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1 Introduction

The inverse problem of the calculus of variations concerns a decision whether a system of
differential equations is variational, i.e., if it can be expressed in the form of Euler–Lagrange
equations for some Lagrangian. There are two questions connected to the inverse problem:
first, how to construct a Lagrangian for variational differential equations and second, if it is
possible to reduce the order of this Lagrangian.

In this thesis the history of deriving of the variationality conditions for ordinary dif-
ferential equations of an arbitrary order (so-called higher-order Helmholtz conditions) is
studied. The attention is turned mainly to the works originated at the end of the 19th cen-
tury. Following advancement is left aside here; there are two nice review treatises available,
the first by Santilli [21] and the second by Morandi et al. [19].

There are several motivations to this problem. First, even the authors studying deeply
the inverse problem do not know how the problem was tackled by the “classics” one cen-
tury ago. The quotations have been largely formal and the commentaries indistinct, authors
confine themselves to a more or less general cliché. One reason is that there has been no
comprehensive paper recounting the old history of the inverse problem and the historical
remarks in the review papers have brought only a little light to the problem by then.

Second, the sources are not easily available to the broad scientific community; the dig-
italization of the sources has been going on very slowly, it is a very expensive and difficult
objective. There has been some progress in the last years, however only in the field of the
scientific papers. Still there hasn’t been any attempt to digitalize other important sources
such as correspondence.

Third, even if there will be all works digitalized, there would be another great difficulty,
the language gap. Most of the papers written in the 19th century are in German, French,
Italian or even Latin and the knowledge of these languages is not common at the time being
and the situation is getting even worse.

Fourth, studying the history of mathematics is not common and popular among the
mathematicians (e.g. in [13] there are only listed references with no commentary). However,
there are some exceptions; the best account of the history of the inverse problem of the
calculus of variations was written by Santilli in 1978, [21]. He fixed the attention mainly
on the works since Douglas (1941) but in his book there were the most important remarks
on the considered problem so far. Twelve years later, in the comprehensive paper [19],
Morandi, Ferrario, Lo Vecchio, Marmo and Rubano discussed the progress of the research
in the seventies and eighties of the last century with no respect to the previous development.

Last but not least, though there is a more or less accurate literature dealing with the
history of the inverse problem in the 20th century, inaccurate commentaries on old history of
the inverse problem and consequent inaccurate quoting of these commentaries have brought
about a broad confusion. That is why I posed myself for one of the main goals to correct the
inappropriate opinions originated from the authors during the 20th century.
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These are the main reasons why I restrict myself to the old history of the inverse problem
in this thesis.

However, there is another and a more general setting of the inverse problem of the calcu-
lus of variations, a so-called multiplier problem. This case is not systematically considered
in this thesis, but there are some remarks to be made; these are collected in the Appendix.

In this thesis it is shown that exploring the history of mathematics is not waste of time.
For example, the equivalent form of the Helmholtz conditions, which was cited many times
as result of Mayer, Davis or others, was originally derived by Helmholtz himself. However,
in my opinion the most interesting result is that the so-called higher-order Helmholtz con-
ditions, which were believed to be a new result of the late 1970s, were already known in
1899! First they appeared in the work of Karl Böhm.

1.1 Sources and literature

The main sources, the scientific papers of the “classics” have not been published in English
translation yet. However, some of them are easily available from the electronic libraries.
But the rest of them is the more difficult to be obtained. However, the situation is worse in
the Czech Republic than, e.g., in Germany. In the enclosures the reader can find either the
copy of an article or a link to a full-text transcription.

In the last year there has been a considerable progress in digitalizing the sources for the
history of Mathematics in the 19th century. The European Mathematical Society project of
digitalization of Jahrbücher über die Fortschritte der Mathematik, hereafter JFM in short,
see www.emis.de/projects/JFM, is a searchable database of all reviews published in JFM
from 1868 till 1942. This is the most useful source for the first searching for an article
and also for further research. In June 2002 the digitalization was complete for the years
1868–1911. It contains also links to 12 196 full-text article and book facsimiles.

However, in the other EMS project called Classical Works, Selecta, and Opera Omnia
only the works of Riemann and Hamilton have been digitalized so far.

From the other electronic sources let me make a note on The MacTutor History of Math-
ematics archive, see www-history.mcs.st-andrews.ac.uk/history/, by John O’Connor
and Edmund Robertson from the University of St. Andrews, the biographical index of Math-
ematicians. The profiles of the more than 1 500 famous mathematicians are relatively short
but there is a list of references for each personality. Unfortunately, there are many impor-
tant things missing, such as a list of papers which the person authored, links to electronic
transcriptions of the papers, etc.

A considerable part of mathematicians responsible for the rise of the inverse problem
are connected with Heidelberg (Helmholtz, Königsberger, Mayer and Böhm). In the virtual
library of the Ruprecht–Karls University in Heidelberg (for the link see [35]) there are
biographies of these personalities with a lot of excellent additional information.

There is one rule holding: the less famous the person is, the more difficult it is to find any
information about him. For example, there are several biographies of Helmholtz in various
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languages, but there is no paper on the life of Hirsch or Böhm.
It is very difficult to find any details about a personality which is not listed in St. An-

drews archive. One way is to find a obituary dedicated to him; e.g. fill-in his surname as
title by searching JFM. But only the famous mathematicians obituaries are reviewed. The
other possibility, searching the journals or archives, brings similar problems, e.g. when the
mathematician died, where their inheritance files are archived and how to get to them?

The most progressive way is to combine more sources. For the first time it is effective
to search library and archive catalogues accessible by Internet searching engines such as
google.com. Here one can find out the basic information after some difficulties; the most
useful are these: where the person was engaged, when and where he died or where his
inheritance is stored. One can proceed with ordering the papers in libraries and visiting the
archives personally.

The composing style of the scientific papers was completely different in the late 19th
century, a more belletristic, less binded by the strict structure of definitions, propositions and
proofs. That is why it is a more difficult to follow the proofs and check their correctness.

1.2 A brief survey of the used terminology

There is a close connection between the inverse problem of the calculus of variations and
the Law of Least Action, das Princip der kleinsten Wirkung (Action) in German. The law
can be stated in this form:

“The mean value of a Lagrangian computed for the same time elements is minimal on
the actual trajectory of the system (for longer paths a boundary value) in the comparison
with all admissible trajectories which runs in the same time from the initial point to the end
point.”

