Quantum Chemistry Seminar 2

Angular momentum and spin

Exercise 1 (Anila)

Calculate $\hat{s}^{2}=s_{x}^{2}+s_{y}^{2}+s_{z}^{2}$, where $\hat{s}_{x}=\left[\begin{array}{cc}0 & 1 / 2 \\ 1 / 2 & 0\end{array}\right], \hat{s}_{y}=\left[\begin{array}{cc}0 & -i / 2 \\ i / 2 & 0\end{array}\right], \hat{s}_{z}=\left[\begin{array}{cc}1 / 2 & 0 \\ 0 & -1 / 2\end{array}\right]$, and show that \hat{s}^{2} commutes with any of the three matrices \hat{s}_{x}, \hat{s}_{y}, and \hat{s}_{z}.

Exercise 2 (unassigned)

Show the validity of commutation relations for \hat{s}_{x}, \hat{s}_{y}, and \hat{s}_{z}.

