Quantum Chemistry Seminar 3

Hydrogen atom

Exercise 1 (unassigned)

Derive the form of the classical Hamilton function for the hydrogen atom in the center-of-mass (CMS) system.
(Hint: Find the CMS form of the Lagrange function, $L\left(\vec{r}_{\mathrm{p}}, \vec{r}_{\mathrm{e}}, \overrightarrow{\mathrm{r}}_{\mathrm{p}}, \overrightarrow{\vec{r}}_{\mathrm{e}}\right)=\frac{1}{2} m_{\mathrm{p}} \dot{\vec{r}}_{\mathrm{p}}^{2}+\frac{1}{2} m_{\mathrm{e}} \dot{\vec{r}}_{\mathrm{e}}^{2}-\left(-\frac{e^{2}}{4 \pi \varepsilon_{0}} \frac{1}{\vec{r}_{\mathrm{p}}}-\vec{r}_{\mathrm{e}} \|\right)$, first, and then transform it to the Hamilton function.)

Exercise 2 (unassigned)

Prove the following commutation relations, $\left[\Delta, \widehat{L}^{2}\right]=0,\left[\Delta, \hat{L}_{z}\right]=0$. (Hint: Use the operators expressed in the spherical coordinates; see lesson 2, page 5, and lesson 3, page 8.)

Exercise 3 (unassigned)

Derive the „boundary" condition $\int_{0}^{+\infty} r^{2} R_{k l}^{2}(r) \mathrm{d} r<+\infty$ by supposing that $\int_{0}^{\pi} \int_{0}^{2 \pi}\left|Y_{l m}(\theta, \phi)\right|^{2} \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi=1$.

Exercise 4 (Anila)

Derive the equation for $\chi_{k l}(r)$ (lesson 3, page 11) from related equation obtained for $R_{k l}(r)$ (lesson 3, page 10).

Exercise 5 (Shamal)

Write down the formulas (without normalization constants) for $\Psi_{n l m}(r, \theta, \phi)$ for $n=1,2$ and 3 (lesson3, page 13).