There is an extensive literature on the Law of Least Action; this formulation, which is
cited due to Helmholtz [8, p. 139], originally descends from Hamilton, see [6, 7]. Let me
remark here only that there is also second, alternative formulation, for details see the papers
of Mayer [17] and Helmholtz [9] on the history of the Law of Least Action. The reader can
also consult the paper by Mayerhofer [32] named “The Law of Least Action by Hermann
von Helmholtz”; however, no remarks on connection to the inverse problem are stated there.

In the mechanical system corresponding to the Law of Least Action the external forces
are expressible in the form of Euler–Lagrange equations

n∑
k=0

(−1)k dk

dxk

(
∂L

∂y(k)
i

)
= 0

for some Lagrangian L(x, yi , . . . , y(n)
i ), where x is an independent variable, yi (x) are de-

pendent variables and y( j)
i = d j yi/dx j . These forces are called potential. Hence, these

forces can be identified with the differential expressions which are variational.

For one of the central terms in the field, a Lagrangian, Helmholtz proposed the term
a kinetic potential, das kinetische Potential in the original, see [8, p. 138].
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In [8] Helmholtz proposed an important generalization for the research of the systems
which obeys the Law of Least Action: Former, the velocities could be contained only in the
kinetic energy (living force, die lebendige Kraft in the original) and, moreover, in the form
of the homogeneous function with respect to q̇q 2 only. Helmholtz wrote that it is necessary to
make a research of the whole matter with a Lagrangian in the form of an arbitrary function
of coordinates and velocities.
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2 Helmholtz conditions

The impulse for the rise of the inverse problem is of a physical kind. In the nineteenth cen-
tury many physicists were searching for the unifying principle of the Nature. One admissible
principle was the Law of Least Action.

In 1870s Hermann Helmholz was working on Electrodynamics Theory. By the inves-
tigation of determining an admissible Lagrangian for Maxwell Electrodynamics Theory he
was brought into the research on the Law of Least Action — he tried to generalize the
variational functionals from Mechanics to Electrodynamics and then to some other fields of
Physics.

2.1 Hermann von Helmholtz — the necessary conditions for the existence of
a Lagrangian

Let me make some notes on the life of Helmholtz first; for detailed biography see [30]. Her-
mann Ludwig Ferdinand Helmholtz was born on August 31, 1821 in Potsdam. He studied
medicine and in 1850s he made a research in the Physiology (science that deals with the
functions and activities of life or of living matter and of the physical and chemical phenom-
ena involved); in 1858–1871 he was a professor of Physiology in Heidelberg. From 1871,
when he was appointed the professor of Physics in Berlin he turned his interest to Physics.
In 1888 he was appointed the first president of he Imperial Physico-Technical Institute in
Charlottenburg (near Berlin, today a part of Berlin). He died on September 8, 1894 in Berlin.

In the famous treatise On the physical significance of the Law of Least Action, published
in Journal für die reine und angewandte Mathematik (after its editors often called Crelle’s or
Borchardt or Kronecker Journal) in 1886, see [8] he posed his famous conditions (Helmholtz
conditions) for external forces depending on coordinates, velocities and accelerations, i.e.,
of the form Pj (pi , p′

i , p′′
i ) to be potential.

Proceeding from the Euler–Lagrange equations in the form

(1) Pi = −∂ H

∂pi
+ ∂2 H

∂p′
i∂pκ

p′
κ + ∂2 H

∂p′
i∂p′

κ

p′′
κ ,

he derived the relation between the forces and accelerations first.
He pointed at the fact that (1) are linear in the accelerations. Then, utilizing the inter-

changeability of the partial derivatives of the second order he expressed the value of p′′
κ as

follows:

∂ Pi

∂p′′
κ

= ∂2 H

∂p′
i∂p′

κ

= ∂ Pκ

∂p′′
i

,

i.e, “When the acceleration p′′
κ increases the force Pi of a definite value, then the same

acceleration p′′
i increases the force Pκ of the same value,” [8, p. 161].
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He found out the relationship between the forces and velocities by differentiating the Pi

with respect to p′
λ,

Pi

∂p′
λ

= − ∂2 H

∂p′
λ∂pi

+ ∂2 H

∂p′
i∂pλ

+ ∂3 H

∂p′
λ∂p′

i∂pκ

p′
κ + ∂3 H

∂p′
λ∂p′

i∂p′
κ

p′′
κ ,

= − ∂2 H

∂p′
λ∂pi

+ ∂2 H

∂p′
i∂pλ

+ d

dt

(
∂2 H

∂p′
i∂p′

λ

)

and then adding this expression to ∂ Pλ/∂p′
i he arrived to:

Pi

∂p′
λ

+ Pλ

∂p′
i

= 2.
d

dt

(
∂2 H

∂p′
i∂p′

λ

)
= 2.

d

dt

(
∂ Pi

∂p′′
λ

)
(2)= 2.

d

dt

(
∂ Pλ

∂p′′
i

)

He also noticed that in the many cases when ∂2 H/∂p′
i∂p′

κ = const, this condition take the
more simple form:

Pi

∂p′
λ

+ Pλ

∂p′
i

= 0,

i.e. “When the escalation of the velocity p′
κ by the permanently same position and acceler-

ations increases the force Pi , then the corresponding escalation of p′′
i decreases the force

Pκ ,” [8, p. 163].
Analogously, for the finding the relationship between forces and coordinates Helmholtz

differentiated Pi with respect to pλ,

Pi

∂pλ

= − ∂2 H

∂pλ∂pi
+ d

dt

(
∂2 H

∂p′
i∂pλ

)

and took it away Pλ/∂pi he computed the third condition

Pi

∂pλ

− Pλ

∂pi
= d

dt

(
∂2 H

∂p′
i∂pλ

− ∂2 H

∂p′
λ∂pi

)
= 1

2

d

dt

(
Pi

∂p′
λ

− Pλ

∂pi

)

Helmholtz summed up the conditions at the end of the first part of [8] in this form
(p. 165–166):

(2)
∂ Pi

∂p′′
κ

= ∂ Pκ

∂p′′
i

,

(3)
∂ Pi

∂p′
κ

+ ∂ Pκ

∂p′
i

= d

dt

(
∂ Pi

∂p′′
κ

+ ∂ Pκ

∂p′′
i

)
.
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(4)
∂ Pi

∂pκ

− ∂ Pκ

∂pi
= 1

2

d

dt

(
∂ Pi

∂p′
κ

− ∂ Pκ

∂p′
i

)
.

