1,n2),C2), i.e., the square integrable sections of a

fibre bundle with base space T(n1,n2) and fibre C2. The above choice corresponds to the fibre
bundle being trivial. This is of course not a topological statement as the discretized torus carries
the discrete topology but rather a statement on the action of the symmetry group G. Nontrivial
actions could be obtained introducing a sign in (4.17):

(4.18) g(φ)(x) = (−1)s1((g1+x1)/n1)?+s2((g2+x2)/n2)?
φ(g(x)),

where s1, s2 ∈ {0, 1} determine the chosen action and ( · )? denotes the integral part. The intro-
duced signs do not change (4.15) and modify thus only the internal structure (allowing for the
counterparts of the four inequivalent spin structures over T2), not changing the space geometry
itself.

Also, denoting the vectors of the representation space by L2(T(n1,n2)) as square-integrable
functions is rather formal, as any function on a finite number of points equipped with the uniform
discrete measure is square-integrable. Actually, it serves as a reminder of what is necessary in
the undiscretized case, as a tool of comparison.

Continuous tori T2
θ

The noncommutative torus is the algebra generated by two unitaries U1, U2 subject to the
relation

(4.19) U1U2 = λU2U1, λ = ei2πθ, θ ∈ R.

More precisely algebra elements a are power series a =
∑

kl aklU
k
1U

l
2 with coefficients akl which

vanish faster than any polynomial for k, l −→ ∞. The commutative torus corresponds then to
the choice θ = 0.

The representation of the algebra on H = L2(T2
θ), with basis |n1, n2〉, nk ∈ Z, is given by

(4.20)
U1|n1, n2〉 = λn2 |n1 + 1, n2〉,

U2|n1, n2〉 = |n1, n2 + 1〉.

This representation possesses a cyclic separating vector |0, 0〉.
All of these tori, whether finite projective modules over the commutative torus (for θ rational)

or with trivial center (for θ irrational) are continuous in the sense of allowing a continuous
U(1)× U(1)-symmetry.

4.4.2 Invariant vacua

A complex structure on H is a linear map J : H −→ H satisfying:

(4.21) J2 = −1.

The complex structure’s eigenspaces H+,H− are the spaces of positive and negative fre-
quencies. The corresponding eigenvalue projections are P+, P− and the following relationships
hold:

(4.22) P± =
1∓ iJ

2
.

A sensible restriction of the freedom in J is to require the fulfillment of the following condi-
tions:

1. Invariance of the vacuum. J is invariant under the action of the group G.
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2. Charge conjugation. There is an invariant anti-linear isomorphism between the eigen-
spaces of J .

3. Zeroth order condition. J is a zeroth order pseudo-differential operator. It means that
there is a finite limit to the symbol of the operator J in any direction in Fourier space at
infinity.

Given the action (4.17) of the group G on the Hilbert space H, J will be invariant under the
action of G if

(4.23) 〈ψ1 | g−1(J)ψ2〉 − 〈ψ1 | Jψ2〉 = 〈g(ψ1) | Jg(ψ2)〉 − 〈ψ1 | Jψ2〉 = 0

for all g ∈ G and ψ1, ψ2 ∈ H. For this to hold it suffices to require that J is invariant under the
action of its generators V1, V2 of G.

The above statements involving Fourier space assume the discrete (inverse) Fourier transform
on the discretized circle, of which the torus is an easy 2-dimensional generalization. On T(n1,n2),
it is given by

(4.24)

fxy =
1√
n1n2

n1−1∑
p=0

n2−1∑
q=0

f̃f pqe
(2πi/n1)pxe(2πi/n2)qy,

f̃f pq =
1√
n1n2

n1−1∑
x=0

n2−1∑
y=0

fxye
−(2πi/n1)pxe−(2πi/n2)qy,

and may be compared with the (inverse) Fourier transform on the continuous torus:

(4.25)

f(φ1, φ2) =
1
2π

+∞∑
m=−∞

+∞∑
n=−∞

f̃fmne
imφ1einφ2 ,

f̃fmn =
1
2π

∫ 2π

0

∫ 2π

0
f(φ1, φ2)e−imφ1e−inφ2dφ1dφ2.

