Approximate methods I Variational method

Quantum Chemistry

Lesson 5

- 1. Ritz variational method and its use in QC
- 2. Variational Monte Carlo methods
- 3. Diffusion Monte Carlo methods

Ritz variational principle

$$\widehat{H}|\varphi_k\rangle = E_k|\varphi_k\rangle \quad (E_0 < E_1 < \dots) \quad \Rightarrow E_0 = \min_{\|\psi\|=1} \langle \psi|\widehat{H}|\psi\rangle = \min_{\psi \in \mathcal{H} \setminus \{0\}} \frac{\langle \psi|\widehat{H}|\psi\rangle}{\langle \psi|\psi\rangle}$$

<u>"Proof"</u> (purely discrete, non-degenerate energy spectrum)

- $|\psi\rangle = \sum_{k=0}^{+\infty} c_k |\varphi_k\rangle$, $\langle \psi |\psi \rangle = \sum_{k=0}^{+\infty} |c_k|^2 = 1$
- $|c_0|^2 = 1 \sum_{k=1}^{+\infty} |c_k|^2$
- $\langle \psi | \hat{H} | \psi \rangle = \sum_{k=0}^{+\infty} E_k |c_k|^2 = E_0 |c_0|^2 + \sum_{k=1}^{+\infty} E_k |c_k|^2 = E_0 + \sum_{k=1}^{+\infty} (E_k E_0) |c_k|^2$
 - $\langle \psi | \hat{H} | \psi \rangle \ge E_0$
 - $\langle \psi | \hat{H} | \psi \rangle = E_0 \Leftrightarrow c_1 = c_2 = \cdots = 0$

Application in QC

- energy functional (normalized wave functions!)
 - $\mathcal{E}(\psi) \equiv \langle \psi | \hat{H} | \psi \rangle = \int \psi^* (1, 2, ..., N) \hat{H} \psi (1, 2, ..., N) d1 d2 ... dN$
 - "function" of functions (= functions of infinitely many variables, countably many on separable Hilbert spaces)
- constrained extreme / minimum
 - constraint: $\langle \psi | \psi \rangle = 1$
- approximations?
 - no approximations up to now, but ...
 - the red-highlighted variational problem is not in general solvable (either analytically or numerically) → approximations are needed

Application in QC

- approximations
 - $|\psi\rangle = |\psi(a_1, \dots, a_n)\rangle$, neboli $\psi = \psi(1, 2, \dots, N; a_1, \dots, a_n)$
 - a function of a given form with a finite number of adjustable parameters
 - $\mathcal{E}(\psi) \rightarrow E(a_1, ..., a_n)$, a function of finitely many variables
 - a non-linear optimization problem (the numerical mathematics provide a plethora of efficient methods)
 - for example, $|\psi
 angle = \sum_{k=1}^n c_k |\phi_k
 angle$
 - $\langle \psi | \hat{H} | \psi \rangle = \sum_{j,k=1}^{n} c_j^* c_k H_{jk}$, kde $H_{jk} = \langle \phi_j | \hat{H} | \phi_k \rangle$
 - $\sum_{j,k=1}^{n} c_j^* c_k S_{jk} = 1$, kde $S_{jk} = \langle \phi_j | \phi_k \rangle$
 - quadratic programming methods

Application in QC – technical issues

- evaluation of $\langle \psi | \widehat{H} | \psi \rangle$
 - multidimensional integral: $\int \psi^*(\mathbf{x}) \widehat{H} \psi(\mathbf{x}) \, d\mathbf{x} = \int |\psi(\mathbf{x})|^2 \frac{\widehat{H} \psi(\mathbf{x})}{\psi(\mathbf{x})} \, d\mathbf{x} \equiv \int |\psi(\mathbf{x})|^2 E_{\text{lok}}(\mathbf{x}) \, d\mathbf{x}$ which ...
 - has to be calculated numerically (approximations)
- optimization of functions of many variables, $E(a_1, ..., a_n)$
 - various (approximate) methods
 - local (gradient-based)
 - global (stochastic)
 - Monte Carlo methods (simulated annealing)
 - evolutionary (genetic) algorithms
 - swarm algorithms
 - ...
- computational costs
 - powerful computers are needed

Variational Monte Carlo methods

Monte Carlo methods

- a class of stochastic methods for calculating multi-dimensional integrals $\int p(\mathbf{x}) f(\mathbf{x}) d\mathbf{x}$, $p(\mathbf{x}) \ge 0$
 - *Markov chains* corresponding to (probability) distribution function $p(\mathbf{x})$, $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, ..., \mathbf{x}_M\}$, $\mathcal{M} \to +\infty$
 - e.g., Metropolis algorithm
 - ansatz \mathbf{x}_1 (arbitrary)
 - change proposal from step ℓ to step $\ell + 1$:
 - $\mathbf{x}_{\ell} \rightarrow \mathbf{x}_{new} = \mathbf{x}_{\ell} + \Delta \mathbf{x}$
 - accepted with probability $p(\mathbf{x}_{\text{new}})/p(\mathbf{x}_{\ell})$, $\mathbf{x}_{\ell+1} = \mathbf{x}_{\text{new}}$
 - otherwise rejected, $\mathbf{x}_{\ell+1} = \mathbf{x}_{\ell}$
 - $\int p(\mathbf{x}) f(\mathbf{x}) d\mathbf{x} \approx \frac{1}{\mathcal{M}} \sum_{\ell=1}^{\mathcal{M}} f(\mathbf{x}_{\ell})$