These three sets of conditions are necessary and sufficient for the existence of a Lagrangian
H such that

(5) Pi = −∂ H

∂pi
+ d

dt

(
∂ H

∂p′
i

)
.

However, in [8] Helmholtz proved only the necessity of these conditions and moreover
under the following restrictive assumption:

(6)
∂2 Pi

∂p′′
j ∂p′′

k

= 0.

It is noteworthy that Helmholtz did not notice that (6) follows directly from his conditions.
The latter condition means that forces Pi are affine in the accelerations, i.e., they are of the
form

(7) Bi j (pk, p′
k)p′′

j + Ai (pk, p′
k) = 0.

For the complete derivation see [8, § 4].

Remark 1 There are two different opinions concerning the year when the paper [8] was
originally published. On the cover of the Journal the year 1887 is printed and some au-
thors follow this. But there are many good reasons that the paper was published in 1886.
First, Helmholtz himself mentioned at the end of the paper that it was finished already in
April 1886; second, this year is quoted in all contemporary papers, especially in the third
volume of his posthumously edited Scientific papers, see [8]; third, the supplement to this
article, lecture On the history of the Law of Least Action, was delivered on the session of the
Academy of Sciences on January 27, 1887 and the participants of the lecture should have
been familiar with this paper. Last but not least, the paper was reviewed in JFM in 1886, see
JFM 18.0941.01.

Nowadays, the Helmholtz conditions for system (7) are usually considered in this equiv-
alent form, see e.g. [16, p. 5]:

(8)

Bi j = B ji ,
∂ Bi j

∂p′
k

= ∂ Bik

∂p′
j

∂ Ai

∂p′
j

+ ∂ A j

∂p′
i

= 2

(
∂ Bi j

∂t
+ p′

k

∂ Bi j

∂pk

)

∂ Ai

∂p j
− ∂ A j

∂pi
= 1

2

∂

∂t

(
∂ Ai

∂p′
j

− ∂ A j

∂p′
i

)
+ 1

2
p′

k

∂

∂pk

(
∂ Ai

∂p′
j

− ∂ A j

∂p′
i

)
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Santilli [21] wrote that this equivalent form was “apparently derived for the first time by
Mayer (1896) and then worked out in more details by Davis (1928 and 1929),” see p. 65.
Looking through the Supplement 6 we elicit that his statement is not true. Mayer derived
the Helmholtz conditions in the original form, cf. also Problem 2.

In this connection it is interesting that the conditions (8) were first derived by Helmholtz
himself; though he did not publish it and it was found in his inheritance by Leo Königsberger
and published in 1905, see [10].

However, I cannot state when the manuscript was written. It is possible that it was fin-
ished already in 1886 by composing [8] but it could have been rewritten later. The question
may be impossible to answer even after the study of the original which was not accessible for
me. Unfortunately from the Königsberger’s quotation1 it is not evident where the manuscript
is stored, because his vast inheritance is stored by several archives all over Germany. Fortu-
nately, Mayerhofer [32] noticed that this part of the Helmholtz’s inheritance is stored in the
Academy-archive of the Berlin-Brandenburgische Akademie der Wissenschaften.

In [30], the Helmholtz’s letter to Kronecker was published, which was sent on April 25,
1886. Helmholtz wrote on the problem which he is still involved with and which makes
him nervous because of the delay of the printing. He wrote: “In the attempt to reverse my
propositions, I have been led to the theory of polydimensional functions, where one has to
walk very warily, and I have not decided whether to make this discussion a digression in
the main essay, or to treat it separately. Even in the second case, however, I must first get
my excursus worked out . . . ” Thus, it seems that at least the first part of the manuscript was
written already in 1886.

Definitely, the manuscript was written between 1886 and 1894.

The most important aspect on the Helmholtz’s work is that it made a considerable im-
pulse into the research of questions related to the inverse problem of the calculus of varia-
tions.

Helmholtz’s friends and colleagues were trying to prove the sufficiency of Helmholtz
conditions and to generalize it to the higher-order field theory. Although some of these were
reached already at the end of the 19th century and at the beginning of the 20th century (see
below), the complete solution in the case of the field theory remained to my best knowl-
edge unsolved until the early 1980s when Ian Anderson with T. Duchamp [1] and Demeter
Krupka [15] published the solution which is nowadays known as the Anderson–Duchamp–
Krupka test.

Helmholtz did not give up the attempts to prove the sufficiency at the end of his life,
but he did not manage to finish the computations to a publishable form. His attempts were
found in his inheritance and published with a commentary by Königsberger in 1905, see
[10].

1“In the inheritance of Helmholtz there is a note which was originally § 5 in the above quoted paper and
which holds the title ‘reverse of the problem’. . . ”, see [10, p. 865]
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2.2 Leo Königsberger — the first published attempt to prove the sufficiency

A collaborator and a good friend of Helmholtz,2 Leo Königsberger (1837–1921) wrote a se-
ries of papers during the nineties of the 19th century which was collected into a whole
monograph Über die Prinzipien der Mechanik in 1901. In one of these papers from 1986,
[14], he provided a proof of the sufficiency of the Helmholtz conditions for the Lagrangians
depending on the coordinates and velocities (first-order Lagrangians) in the case of two
coordinates.

The proof is pure analytical and that is why he could construct the Lagrangian explicitly.

Problem 1 Let P1, P2 be linear functions with respect to both p′′
1 and p′′

2 such that the
conditions (2)–(4) hold.

Then there exists a Lagrangian H(p1, p2, p′
1, p′

2) such that both Euler–Lagrange equa-
tions

(9) P1 = −∂ H

∂p1
+ d

dt

(
∂ H

∂p′
1

)
, P2 = −∂ H

∂p2
+ d

dt

(
∂ H

∂p′
2

)
.

hold at once.

According to the assumptions of the above problem Pi is of the form

(10) Pi = f0i (p1, p2, p′
1, p′

2) + f1i (p1, p2, p′
1, p′

2).p
′′
1 + f2i (p1, p2, p′

1, p′
2).p

′′
2 .