While for the ordinary circle, the high frequency behavior is given by the limit n → ∞ of the
Fourier index, for the discretized circles of the torus T(n1,n2), the high frequency behavior is
given by the Fourier indices closest to (ni + 1)/2. For ni even, there are two such indices, ni/2
and ni/2 + 1 and on those we will assume J to agree.

Discretized torus T(n1,n2)

Condition (4.23) can be separated using its discrete Fourier transformed equivalent, since in the
Fourier picture, (4.17) becomes:

(4.26)

g̃(φ)g(φ)(p) =
1√
n

n−1∑
x=0

(gψ)(x)e−(2πi/n)px

=
1√
n

n−1∑
x=0

(ψ)(x+ g modn)e−(2πi/n)px

=
1√
n

n−1∑
x=0

(ψ)(x)e−(2πi/n)p(x−g)

= e(2πi/n)pgφ̃φ(p).

We have then from (4.23):

(4.27) e(2πi/n)(p−q)gJq
p − Jq

p = 0 for any p, q, g ∈ Zn1 × Zn2 .
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This is possible only if

(4.28) Jq
p = 0 for all p 6= q.

Thus, J is determined by a free choice of complex structures Jp
p on complex 2-dimensional

subspaces e(2πi/n)px ⊗ C2 of H.
To completely characterize the freedom of choice, the compatible complex structures on C2

can be easily computed by generally solving condition (4.21). The solutions can be given as

(4.29) ±i
(

1 0
0 1

)
and

(4.30) J = −inkσk

with nk a unit vector in 3-dimensional Euclidean space and σk the Pauli matrices

(4.31) σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Clearly, (4.29) does not allow for a charge conjugation as the dimensions of the eigenspaces for
the eigenvalues ±i are different and thus solution (4.29) has to be discarded.

Continuous tori T2
θ

Repeating the separation procedure (4.26) for a torus T2
θ, we get

(4.32) eiφ(n1−n2)mJn1
n2 − Jn1

n2 = 0 for any n1, n2,m ∈ Z× Z

and J on T2
θ is determined by a free choice of complex structures Jp

p on complex 2-dimensional
subspaces eiφm ⊗ C2, m ∈ Z of H, as before.

4.4.3 The soldering form

We get the soldering form directly from the high-energy limit of the positive energy projection
in direction

ni =
ki

|~k|

of momentum space, cf. Appendix A.2,

(4.33) lim
|~k|→∞

P+ = 1
2
(1− ~6nγ0).

The corresponding vacuum complex structure J = iP+ − iP− has as its limit then

(4.34) lim
|~k|→∞

J = −i~6nγ0.

Its existence (in any direction) is assured by the zeroth order condition. In the discretized case,
this seems to be an empty condition. That this component is finite is of course automatically
assured by the discretization. This idea is however of conceptual value in giving geometric
significance to the highest frequency component of J in Fourier space.



Soldering structures in the relativistic QM 59

Continuous tori T2
θ

The Fourier space of the torus T2
θ is Z×Z. While this lattice does not have a continuous rotational

symmetry, we show that there still is an asymptotic U(1)-symmetry.
Consider the space of 1-dimensional rays (kn1, kn2)k∈N in Z2. These uniquely determine 1-

dimensional rays (rn1, rn2)r∈R in R2. But 1-dimensional rays in the Euclidean geometry of R2

are parametrized by the unit vectors forming the unit circle S1 with the symmetry group U(1)
and rays coming from rays in Z2 are dense in this circle.

This set-up allows for an asymptotic symmetry requirement of symmetry of Fourier coeffi-
cients by assigning to each ray from Z2 the limit of Fourier coefficients along that ray at infinity
and requiring these limits to define by completion a continuous, U(1)-covariant function on S1

which can be used to define a soldering form through (4.34).

Discretized torus T(n1,n2)

In the discrete case, infinity in Fourier space is given by integer points on the boundary of the
rectangle

I =
[
−

(
n1 + 1

2

)
?

,+
(
n1 + 1

2

)
?
]
×

[
−

(
n2 + 1

2

)
?

,+
(
n2 + 1

2

)
?
]
,

cf. the following Figure.

