Quantum Chemistry Seminar 1

Basics of Quantum Theory

Exercise 1 (Shamal)

Find all the complex numbers c so that function $\varphi(x) = ce^{-x^2/2}$ be normalized (to unity).

Calculate the mean values of the position and linear momentum of a particle confined to the x-axis in the (quantum) state given by function $\varphi(x)$.

Exercise 2 (Shaho)

Evaluate the commutator of position and momentum operators of a particle confined to a line, $\hat{X} = x$ and $\hat{P} = -i\hbar \frac{d}{dx}$, and derive the Heisenberg uncertainty relations by inserting the $[\hat{X}, \hat{P}]$ to the general uncertainty relations given in lesson 1.

(*Hint:* Apply the commutator to a general function, f(x), and use the rule for derivatives of function products.)