Hence, from the Helmholtz conditions (2), (3) and (4) Königsberger obtained the conditions
on the coefficients of Pi , see [14, eq. 99–104]:

(11) f21 = f12

(12)
∂ f11

∂p′
2

= ∂ f12

∂p′
1

,
∂ f12

∂p′
2

= ∂ f22

∂p′
1

(13)
∂ f01

∂p′
2

+ ∂ f02

∂p′
1

= 2

(
p′

1

∂ f12

∂p1
+ p′

2

∂ f12

∂p′
2

)

(14)
∂ f11

∂p2
− ∂ f12

∂p1
= 1

2

(
∂2 f01

∂p′
2∂p′

1

− ∂2 f02

∂p′
1∂p′

1

)

(15)
∂ f21

∂p2
− ∂ f22

∂p1
= 1

2

(
∂2 f01

∂p′
2∂p′

2

− ∂2 f02

∂p′
1∂p′

2

)

2Also the author of the most comprehensive biography of Helmholtz so far, [30]. See biography at [34].
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(16)
∂ f01

∂p2
− ∂ f02

∂p1
= 1

2

(
p′

1

∂2 f01

∂p′
2∂p1

+ p′
2

∂2 f01

∂p′
2∂p2

− p′
1

∂2 f02

∂p′
1∂p1

− p′
2

∂2 f02

∂p′
1∂p2

)
.

However, there are two other conditions which are not mentioned in the paper. These con-
ditions are as follows:

(17)
∂ f01

∂p′
1

= ∂ f11

∂p1
p′

1 + ∂ f11

∂p2
p′

2,

(18)
∂ f02

∂p′
2

= ∂ f22

∂p1
p′

1 + ∂ f22

∂p2
p′

2.

They follow from (3) for i = κ = 1, respectively i = κ = 2.
Then he utilized (9) to obtain conditions on fi j . He computed the right-hand sides of (9)

and by the comparison with the right-hand side of (10) he arrived to:

(19)
∂2 H

∂p′
1∂p′

1

= f11,
∂2 H

∂p′
1∂p′

2

= f12 = f21,
∂2 H

∂p′
2∂p′

2

= f22,

(20)

−∂ H

∂p1
+ ∂2 H

∂p′
1∂p1

p′
1 + ∂2 H

∂p′
1∂p2

p′
2 = f01,

−∂ H

∂p2
+ ∂2 H

∂p′
2∂p1

p′
1 + ∂2 H

∂p′
2∂p2

p′
2 = f02.

Then he set

(21) H1 =
∫

f11 dp′
1 +

∫ [
f21 −

∫
∂ f11

∂p′
2

dp′
1

]
dp′

2

(22) H2 =
∫

f22 dp′
2 +

∫ [
f21 −

∫
∂ f22

∂p′
1

dp′
2

]
dp′

1

and then from (12) and (19) it implies that

(23) H =
∫

H1 dp′
1 +

∫ [
H2 −

∫
∂ H1

∂p′
2

dp′
1

]
dp′

2 + ω1 p′
1 + ω2 p′

2 + ω,

where ω1, ω2 and ω are functions of p1 and p2 such that equations (20) hold.
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Putting

∂ω1

∂p2
− ∂ω2

∂p1
= �,

he re-wrote (20) to the form

(24)

−
∫

∂ H1

∂p1
dp′

1−
∫ [

∂2 H

∂p1
−

∫
∂2 H1

∂p1∂p′
2

dp′
1

]
dp′

2+ p′
1

∂ H1

∂p1
+ p′

2

∂ H1

∂p2
+ p′

2�− ∂ω

∂p1
= f01

−
∫

∂ H1

∂p2
dp′

1−
∫ [

∂2 H

∂p2
−

∫
∂2 H1

∂p2∂p′
2

dp′
1

]
dp′

2+ p′
1

∂ H2

∂p1
+ p′

2

∂ H2

∂p2
+ p′

1�− ∂ω

∂p2
= f02

In the end he determined � and ω from (24). He considered � and ω as functions of
p1, p2, p′

1, p′
2 and introduced the short cut

p′
2� − ∂ω

∂p1
= M, p′

1� + ∂ω

∂p2
= N .

from (24). He proved that if they obey the conditions (13)–(16), then they must be of the
form:

p′
2� − ∂ω

∂p1
= p′

2φ(p1, p2) +
∫

R(p1, p2)dp2 + R1(p1, p′
1)

p′
1� + ∂ω

∂p2
= p′

1φ(p1, p2) +
∫

R(p1, p2)dp1 + R2(p2, p′
2).

where φ, R, Ri are arbitrary functions.
Let me remark that from (17), (18) it follows that R1 (respectively R2) is independent

on p′
1 (respectively p′

2).

Then, in a series of papers from 1901–1905, he tried to generalize the results to the
higher-order Lagrangians and field theory.

In [10] he wrote down (without any quotation): “By the last occasion I have finished the
determination of independent necessary and sufficient conditions for existence of a kinetic
potential of an arbitrary order depending on unlimited number of both independent and
dependent variables. It was done by means of analytical computations of identic solutions
of the principal equations of the variation of simple and multiple integrals.”

Unfortunately, I have no opportunity to look over these papers, but from the reviews it
seems to me that Königsberger did not solve the problem completely, cf. JFM 32.0691.02,
33.0714.01, 36.0761.01 and 36.0836.04.

13



2.3 Adolph Mayer — proof of sufficiency

Christian Gustav Adolph Mayer (1839–1908) studied in Heidelberg and his professional
career is linked also with Leipzig.

In 1896 Mayer wrote a paper for the Proceedings of the Academy of Sciences in Leipzig,
entitled The conditions for existence of a kinetic potential, [18]. His paper is written purely
from the mathematical point of view, without any physical aspects. At first he deduced the
Helmholtz conditions with the help of the Jacobi principle

δ
dV

dt
= dδV

dt

for any function V (t, qi , q ′
i ). He applied it by means of the following conditions:

(J1)
∂

∂pλ

dV

dt
≡ d

dt

∂V

∂pλ

,

(J2)
∂

∂p′
λ

dV

dt
≡ ∂V

∂pλ

+ d

dt

∂V

∂p′
λ

,

(J3)
∂

∂p′′
λ

dV

dt
≡ ∂V

∂p′
λ

.