• ∞

∞

• ∞ • ∞(0, (n2+1
2 )?)∞ • ∞ • ∞ •

∞

•

∞

• • • • • •

∞

(−(n1+1
2 )?, 0)

∞

• • (0, 0) • • ((n1+1
2 )?, 0)

∞

•

∞

• • • • • •

∞

• ∞ • ∞ • ∞(0,−(n2+1
2 )?)∞ • ∞ • ∞ •

1

Figure 4.1: Infinity in finite Fourier space of T(5,4). The points on the boundary of the rectangle
denoted by ∞ are what is to be considered infinity. Note, that with the particular values n1 = 5, n2 = 4,
the infinite points of the upper side of the rectangle are identical with the ones on the lower while the
points of the right and left boundary of the rectangle consist of distinct points. The points (((n1+1)/2)?, 0)
and (0, ((n2 + 1)/2)?) are the infinities associated with the two discrete coordinate axes and are used as
the high energy limit points for the corresponding coordinate directions.

A clear geometric meaning can be given to the high frequency component of the positive
energy projection in the directions of x1 and x2, i.e., P (((n1+1)/2)?, 0) and P (0, ((n2+1)/2)?) or
directly through the corresponding high energy limit of the complex structure J(((n1+1)/2)?, 0)
and J(0, ((n2 + 1)/2)?), see (A.21).

The choices of these complex structures are free data within our framework and lead to in
general noncommuting analogues of Clifford generators, which are according to (4.30):

(4.35) iJ

((
n1 + 1

2

)
?

, 0
)

= nk
1σk iJ

(
0,

(
n2 + 1

2

)
?
)

= nk
2σk.
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Unless n1 = ±n2, these operators span the vector space of Clifford generators and the usual
spin structure is thus obtained, though with the following restriction.

It is tempting to extend these to some kind of algebra-valued form, as suggested by (A.20),
but this idea cannot be applied without further modifications.

First, the linearity with respect to ~n in (A.20) is due to the Dirac operator being a first order
differential operator while in a more general physical setting, a pseudodifferential operator is to
be expected.

Second, we do not have at our disposal a rotational symmetry in a point of our space as
the discretization of the torus destroyed that. This absence of structure is also a problem when
dealing with noncommutative spaces, may however possibly be improved upon at least in this
case using techniques similar to [42].

Thus the soldering form is not a form in the usual sense of spin manifolds. It does, however,
provide a connection between spatial geometry (elementary lattice shifts) and internal degrees
of freedom.

* * *

The above example is to be understood as a proof-of-concept: A complex structure given
by the positive frequency projection motivated by quantum physics provides a link between
spatial geometry and internal degrees of freedom and plays thus in this aspect the role of a
soldering form. This was already implicit in the remarkable work of M. H. L. Pryce [35] but not
appreciated as a source of geometric information.

The discretization of the example did not change this robust fact while it destroyed the
microlocal symmetry of the space in question. The resulting analogues of Clifford generators for
elementary lattice shifts are not to be understood in a simple-minded way as components of a
form.

Whether a more sophisticated point of view might treat that is an interesting problem for
future investigations. The recourse to Fourier theory is at the moment a limitation. Still there
are a number of spectral geometries allowing such an approach, notably the noncommutative
torus which may be used to test the present ideas in a noncommutative setting.

Compared with Connes’s axioms [7], this treatment chose not to start out with the Dirac
operator and a fixation of the spin structure and can be seen as a possibility to obtain partial
geometric information from concepts of quantum field theory.

Finally, let us remark that our work can also be accounted as an attempt to understand
the geometry of negative energy solutions of the free Dirac equation. Another attempt on this
problem was recently proposed by E. Trübenbacher, who utilizes just the operator ‘sign of the
energy’, see [41].



Appendix A

Solutions of the Dirac equation on a
static spacetime with flat (possibly
toroidal) spatial sections

In the following, low space (resp. spacetime) dimensions are considered. While only 2-dimensional
space is relevant to our calculations, comparison with other dimensions explains the status of the
involved structure since some striking facts on spinors are just coincidences given by a special
choice of dimension while other ones have general significance.

A.1 The spin structure and its adjustment to physical require-
ments

The anticommutation relations for the Clifford algebra are assumed in the form

(A.1) γµγν + γνγµ = 2gµν ,

where gµν is the metric on the tangent space and the signature is assumed as

(A.2) sign gµν = (−+ + · · ·+︸ ︷︷ ︸
n

).

This allows to set up a Clifford bundle acting on a spin bundle with sections ψ. The Dirac
equation [39] for such a section ψ is written in the form

(A.3) (γµ∂µ −m)ψ = 0.

