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Ritz variational method

Ritz variational principle

H|pi) = Exlp) (Eq <Ep < ..) =Ey= %121<1/)|H|1/)>

“Proof”
W) = Xr2ocklow), (Wlw) = XElel® =1
col? =1 — XE2 |exe|?
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(W|H|p) = Eq
(W|HY)=Eyoci=c;==0

[wiki, wiki]



https://en.wikipedia.org/wiki/Ritz_method
https://en.wikipedia.org/wiki/Variational_method_(quantum_mechanics)

Ritz variational method

Application in QC

* energy functional

- £@) = (Y|A[Y) = [ 1,2, .., NHP(L,2, ..., N)d1d2 ...dN
e function” of functions

e constrained extreme / minimum
* constraint: (Y|yY) =1

* approximations?
* no approximations up to now, but ...

* the red-highlighted variational problem is not in general solvable (either analytically or numerically) —
approximations are needed



Ritz variational method

Application in QC

* approximations

* |Y)=|yY(ay,..,a,)), neboliy =¢(1,2,...,N; a4, ..., an)
* afunction of a given form with a finite number of adjustable parameters
- E@W) - E(ay, ..., ay), a function of finitely many variables

a non-linear optimization problem (the numerical mathematics provide a plethora of efficient methods)

* forexample, [) = Y_1Ck|P)
* (Y[H[Y) = k=1 ¢ il kde Hye = (¢|H| i)
* XTie1 ¢S = 1, kde Sj = (5]
* quadratic programming methods



Ritz variational method

Application in QC — technical issues

« evaluation of (y|H|y)

* multidimensional integral: [ ¥*(x)Hy(x) dx = [ |¢(X)|2%dx = [ |Y(X)|?Ejok (X)dx which ...
* has to be calculated numerically

e optimization of functions of many variables,
* various methods

local (gradient-based)
global (stochastic)

Monte Carlo methods (simulated annealing)
evolutionary (genetic) algorithms
swarm algorithms

* computational costs
* powerful computers are needed



Variational Monte Carlo methods

Monte Carlo methods

* a class of stochastic methods for calculating multi-dimensional integrals [ p(x)f(x)dx, p(x) = 0

* Markov chains corresponding to (probability) distribution function p(x), {X1,X5,X3, ..., X3}, M = 400
* e.g., Metropolis algorithm
ansatz x; (arbitrary)
e change proposal from step £ tostep?+1:

Xy = Xpew = Xp + AX
accepted with probability p(Xpew)/P(X¢), Xp41 = Xnew
otherwise rejected, X,.1 = Xy

¢ [pGOf ()X ~ - %7L, £ (xe)

Variational Monte Carlo method

 the MC (Metropolis) algorithm applied to the calculation of [ |/(x)|%E}ok(X)dx =~ %Z?ﬁlElok(x{))

NIC Series Vol. 10, chapter Monte Carlo Methods: Overview and Basics (page 1) and subchapter Variational Quantum Monte Carlo (page 28)



https://juser.fz-juelich.de/record/24560/files/NIC-Band-10.pdf

Variational Monte Carlo methods

Pros

* ageneral form of function ¥ (x)

Technical issues
e stochastic methods — statistical uncertainties

* convergence issues at the end of optimization iterations (and/or gradient-based methods)

Another issue

e particular form of Y (x) (physics-based arguments, experience, ...)



Diffusion Monte Carlo methods

Idea

* time-dependent Schrodinger equation with imaginary time
¢ Hppo) = in222 S Ao = —p LD

ot
oY) =255k (lok), Hlox) = Exlor), E¢ <E; < ..
Ex
* (1) = cpoe "
+ oo —E_kT —@T ( + oo —Ek_EOT ) —@T
* Y1) = Xr2oCkoe " |@r) =e 1 \Cool®o) + Xr=1Ckoe " |Pr)) — cooe 7 |@o)

* and its similarity to the diffusion equation (with chemical reactions)
. _ ipo¥ _n _ _pov oy Yy =9
2mAl/j+V1/)_lh6t - ZmAl/)-I_Vl/J_ hat - ZmAlp hl/)_ar

* particle density: c = Y
. diffusion: D = ——

2m

) ) ) 14
* first-order chemical reaction: k = -

NIC Series Vol. 10, selected parts of chapter Diffusion and Green’s Function Quantum Monte Carlo Methods, Diffusion Quantum Monte Carlo (page 29) in particular



https://juser.fz-juelich.de/record/24560/files/NIC-Band-10.pdf

Diffusion Monte Carlo methods

Implementation
* points randomly distributed in a domain of the system configuration space (R3"), walkers
* repeated iterations (over all the walkers included)
 diffusion in the configuration space

» creation / disappearance of walkers
* periodical adjustment of the number of walkers (a much longer period)

* in the limit of infinitely many iterations, the population of walkers will be distributed in the
configuration space with a density proportional to ¢, (ground-state wave function)

* the ground-state energy is obtained, e.g., from the time dependence of the number of

walkers :N~e 't



Diffusion Monte Carlo methods

Pros
* no a priori assumption concerning the wave function form (—highly accurate calculations)
» easily parallelized (appropriate for supercomputers)

Contras

e stochastic methods — statistical uncertainties

systematic errors (biases):

* finite (imaginary) time

* finite (non-zero) time step

* approximations used in the simultaneous inclusion of the diffusive motion of walkers and the chemical reaction
* ground-state wave function must be real valued and must not change its sign

* works well for bosons
* but not for fermions, specific “tricks” are to be employed

* resulting wave function is given by the (final) population of walkers (no analytic formula is available) ...
* who are distributed in the configuration space with a density ~¢, ...

* but, for calculations one needs @3 (or an analytic formula of @)



The end of lesson 5.