The problem is set as follows:

Problem 2 (Mayer, 1896) Let P1, . . . , Pn be given functions depending on the n variables
qi , its first and second derivatives with respect to t and possibly also on the independent
variable t .

Find the conditions on Pi such that if they are fulfilled then there exists a function
H(t, pi , p′

i ) that identically obeys n following (Euler–Lagrange) equations:

(25) −∂ H

∂pi
+ d

dt

∂ H

∂p′
i

= Pi .

By the substitution

∂ H

∂p′
i

= ψi ,

Mayer put the Euler–Lagrange equations into the form

(26)
∂ H

∂p′
i

= ψi ,
∂ H

∂pi
= dψi

dt
− Pi

14



Differentiating the second relation with respect to p′′
k , he found out with help of (J3)

that

(27)
∂ψi

∂p′
k

− ∂ Pi

∂p′′
k

= 0.

This condition means that Pi are linear with respect to p′′.
From the interchangeability of the partial derivatives of the second order and equations

(J1) and (J2) he stated that the necessary and sufficient conditions for the existence of a
function H , which fulfils all 2n equations (26); together with (27) are as follows:

(28)
∂ψi

∂p′
κ

= ∂ψκ

∂p′
i

,

(29)
∂ψκ

∂pi
= ∂ψi

∂pκ

+ d

dt

∂ψi

∂p′
κ

− ∂ Pi

∂p′
κ

,

(30)
d

dt

∂ψi

∂pκ

− ∂ Pi

∂pκ

= d

dt

∂ψκ

∂pi
− ∂ Pκ

∂pi
.

But from (27) and (28) he obtained the first Helmholtz condition (2). Hence, from (29)
he deduced:

∂ Pi

∂p′
k

= ∂ψi

∂pk
− ∂ψk

∂pi
+ d

dt

∂ψi

∂p′
k(

1

2

∂ Pi

∂p′
k

+ 1

2

∂ Pi

∂p′
k

)
+

(
1

2

∂ Pi

∂p′
k

− 1

2

∂ Pi

∂p′
k

)
= ∂ψi

∂pk
− ∂ψk

∂pi
+ 1

2

d

dt

(
∂ψi

∂p′
k

+ ∂ψk

∂p′
i

)

and

(31)
∂ Pi

∂p′
κ

+ ∂ Pκ

∂p′
i

= d

dt

(
∂ψi

∂p′
κ

+ ∂ψκ

∂p′
i

)
,

(32)
∂ Pi

∂p′
κ

− ∂ Pκ

∂p′
i

= 2

(
∂ψi

∂pκ

− ∂ψκ

∂pi

)
,

These systems are equivalent to (29). The system (31) is by virtue of (27) the second
Helmholtz condition

∂ Pi

∂p′
κ

+ ∂ Pκ

∂p′
i

= d

dt

(
∂ Pi

∂p′′
κ

+ ∂ Pκ

∂p′′
i

)
.

Finally, from (30) and (32) Mayer obtained the third Helmholtz condition

∂ Pi

∂pκ

− ∂ Pκ

∂pi
= 1

2

d

dt

(
∂ Pi

∂p′
κ

− ∂ Pκ

∂p′
i

)
.
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Solution 1 Let Pi (t, q j , q ′
j , q ′′

j ) be functions linear in p′′ such that the conditions (2), (3),
(4) hold.

Then there exists a function H fulfilling the equations (25).

The Mayer’s paper follows on with the proof of sufficiency of the above conditions.

Problem 3 (Mayer, 1896) Let Pi (t, q j , q ′
j , q ′′

j ) be functions linear in p′′ such that the con-
ditions (2), (3), (4) hold.

There exist n functions ψi (t, q j , q ′
j ) such that the equations

(33)
∂ψi

∂p′
k

= ∂ Pk

∂p′′
i

,

(34)
∂ψi

∂pk
− ∂ψk

∂p′
i

= 1

2

(
∂ Pi

∂p′
k

− ∂ Pk

∂p′
i

)

are satisfied identically.

The Helmholtz conditions imply, with help of (27) and (32), the original integrability
conditions (28), (29) and (30). Mayer asserted that (27) and (32) are equivalent to (33), (34);
the equivalence is obvious. Hence, the sufficiency was proved for the conditions as it was
stated above.

The condition (33) implies that the function ψ must be of the form

(35) ψλ = χλ(t, pi , p′
i ) + ωλ(t, pi )

where χλ can be evaluated by the quadrature and ωλ is an arbitrary function.
Substituting (35) into (34) he deduced:

1

2

(
∂ Pi

∂p′
k

− ∂ Pk

∂p′
i

)
−

(
∂χi

∂pk
− ∂χk

∂pi

)
= ∂ωi

∂pk
− ∂ωk

∂pi
= �ik,

where �ki = −�ik . Moreover, these symbols are independent on q ′′ and q ′. The first state-
ment follows from

∂

∂p′′
λ

(
∂ Pi

∂p′
k

− ∂ Pk

∂p′
i

)
= 0,

which is a consequence of the independence of (4) on the third derivatives. The second

16



statement follows from the following calculation

∂�ik

∂p′
λ

= 1

2

∂

∂p′
λ

(
∂ Pi

∂p′
k

− ∂ Pk

∂p′
i

)
− ∂

∂p′
λ

(
∂χi

∂pk
− ∂χk

∂pi

)

(J3)= 1

2

∂

∂p′
λ

(
∂ Pi

∂p′
k

− ∂ Pk

∂p′
i

)
− ∂

∂p′′
λ

[
d

dt

(
∂χi

∂pk
− ∂χk

∂pi

)]

(4)= 1

2

∂

∂p′
λ

(
∂ Pi

∂p′
k

− ∂ Pk

∂p′
i

)
− ∂

∂p′′
λ

(
∂ Pi

∂pk
− ∂ Pk

∂pi

)

= 0

Differentiating (4) and utilizing the formula (J3) the latter identity follows. Hence, � are
functions of t and p1, . . . , pn only.

Since the formula

∂�ik

∂pλ

+ ∂�kλ

∂pi
+ ∂�λi

∂pk
= 0

holds, for the details see [18, p. 526], we can define ωi recurrently. More precisely, if we
choose the arbitrary ωn(t, p1, . . . , pn), then the remaining ones are defined by

∂ωλ

∂pλ+1
= ∂ωλ+1

∂pλ

+ �λ,λ+1,

∂ωλ

∂pλ+2
= ∂ωλ+2

∂pλ

+ �λ,λ+2,

...

