Quantum Chemistry Seminar 1

Basics of Quantum Theory

Exercise 1 (Shamal)

Find all the complex numbers c so that function $\varphi(x)=c e^{-x^{2} / 2}$ be normalized (to unity).
Calculate the mean values of the position and linear momentum of a particle confined to the x-axis in the (quantum) state given by function $\varphi(x)$.

Exercise 2 (Shaho)

Evaluate the commutator of position and momentum operators of a particle confined to a line, $\widehat{\mathrm{X}}=x$ and $\widehat{\mathrm{P}}=-i \hbar \frac{\mathrm{~d}}{\mathrm{~d} x^{\prime}}$ and derive the Heisenberg uncertainty relations by inserting the $[\widehat{x}, \widehat{\mathrm{P}}]$ to the general uncertainty relations given in lesson 1.
(Hint: Apply the commutator to a general function, $f(x)$, and use the rule for derivatives of function products.)

