Quantum Chemistry Seminar 4

Many-particle systems

Exercise 1 (Anila)

Show that the state vectors of the two-electron spin, $|\uparrow\rangle|\uparrow\rangle,|\uparrow\rangle|\downarrow\rangle,|\downarrow\rangle|\uparrow\rangle$ a $|\downarrow\rangle|\downarrow\rangle$, are eigenvectors of the z-component of the total spin of the system, $\hat{S}_{z}=\hat{S}_{1 z} \otimes \hat{1}+\hat{1} \otimes \hat{S}_{2 z}$, where $\hat{1}$ is the unity operator on the one-electron spin space. (Hint: $\left(\hat{S}_{1 z} \otimes \hat{1}\right)|x\rangle|y\rangle=\hat{S}_{1 z}|x\rangle \hat{1}|y\rangle$ a $\left(\hat{1} \otimes \hat{S}_{2 z}\right)|x\rangle|y\rangle=\hat{1}|x\rangle \hat{S}_{2 z}|y\rangle$.)

```
Exercise 2 (unassigned)
Using the symmetrization / antisymmetrization operators (lesson 4, page 10), symmetrize / antisymmetrize vectors of
the following basis set on the spin Hilbert space of two electrons: | \\rangle| \uparrow\rangle, | \uparrow\rangle| |\rangle,| |\rangle| \uparrow\rangle a | \downarrow\rangle| \downarrow\rangle. Find
normalization constants of the resulting wave functions supposing that \langle\uparrow |\uparrow\rangle=\langle\downarrow|\downarrow\rangle=1 and \langle\uparrow|\downarrow\rangle=0.
```


Exercise 3 (Shaho)

Show that the Slater determinant of two particles is normalized if the one-particle wave functions it consists of are orthonormal.

