Quantum Chemistry Seminar 9

Hartree-Fock method

Exercise 1 (Anila)

Simplify the Hartree-Fock equations for the helium atom supposing that $\varphi_1(\vec{r},\xi) = \varphi(\vec{r})\alpha(\xi)$ and $\varphi_2(\vec{r},\xi) = \varphi(\vec{r})\beta(\xi)$, where $\alpha(+1/2) = 1$, $\alpha(-1/2) = 0$, $\beta(+1/2) = 0$, and $\beta(-1/2) = 1$.

Exercise 2 (unassigned)

Show that the Slater determinants represent for functions $\varphi_k \ a \ \tilde{\varphi}_k$ (see lesson 9, page 6) physically equivalent wave functions.

Hint: Use formulas known from the linear algebra course:

- $|\det \mathbf{U}| = |\det \mathbf{U}^+| = 1 \iff \det \mathbf{U} = e^{i\alpha}$ for a complex-valued unitary matrix, or alternatively, $|\det \mathbf{Q}| = |\det \mathbf{Q}^T| = 1 \iff \det \mathbf{Q} = \pm 1$ for a real-valued orthogonal matrix,
- $det(\mathbf{A} \cdot \mathbf{B}) = det\mathbf{A} det\mathbf{B}$.