Quantum Chemistry Seminar 8

Born-Oppenheimer approximation

Exercise 1 (Anila)

Let's suppose that the atoms of a diatomic molecule interact via the Lennard-Jones potential, $W(r)=4 \varepsilon\left[(\sigma / r)^{12}-(\sigma / r)^{6}\right]$. Find the values of parameters ε a σ knowing that the equilibrium distance of the two atoms is $r_{\mathrm{e}}=1 \AA$ (Ångström) and their binding energy is $D_{\mathrm{e}} \equiv-W\left(r_{\mathrm{e}}\right)=1 \mathrm{eV}$ (electronvolt).

Exercise 2 (unassigned)

Calculate the Hessian matrix of a diatomic molecule, the atoms of which interact via a potential $W(r)$, in its equilibrium geometry, $\vec{r}_{1}=[0,0,0]$ a $\vec{r}_{2}=\left[0,0, r_{\mathrm{e}}\right]$, and show that the matrix has five zero eigenvalues and one which is non-zero.