Variational Monte Carlo method

• the MC (Metropolis) algorithm applied to the calculation of $\int |\psi(\mathbf{x})|^2 E_{\text{lok}}(\mathbf{x}) d\mathbf{x} \approx \frac{1}{M} \sum_{\ell=1}^{M} E_{\text{lok}}(\mathbf{x}_{\ell})$

Variational Monte Carlo methods

Pros

• a general form of function $\psi(\mathbf{x})$

Technical issues

- stochastic methods \rightarrow statistical uncertainties
- convergence issues at the end of optimization iterations (and/or gradient-based methods)

Another issue

• particular form of $\psi(\mathbf{x})$ (physics-based arguments, experience, ...)

Diffusion Monte Carlo methods

Idea

- time-dependent Schrödinger equation with imaginary time
 - $\widehat{H}|\psi(t)\rangle = i\hbar \frac{\partial|\psi(t)\rangle}{\partial t} \rightarrow \widehat{H}|\psi(\tau)\rangle = -\hbar \frac{\partial|\psi(\tau)\rangle}{\partial \tau} \quad (\tau = it)$
 - $|\psi\rangle = \sum_{k=0}^{+\infty} c_k(\tau) |\varphi_k\rangle, \quad \widehat{H} |\varphi_k\rangle = E_k |\varphi_k\rangle, \quad E_0 < E_1 < \dots$

•
$$c_k(\tau) = c_{k0}e^{-\frac{E_k}{\hbar}}$$

•
$$|\psi(\tau)\rangle = \sum_{k=0}^{+\infty} c_{k0} e^{-\frac{E_k}{\hbar}\tau} |\varphi_k\rangle = e^{-\frac{E_0}{\hbar}\tau} \left(c_{00} |\varphi_0\rangle + \sum_{k=1}^{+\infty} c_{k0} e^{-\frac{E_k - E_0}{\hbar}\tau} |\varphi_k\rangle \right) \longrightarrow c_{00} e^{-\frac{E_0}{\hbar}\tau} |\varphi_0\rangle$$

• and its similarity to the diffusion equation (with chemical reactions)

•
$$-\frac{\hbar^2}{2m}\Delta\psi + V\psi = i\hbar\frac{\partial\psi}{\partial t} \rightarrow -\frac{\hbar^2}{2m}\Delta\psi + V\psi = -\hbar\frac{\partial\psi}{\partial t} \rightarrow \frac{\hbar}{2m}\Delta\psi - \frac{V}{\hbar}\psi = \frac{\partial\psi}{\partial\tau}$$

• particle density: $c = \psi$

• diffusion:
$$D = \frac{\hbar}{2m}$$

• first-order chemical reaction: $k = -\frac{v}{\hbar}$

Diffusion Monte Carlo methods

Implementation

- points randomly distributed in a domain of the system configuration space (\mathbb{R}^{3N}), walkers
- repeated iterations (over all the walkers included)
 - diffusion in the configuration space
 - creation / disappearance of walkers
 - periodical adjustment of the number of walkers (a much longer period)
- in the limit of infinitely many iterations, the population of walkers will be distributed in the configuration space with a density proportional to φ_0 (ground-state wave function)
- the ground-state energy is obtained, e.g., from the time dependence of the number of walkers (between the adjustment steps): $N \sim e^{-\frac{E_0}{\hbar}\tau}$

Diffusion Monte Carlo methods

Pros

- no à priori assumption concerning the wave function form (\rightarrow highly accurate calculations)
- easily parallelized (appropriate for supercomputers)

Contras

- stochastic methods \rightarrow statistical uncertainties
- systematic errors (biases):
 - finite (imaginary) time ($\tau \rightarrow \infty$ is needed)
 - finite (non-zero) time step ($\Delta \tau \rightarrow 0$ is needed)
 - approximations used in the simultaneous inclusion of the diffusive motion of walkers and the chemical reaction
- ground-state wave function must be real valued and must not change its sign (walkers density)
 - works well for bosons (as well as for distinguishable particles)
 - but not for fermions, specific "tricks" are to be employed (and other approximations are to be used)
- resulting wave function is given by the (final) population of walkers (no analytic formula is available) ...
- who are distributed in the configuration space with a density $\sim \varphi_0 \, \ldots$
- but, for calculations one needs φ_0^2 (or an analytic formula of φ_0)

The end of lesson 5.