∂ωλ

∂pn
= ∂ωn

∂pλ

+ �λ,n.

Substituting these ωi into the equations (35) yields n functions ψi which identically obeys
the relations (33), (34). Hence, the proof was finished.

In the conclusive remarks Mayer determined the most general form of functions ψ as
follows:

ψi = χi (t, p1, . . . , pn, p′
1, . . . , p′

n) + ui (t, p1, . . . , pn) + ∂�(t, p1, . . . , pn)

∂pi
.

17



3 The Generalization of the Helmholtz conditions to the higher-
order Lagrangians

Soon after proving the sufficiency of the Helmholtz conditions, the attention was paid to the
generalization of the Helmholtz conditions to the higher-order Lagrangians.

Adolph Mayer supposed that his method, see [18], is easily generalizable to the higher-
order case. In the same year 1896, Leo Königsberger posed precisely the problem.

Already in 1897 and 1898, two papers by Arthur Hirsch were published, in which the
problem was solved in general. In the first paper Hirsch tackled the problem for the dif-
ferential equation of the form F(x, y(x), y′(x), . . . , y(m)(x)) = 0, in the second one he
generalized the question for the n equations of the form

Fk(x, y1, . . . , yn, y′
1, . . . , y′

n, . . . , y(r1)

1 , . . . , y(rn)
n ) = 0.

The generalizations were nearly complete, but Hirsch did not succeed in writing the condi-
tions of variationality of F in an explicit manner.

Hence in summer 1897 Karl Böhm wrote a paper which was published not until two
years in Journal für die reine und angewandte Mathematik; in the note behind the paper he
explicitly expressed the so-called higher-order Helmholtz conditions.

The paper was written independently on the research of Hirsch, Böhm completely
solved the problem with another method for the Lagrangians depending on the velocities
and accelerations, i.e., of the form H(t, p1, . . . , pn, p′

1, . . . , p′
n, p′′

1 , . . . , p′′
n). However, he

did not expect any serious problems in generalizing the results to the arbitrary order.

3.1 Arthur Hirsch – a successful generalization

The Zürich professor Arthur Hirsch (1866–1948) had no connections to the group around
Helmholtz. He also used different methods to solve the inverse problem — the self-adjoint
theory.

He defined the property of self-adjointness for differential expression F by this formula:

(36) v · δu F = u · δv F.

It utilizes the properties of the second variation. By means of this theory he proved that for
a self-adjoint differential equation there exist a Lagrangian.

The first paper On the characteristic property of the differential equations in the calcu-
lus of variations from 1897, see [11], is a voluminous treatise on more problems connected
to the inverse problem. He began with the problem for one ODE with one dependent vari-
able:

Problem 4 If the function F(x, y, y′, . . . , y(2n)) of the even order 2n has the property that
the derived linear differential expression

δF =
n∑

k=0

Fk · u(k)

18



is self-adjoint, then F can be computed by means of quadrature of f (x, y, y′, . . . , y(n)) such
that

F = V ( f ) =
n∑

k=0

(−1)k dk

dtk

(
∂ f

∂yk

)
.

The differential equation F = 0 is then equivalent to the problem of the calculus of varia-
tions to extremize the integral

J =
∫ x1

x0

f (x, y, y′, . . . , y(n)) dx .

In the [11, § 3] the Problem 4 is proved for n = 1. Hirsch started from F(x, y, y′, y′′)
such that

δF = F0u + F1u′ + F2u′′.

Then it holds

(37)
d F2

dx
− F1 = 0,

from this it implies that sole y′′ is not contained in F2 and that F must be of the form

F = M(x, y, y′).y′′ + N (x, y, y′)

Integrating M with respect to y′, setting∫
M(x, y, y′) dy′ = P(x, y, y′)

and utilizing the formula

(38)
d P

dx
= ∂ P

∂x
+ ∂ P

∂y
y′ + M.y′′

he expressed F in the form

F = d

dx
P(x, y, y′) + Q(x, y, y′)

for which he could rewrite (37) to the form

d

dx

(
∂ P

∂y′

)
− ∂

∂y′

(
d P

dx

)
− ∂ Q

∂y′ = 0.

Differentiating (38) with respect to y′ and comparing with the latter formula he finally
arrived to (37) in this form:

∂ P

∂y
+ ∂ Q

∂y′ = 0.
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By means of quadrature he obtained a function f (x, y, y′) which fulfils the following rela-
tions:

∂ f

∂y′ = −P,
∂ f

∂y
= Q.

Then it holds

F = ∂ f

∂y
− d

dx

(
∂ f

∂y′

)
.

By means of an induction the proof is generalized to arbitrary n in § 4, § 5 and § 6.
Similarly as in § 3, it it shown that F must be affine in the highest derivatives, i.e. of the
form

F = M(x, y, y′, . . . , y(2n−1)).y2n + N (x, y, y′, . . . , y(2n−1))

and moreover it is shown that M is independent with respect to y(n+1), . . . , y(2n−1).

In § 7 a so-called multiplier problem is studied. For a closer exposition see the Ap-
pendix below. Then, in § 9 the problem is generalized to partial differential equations of the
form F(x, y, z, zx , zy, zxx , zxy, zyy) and to the second-order PDEs with three independent
variables in § 10, but only necessary conditions determining the form of the equations were
obtained.

One year later (in 1898) Hirsch published the paper The conditions for the existence of
the generalized kinetic potential, see [12]. Here he generalized the previous results to the
case of a system of ODEs with an arbitrary number of dependent variables of an arbitrary
order, i.e. the equations of the form

Fk(x, y1, . . . , yn, y′
1, . . . , y′

n, . . . , y(r1)

1 , . . . , y(rn)
n ) = 0.

The results are of the existence character, there are stated neither necessary nor sufficient
conditions on F to be self-adjoint (and thus variational).

3.2 Karl Böhm – an alternative approach

Karl Böhm (1873–1958) studied in Heidelberg in 1890s, in 1900 he presented in Heidelberg
his habilitation thesis, in 1904 he was appointed extraordinary professor and he taught in
Heidelberg university until 1914.