Since a number of conventions is available in the literature, it has to be checked that the
above settings fit together according to the physical requirements they should satisfy. The signs
in the above equation are chosen so that causal propagation is satisfied. This can be checked on
flat spacetime, where each solution can be decomposed into plane waves, by showing that the
wave vector kµ of the plane wave ψ(x) = ψ0e

ikµxµ
is within the light cone, i.e., kµk

µ ≤ 0. This
follows from the following calculation:

(γν∂ν +m)(γµ∂µ −m)ψ = 0

(gνµ∂ν∂µ −m2)ψ0e
ikµxµ

= 0

kµk
µ = −m2 ≤ 0

There are two natural hermitean inner products on spinors given by the intertwinners of up
to isomorphism unique irreducible representations of the Clifford algebra [3]:

(A.4) γ+
µ A = Aγµ − γ+

µ B = Bγµ
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or more explicitly:

(A.5) γµ
ĀA

B̄BAĀAB = AB̄BAγµ
A

B − γµ
ĀA

B̄BBĀAB = BB̄BAγµ
A

B

The following facts are shown in [3] (our B is their D):
For positive definite g, the A product is positive definite. Since reduction of the spacetime

product to the space product changes one type (A,B) into the other (B,A), we have to take B
as the correct spacetime spinor product.

For even spacetime dimensions, both A and B exist, in odd spacetime dimensions, just one of
them exists. But fortunately in our signature, A always exists for the spatial part while B always
exists for the spacetime product. So we can decide for these choices for all n + 1-dimensional
spacetimes. Then the spacetime inner product is B:

(A.6) −γ+
µ B = Bγµ

and its reduction to space A = Bγ0 satisfies:

(A.7) γ+
i Bγ

0 = Bγ0γi

We have formal selfadjointness of the operator 6D −m:

(A.8) B(φ, (6D −m)ψ)−B((6D −m)φ, ψ) = ∇µB(φ, γµψ)

which leads by the application of Stokes’ theorem to the invariant inner product on the (phase)
space of solutions of the Dirac equation:

(A.9) 〈φ, ψ〉 =
∫

Σ
B(φ, γµψ) dµS =

∫
x0=0

B(φ, γ0ψ) d3~x

A.2 The Hamiltonian and the positive energy projector

The Dirac equation in flat spacetime (A.3) written as:

(A.10) i∂0ψ = (iγ0γi∂i − imγ0)︸ ︷︷ ︸
H

ψ,

allows to read of the Hamiltonian:

(A.11) H = iγ0(γi∂i −m).

Under Fourier transform:

(A.12) f(x) =
1

(
√

2π )2

∫
f̃f (k)eixk dnk,

we have:

(A.13) xif(x) → i
∂

∂ki
f̃f (k)

∂

∂xi
f(x) → ikif̃f (k)

Denote E(k) = k0 = −k0, E(k) =
√
m2 + ~k2 . Then the projectors onto positive and negative

frequencies are in the Fourier transform:

(A.14) P± =
1
2

(
1± H

E

)
=

1
2

(
1∓

(~6k + im)γ0√
m2 + ~k2

)
.

This projection (expressed in the Fourier picture) is, unlike the ones given in many textbooks,
see, e.g., [21], not only onto orthogonal spaces but also an orthogonal projection.
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The positive energy projection of a coordinate xi is xi
P = P+x

iP+.

(A.15)

[xi
P , x

j
P ] = P+x

[iP+x
j]P+

= P+ x
[ixj]︸ ︷︷ ︸
=0

P+ − P+x
[i[xj], P+]P+

= −x[iP+[xj], P+]P+︸ ︷︷ ︸
=0

+[x[i, P+][xj], P+]P+

and since

(A.16) [xi, P+] = i
∂

∂ki
P+(k) =

i

2E
γ0

(
γi −

~6k + im

E2 ki

)
we get

(A.17) [xi
P , x

j
P ] = − 1

4E
(Ωij − P i

kΩkj − ΩikP j
k),

where

(A.18) P i
j =

kikj

E2 =
kikj

m2 + ~k2

(A.19) Ωij = [γi, γj ]

This projects the spin rotation matrix Ωij onto the plane orthogonal to ~k. This is exactly
the case in the high-energy limit (in the massless case), when E is asymptotically equal (exactly
equal) to |~k| and thus P i

j is indeed such a projector. For zero energy, the commutator of the
coordinates gives just the spin rotation matrix Ωij .

