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Ritz variational method

Ritz variational principle

෡𝐻 ۧ|𝜑𝑘 = ۧ𝐸𝑘|𝜑𝑘 𝐸0 < 𝐸1 < … ⇒ 𝐸0 = min
𝜓 =1

𝜓 ෡𝐻 𝜓 = min
𝜓∈ℋ\{0}

𝜓 ෡𝐻 𝜓

𝜓 𝜓

“Proof” (purely discrete, non-degenerate energy spectrum)

• ۧ|𝜓 = σ𝑘=0
+∞ ۧ𝑐𝑘|𝜑𝑘 ,    𝜓 𝜓 = σ𝑘=0

+∞ |𝑐𝑘|
2 = 1

• |𝑐0|
2 = 1 − σ𝑘=1

+∞ |𝑐𝑘|
2

• 𝜓 ෡𝐻 𝜓 = σ𝑘=0
+∞ 𝐸𝑘|𝑐𝑘|

2 = 𝐸0|𝑐0|
2 + σ𝑘=1

+∞ 𝐸𝑘|𝑐𝑘|
2 = 𝐸0 + σ𝑘=1

+∞ 𝐸𝑘 − 𝐸0 |𝑐𝑘|
2

• 𝜓 ෡𝐻 𝜓 ≥ 𝐸0

• 𝜓 ෡𝐻 𝜓 = 𝐸0 ⇔ 𝑐1 = 𝑐2 = ⋯ = 0

[wiki, wiki]

https://en.wikipedia.org/wiki/Ritz_method
https://en.wikipedia.org/wiki/Variational_method_(quantum_mechanics)


Ritz variational method

Application in QC

• energy functional (normalized wave functions!)

• ℰ 𝜓 ≡ 𝜓 ෡𝐻 𝜓 = ∗𝜓׬ 1,2, … ,𝑁 ෡𝐻𝜓 1,2,… , 𝑁 d1d2…d𝑁

• „function“ of functions (= functions of infinitely many variables, countably many on separable Hilbert spaces)

• constrained extreme / minimum
• constraint: 𝜓 𝜓 = 1

• approximations?
• no approximations up to now, but ...

• the red-highlighted variational problem is not in general solvable (either analytically or numerically) →
approximations are needed



Ritz variational method

Application in QC

• approximations

• ۧ|𝜓 = ۧ|𝜓(𝑎1, … , 𝑎𝑛) , neboli 𝜓 = 𝜓 1,2,… ,𝑁; 𝑎1, … , 𝑎𝑛
• a function of a given form with a finite number of adjustable parameters

• ℰ 𝜓 → 𝐸 𝑎1, … , 𝑎𝑛 , a function of finitely many variables

• a non-linear optimization problem (the numerical mathematics provide a plethora of efficient methods)

• for example, ۧ|𝜓 = σ𝑘=1
𝑛 ۧ𝑐𝑘|𝜙𝑘

• 𝜓 ෡𝐻 𝜓 = σ𝑗,𝑘=1
𝑛 𝑐𝑗

∗𝑐𝑘𝐻𝑗𝑘, kde 𝐻𝑗𝑘 = 𝜙𝑗 ෡𝐻 𝜙𝑘

• σ𝑗,𝑘=1
𝑛 𝑐𝑗

∗𝑐𝑘𝑆𝑗𝑘 = 1, kde 𝑆𝑗𝑘 = 𝜙𝑗 𝜙𝑘

• quadratic programming methods



Ritz variational method

Application in QC – technical issues

• evaluation of 𝜓 ෡𝐻 𝜓

• multidimensional integral: ׬𝜓∗(𝐱) ෡𝐻𝜓(𝐱) d𝐱 = ׬ |𝜓(𝐱)|2
෡𝐻𝜓(𝐱)

𝜓(𝐱)
d𝐱 ≡ ׬ |𝜓(𝐱)|2𝐸lok(𝐱)d𝐱 which ...

• has to be calculated numerically (approximations)

• optimization of functions of many variables, 𝐸 𝑎1, … , 𝑎𝑛
• various (approximate) methods

• local (gradient-based)

• global (stochastic)

• Monte Carlo methods (simulated annealing)

• evolutionary (genetic) algorithms

• swarm algorithms

• ...

• computational costs
• powerful computers are needed



Variational Monte Carlo methods

Monte Carlo methods

• a class of stochastic methods for calculating multi-dimensional integrals 𝑝׬ 𝐱 𝑓(𝐱)d𝐱, 𝑝 𝐱 ≥ 0

• Markov chains corresponding to (probability) distribution function 𝑝 𝐱 , 𝐱1, 𝐱2, 𝐱3, … , 𝐱ℳ , ℳ → +∞

• e.g., Metropolis algorithm

• ansatz 𝐱1 (arbitrary)

• change proposal from step ℓ to step ℓ + 1 :

• 𝐱ℓ → 𝐱new = 𝐱ℓ + Δ𝐱

• accepted with probability 𝑝 𝐱new /𝑝 𝐱ℓ , 𝐱ℓ+1 = 𝐱new

• otherwise rejected, 𝐱ℓ+1 = 𝐱ℓ

• ׬ 𝑝 𝐱 𝑓(𝐱)d𝐱 ≈
1

ℳ
σℓ=1
ℳ 𝑓(𝐱ℓ)