He posed his objective in the following form:

Problem 5 For the existence of a Lagrangian depending on the first and second derivatives
defined by the equations

(39) Pi = −
{

∂ H

∂pi
− d

dt

(
∂ H

∂p′
i

)
+ d2

dt2

(
∂ H

∂p′′
i

)}
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it is necessary and sufficient that Pi is such function of p, p′, p′′, p(3), p(4) that the condi-
tions

(40)
∂ Pi

∂p(4)
k

= ∂ Pk

∂p(4)
i

,

(41)
∂ Pi

∂p(3)
k

+ ∂ Pk

∂p(3)
i

= 2
d

dt

(
∂ Pi

∂p(4)
k

+ ∂ Pk

∂p(4)
i

)
,

(42)
∂ Pi

∂p(2)
k

− ∂ Pk

∂p(2)
i

= 3

2

d

dt

(
∂ Pi

∂p(3)
k

− ∂ Pk

∂p(3)
i

)
,

(43)
∂ Pi

∂p′
k

+ ∂ Pk

∂p′
i

= d

dt

(
∂ Pi

∂p(2)
k

+ ∂ Pk

∂p(2)
i

)
− d3

dt3

(
∂ Pi

∂p(4)
k

+ ∂ Pk

∂p(4)
i

)
,

(44)
∂ Pi

∂pk
− ∂ Pk

∂pi
= 1

2

d

dt

(
∂ Pi

∂p′
k

− ∂ Pk

∂p′
i

)
− 1

4

d3

dt3

(
∂ Pi

∂p(3)
k

− ∂ Pk

∂p(3)
i

)
,

hold.

Böhm uses Mayer’s methods directly to derive the Helmholtz conditions for the second-
order potentials.

At first he generalized the formulae for the variations (J1)–(J3) to the case of the func-
tions depending on the higher derivatives, say up to the order ν:

(J5)

∂

∂p(σ )
λ

(
dρV

dtρ

)
=

(
ρ

σ

) dρ−σ

dtρ−σ

(
∂V

∂pλ

)
+

( ρ

σ −1

) dρ−σ+1

dtρ−σ+1

(
∂V

∂p′
λ

)
+· · ·+ dρ

dtρ

(
∂V

∂p(σ )
λ

)
,

forσ ≤ ρ

(J6)
∂

∂p(σ )
λ

(
dρV

dtρ

)
= ∂V

∂p(σ−ρ)
λ

+
( ρ

ρ−1

) d

dt

(
∂V

∂p(σ−ρ+1)
λ

)
+· · ·+ dρ

dtρ

(
∂V

∂p(σ )
λ

)
,

forσ ≥ ρ

On these two formulae all subsequent calculations are grounded.
Similarly as Mayer, he proceeded with introducing the substitutions:

(45)
∂ H

∂p(2)
i

= φi ,
∂ H

∂p′
i

− dφi

dt
= ψi .
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Then the equations (39) take the form

(46) −∂ H

∂pi
+ dψi

dt
= Pi .

Hence, he studied the problem on what conditions the functions φi , ψi and H obey the
relations (45), (46). The proof is analogous to the Mayer’s, see my interpretation above or
the original proof in [3].

Let me translate the Böhm’s note mentioned above.

Solution 2 Let H be a function of the first ν derivatives of the coordinates pi defined by
the equations

−
{

∂ H

∂pi
− d

dt

(
∂ H

∂p′
i

)
+ · · · + (−1)ν dν

dtν

(
∂ H

∂p(ν)
i

)}
= Pi

Then Pj (pi , p′
i , . . . , p(2ν)

i ) must identically satisfy the (2ν + 1) equations

(47)

∂ Pi

∂p(τ )
κ

−
(
τ + 1

1

) d

dt

(
∂ Pi

∂p(τ+1)
κ

)
+

(
τ + 2

2

) d2

dt2

(
∂ Pi

∂p(τ+2)
κ

)
− · · ·

+ (−1)2ν−τ
(

2ν

2ν − τ

) d2ν−τ

dt2ν−τ

(
∂ Pi

∂p(2ν)
κ

)
= (−1)τ ∂ Pκ

∂p(τ )
i

τ = 0, 1, 2, . . . , 2ν.

These relations coincide for ν = 2 with the conditions (40)–(44) [of this thesis].

It is easy to see that for ν = 1 the equations (47) coincide with the Helmholtz conditions
(2)–(4). There is no proof of this statement. To my best knowledge, the proof was first
realized by A.L. Vanderbauwhede in [27].

It is possible that Böhm simply guessed the form of (47); it is not difficult to under-
stand the structure of the Helmholtz conditions and thus he had to precise the combinatorial
numbers by the individual terms only.
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Appendix Multiplier problem

It is essential to mention again that there is another and a more general level of the inverse
problem. In this generalized formulation, the problem is to find everywhere regular matrix
Bi

j called variational multiplier or integrating factor such that the equations Bi
j Fi = 0 are

variational.
This generalized formulation was precisely stated by Hirsch ([11]) and its complete

solution is still unknown. But there are some well-known results concerning mainly second-
order ODEs; for one second-order ODE a multiplier always exist, but even for the system
of two second-order equations a multiplier need not exist.

Let me make some remarks here, because the first attempt to solve the multiplier prob-
lem is surprisingly older than the Helmholtz conditions. This attempt is due to N.Y. Sonin.

Forgotten writing of Nikolay Sonin

This first contribution concerns the multiplier problem for one second-order ODE. It was
achieved in voluminous paper On the determination of maximal and minimal properties of
the plane curves by Russian mathematician Nikolay Yakovlevich Sonin (1849–1915).

The paper was finished in November 1885 (only five months before the famous paper
by Helmholtz) and published in Reports of the Warsaw University next year. Let me remark
that Sonin was engaged on the University of Warsaw (this part of Poland was occupied by
Russian dominion during the 19th century) in the years 1872–1894.

Sonin considered the equations which are solved with respect to the second derivatives,
i.e. of the form

(48) y′′ = ϕ(x, y, y′).

The maximal and minimal properties are defined by extremizing the integral

∫ b

a
f (x, y, y′) dx,

which is equivalent to the following condition:

(49)
∂ f

∂y
− d

dt

∂ f

∂y′ = 0.