In the high-energy limit, one needs at least three dimensions to obtain the spin rotation
matrix from the commutators of coordinates. It is easier to get the soldering form directly from
the high-energy limit of the positive energy projection in direction

ni =
ki

|~k|

of momentum space. Indeed,

(A.20) lim
|~k|→∞

P+ = lim
|~k|→∞

1
2

(
1−

(~6k + im)γ0√
m2 + ~k2

)
=

1
2

(1− ~6nγ0)

That this high energy limit exists, i.e., that the symbol of P has a finite limit in momentum
space, is basically the requirement that P should be an order zero pseudo-differential operator.

The corresponding vacuum complex structure J = iP+ − iP− has as its limit then

(A.21) lim
|~k|→∞

J = −i~6nγ0,

which justifies interpreting (4.35) as soldering structures.



Conclusion

The thesis dealt with several problems connected with the notion of SQM, a spectral formulation
of non-relativistic quantum theory.

In the first, part historical remarks on quantum theory were supplemented with a discussion
about some difficulties related to Bohr’s formulation of quantum mechanics. Already in 1948,
doubting the dogmas of quantum mechanics, R. Feynman tried to reform the framework of quan-
tum mechanics. He attempted to introduce a dynamical system not describable by a Lagrangian
or Hamiltonian. In October 1948 he reported to F. Dyson that he failed. Feynman’s proof of the
Maxwell equations is a no-go theorem. However, after Feynman’s death, Dyson published the
proof and it was subjected to study from different points of view. We have shown how it was
broadly accepted as an interesting research topic and how it led to the notion of SQM.

In Chapter 2, the notion of smoothness was translated into the language of spectral geometry.
Then, transporters and their rising operators were introduced and two important physically mo-
tivated examples were presented, the (noncommutative) torus T2

θ and a space that is seemingly
commutative 1-dimensional at low values of the spectrum of D (with an energy cut-off, a fuzzy
circle) and commutative 2-dimensional at high energies, with the two different commutative
regimes bridged by a noncommutativity at intermediate energies.

In Chapter 3, we have shown that SQM provides a concise coordinate-free description of
nontrivial dynamical systems, which demands only quite general assumptions. In the last section,
we have pointed that SQM provides tools for handling a nontrivial topological structure on the
configuration manifold, which can affect the spectrum of H.

We have stressed that no axiom in the definition of SQM can at present be weakened without
breaking some essential property of the quantum world, except possibly through nontrivial
consequences of the positivity axiom for the smoothness condition. If this is the case is to be
determined in future research. For any of the considered dynamical systems, the scalarity axiom
ensures that Newton’s law holds, the smoothness axiom restricts the order of the Hamiltonian
from above and specifies the form of canonical commutation relations. The nontriviality and
positivity axioms restrict the spectrum of the corresponding Hamiltonian.

In Chapter 4 we have given a detailed historical analysis of early development of Dirac’s
equations and connected problems. It was noted that the idealized picture of Dirac’s heroic
achievements should be abandoned and the history of problems with negative energies and
its interpretation by the hole theory was put straight. However, our arguments presented in
Section 4.4 show, that the solution of the problem of negative energies in Dirac equations by a
restriction to positive energies gives for free the soldering form of spin geometry.

Let us finish with an outlook.
A separation of extrinsic and intrinsic structures by means of rising operators u of trans-

porters p would give us the possibility to describe soldering form in a manner applicable to more
general situations. E.g., disconcerting ambiguities in an aforementioned, physically motivated
model of discrete torus can be naturally removed. This is one of our current goals.

Next we would like to investigate if there could be a connection established between a choice
of the projection P+ on H = L2(Q, E) and a choice of a spin structure on the configuration
manifold Q.
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Last but not least, we touched in the course of this work on some very interesting facts in
the history of soldering structures. It forms one possible direction of enhancing our historical
understanding of studied theories.
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ence Historie matematiky, Velké Mezǐŕıč́ı 18.–22. 8. 2010 (Matfyzpress, Praha, 2010), to
appear.

Conferences
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talk: Feynman’s proof of the Maxwell equations; A history (in Czech).
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