Variational Monte Carlo method

• the MC (Metropolis) algorithm applied to the calculation of ׬ |𝜓(𝐱)|2𝐸lok(𝐱)d𝐱 ≈
1

ℳ
σℓ=1
ℳ 𝐸lok(𝐱ℓ)

NIC Series Vol. 10, chapter Monte Carlo Methods: Overview and Basics (page 1) and subchapter Variational Quantum Monte Carlo (page 28)

https://juser.fz-juelich.de/record/24560/files/NIC-Band-10.pdf


Variational Monte Carlo methods

Pros

• a general form of function 𝜓(𝐱)

Technical issues

• stochastic methods statistical uncertainties

• convergence issues at the end of optimization iterations (and/or gradient-based methods)

Another issue

• particular form of 𝜓 𝐱 (physics-based arguments, experience, ...)



Diffusion Monte Carlo methods

Idea

• time-dependent Schrödinger equation with imaginary time

• ෡𝐻 ۧ|𝜓(𝑡) = 𝑖ℏ
𝜕 ۧ|𝜓(𝑡)

𝜕𝑡
→ ෡𝐻 ۧ|𝜓(𝜏) = −ℏ

𝜕 ۧ|𝜓(𝜏)

𝜕𝜏
(𝜏 = 𝑖𝑡)

• ۧ|𝜓 = σ𝑘=0
+∞ ۧ𝑐𝑘(𝜏)|𝜑𝑘 ,    ෡𝐻 ۧ|𝜑𝑘 = ۧ𝐸𝑘|𝜑𝑘 ,    𝐸0 < 𝐸1 < …

• 𝑐𝑘 𝜏 = 𝑐𝑘0𝑒
−
𝐸𝑘
ℏ
𝜏

• ۧ|𝜓(𝜏) = σ𝑘=0
+∞ 𝑐𝑘0𝑒

−
𝐸𝑘
ℏ
𝜏 ۧ|𝜑𝑘 = 𝑒−

𝐸0
ℏ
𝜏 𝑐00 ۧ|𝜑0 + σ𝑘=1

+∞ 𝑐𝑘0𝑒
−
𝐸𝑘−𝐸0

ℏ
𝜏 ۧ|𝜑𝑘 ⟶ 𝑐00𝑒

−
𝐸0
ℏ
𝜏 ۧ|𝜑0

• and its similarity to the diffusion equation (with chemical reactions)

• −
ℏ2

2𝑚
Δ𝜓 + 𝑉𝜓 = 𝑖ℏ

𝜕𝜓

𝜕𝑡
→ −

ℏ2

2𝑚
Δ𝜓 + 𝑉𝜓 = −ℏ

𝜕𝜓

𝜕𝑡
→

ℏ

2𝑚
Δ𝜓 −

𝑉

ℏ
𝜓 =

𝜕𝜓

𝜕𝜏

• particle density: 𝑐 = 𝜓

• diffusion: 𝐷 =
ℏ

2𝑚

• first-order chemical reaction: 𝑘 = −
𝑉

ℏ

NIC Series Vol. 10, selected parts of chapter Diffusion and Green’s Function Quantum Monte Carlo Methods, Diffusion Quantum Monte Carlo (page 29) in particular

https://juser.fz-juelich.de/record/24560/files/NIC-Band-10.pdf


Diffusion Monte Carlo methods

Implementation

• points randomly distributed in a domain of the system configuration space (ℝ3𝑁), walkers

• repeated iterations (over all the walkers included)
• diffusion in the configuration space

• creation / disappearance of walkers

• periodical adjustment of the number of walkers (a much longer period)

• in the limit of infinitely many iterations, the population of walkers will be distributed in the 
configuration space with a density proportional to 𝜑0 (ground-state wave function)

• the ground-state energy is obtained, e.g., from the time dependence of the number of 

walkers (between the adjustment steps): 𝑁~𝑒−
𝐸0
ℏ
𝜏



Diffusion Monte Carlo methods

Pros
• no à priori assumption concerning the wave function form (→highly accurate calculations)

• easily parallelized (appropriate for supercomputers)

Contras

• stochastic methods statistical uncertainties

• systematic errors (biases):
• finite (imaginary) time (𝜏 → ∞ is needed)

• finite (non-zero) time step (Δ𝜏 → 0 is needed)

• approximations used in the simultaneous inclusion of the diffusive motion of walkers and the chemical reaction

• ground-state wave function must be real valued and must not change its sign (walkers density)
• works well for bosons (as well as for distinguishable particles)

• but not for fermions, specific “tricks” are to be employed (and other approximations are to be used)

• resulting wave function is given by the (final) population of walkers (no analytic formula is available) ...

• who are distributed in the configuration space with a density ~𝜑0 …

• but, for calculations one needs 𝜑0
2 (or an analytic formula of 𝜑0)



The end of lesson 5.