Then he was looking for the unknown function f .
Differentiating (49) with respect to y′ and setting ∂2 f/∂p2 = z he obtained an equiva-

lent first-order partial differential equation

∂z

∂x
+ p

∂z

∂y
+ ϕ

∂z

∂y′ + ∂ϕ

∂y′ = 0.
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After integration of this equation he utilized the substitution of z and then expressed f in
the form:

(50)

f (x, y, p) = p
∫ p

A
�(ψ, σ).e− ∫

((∂ log ϕ)/∂p) dp dp −
∫ p

A
p�(ψ, σ).e− ∫

((∂ log ϕ)/∂p) dp dp

+ Bp + C,

where the arbitrary functions A, B, C depend on x and y.
He proceeded by searching the relations between the arbitrary functions and his final

solution is as follows:

Solution 3 A general solution of the equation (49) has the following expression:

(51)

f (x, y, p) = p
∫ p

A
�(ψ, σ).e− ∫

((∂ log ϕ)/∂p) dp dp

−
∫ p

A
p�(ψ, σ).e− ∫

((∂ log ϕ)/∂p) dp dp

+ ∂ f1

∂x
+ ∂ f1

∂y
p,

where A is the root of the equation

(52) �[φ(x, y, A), σ (x, y, A)] = 0,

or

(53) [�(ψ, σ)e− ∫
((∂ log ϕ)/∂p) dp]p=A = 0.

The equation (51) is the explicit formula for all (infinite) equivalent Lagrangians. The
φ, σ in the condition (52) are first integrals of the equation (48).

Even though there appeared a review in Jahrbuch über die Fortschritte der Mathematik
in 1886 (JFM 19.0359.01) and scientist in the western Europe could familiarize themselves
with this work, this did not turn up. This work laid nearly forgotten for the whole century.
Actually, Sonin’s biographer A.I. Kropotov also passed this question over, cf. [31].

At the beginning of 1980s the work of Sonin was quoted (according to the Science Cita-
tion Index, see http://wos.cesnet.cz/CIW.cgi) four times quoted and especially in the
review paper [5] there are some good historical remarks. Finally, in 1990s the Helmholtz–
Sonin mapping and form was introduced, but there is no connection between this form and
Sonin’s research.
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The Famous book of Gaston Darboux

In the considerable part of the papers on the inverse problem one can read that the begin-
ning of the multiplier problem is connected with the work [4] by Jean Gaston Darboux.
It is interesting that on the page 53, which is often quoted, Darboux wrote that he “only
reproduces the results of Beltrami and Dini.”

However, there is no exact quotation and it is not evident which work he meant. E.
Beltrami wrote more than 100 of papers in 1868–1894 and U. Dini about 30 paper in the
same time. The most of these papers are written in Italian and they are inaccesible in the
Czech republic. That is why this question remains unsolved.

Commentary of Arthur Hirsch

Hirsch discussed the multiplier problem in [11, § 7]. First he posed the problem for one even
order ordinary differential equation solved with respect to the highest derivative.

For the one second-order equation he reviewed the solution due to Darboux [4], for the
higher-order equations he stated the following solution:

Solution 4 Let F = M · (y(2n) + �(x, y, y′, . . . , y(2n−1))) = 0 be a differential equation
such that

∑
(−1)k dk

dxk

(
∂�2n−1

∂y(k)

)
= 0.

If δF is self-adjoint, then is F equivalent to some variational problem.

Some remarks to the following advancement

The interest in the self-adjoint theory grew up in the USA in the late 1920s and 1930. It led
to the composing of one of the most famous works on the inverse problem, the one written
by Jesse Douglas.

Douglas solved the problem for two second-order ODEs. By a sophisticated method he
proved that the multiplier does not exist in general.

Since 1970s the interest on the inverse problem has been renewed and intensified. This
is depicted in the cited works [21, 19]. For a more contemporary works on the multiplier
problem, see [2].

There were developed two main approaches. First, classical, operator approach utilized
property of adjointness mentioned in this thesis. A.L. Vanderbauwhede worked up the the-
ory in [26] and then, in [27], he derived a test for Fj (x, yi , y′

i · · · , y(n)
i ) to be variational

from (36) .
By the second approach, based on modern methods of differential geometry, the closed-

ness conditions for certain differential forms is studied. Among other important works let
me quote [2, 20, 23, 24, 25].
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It is not usual to provide the quotings, especially names of journals in the complete form.
In the 19th century the journals were often quoted according to the name of the managing
editor and that is why the full names are of special importance.
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Verhandlungen der königlich sächsischen Gesellschaft der Wissenschaften zu Leipzig,
Mathematisch-Physische Classe 48 (1896) 519–529.

[19] G. Morandi, C. Ferrario, G. Lo Vechio, G. Marmo and C. Rubano, The Inverse Prob-
lem in the Calculus of Variations and the Geometry of the tangent Bundle, Phys. Rep.
188 (1990) 147–284.

[20] P.J. Olver, Applications of Lie Groups to Differential Equations (Springer, New York,
1993).

[21] R.M. Santilli, Foundations of Theoretical Mechanics I. The Inverse Problem in New-
tonian Mechanics (Springer, New York, 1978).

[22] N.Y. Sonin, Ob opredlenij maximalnych i minimalnych svojstv ploskich krivich. War-
sawskye Universitetskye Izvestiya (1886) (1–2) 1–68.

[23] F. Takens, A global version of the inverse problem of the calculus of variations, J. Diff.
Geom. 14 (1979) 543–562.

[24] E. Tonti, Variational formulation of nonlinear differential equations I, II, Bulletin de la
Classe des Sciences, Académie royale de Belgique 55 (1969) (4) 137–165, 262–278.

27



[25] M.M. Vainberg, Variational Methods for the Study of Nonlinear Operators (Holden-
Day, San Francisco, 1964). Transl. from Russian (GITL, Moscow, 1959).

[26] A.L. Vanderbauwhede, Potential operators and the inverse problem of classical me-
chanics. Hadronic Journal 1 (1978) 1177–1197.

[27] A.L. Vanderbauwhede, Potential operators and variational principles. Hadronic Jour-
nal 2 (1979) 620–641.
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– Leçons sur la Théorie Générale des Surfaces III. (Gauthier–Villars, Paris, 1894).

Supplement 3 Hermann von Helmholtz:
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