Basics of Quantum Theory

Quantum Chemistry

Lesson 1

Contents

- 1. Quantum theory, quantum mechanics, quantum field thoery
- 2. State, state space, wave function
- 3. Dynamic observables, operators
- 4. Hamilton operator, Schrödinger equation(s)
- 5. Quantum chemistry

Quantum theory, ...

Quantum theory

• mathematical framework for the description of phenomena beyond the classical physics domain (microscopic, not only)

Quantum mechanics

 quantum theory applied to systems with a finite number of degrees of freedom (= finite and constant number of particles)

Quantum field theory

 quantum theory applied to systems with an infinite number of degrees of freedom (= finite to infinite number of particles, not constant)

Quantum theory, ...

Quantum theory

• mathematical framework for the description of phenomena beyond the classical physics domain (microscopic, not only)

Quantum mechanics

 quantum theory applied to systems with a finite number of degrees of freedom (= finite and constant number of particles)

Quantum field theory

 quantum theory applied to systems with an infinite number of degrees of freedom (= finite to infinite number of particles, not constant)

State

- a complete info about the system under study (= initial condition for equations of motion)
 - compatible / incompatible observables
 - complete set of compatible observables
 - measurement outputs $\rightarrow |a_k, a_l, ... \rangle \subset \mathcal{H}$ (orthonormal basis set in \mathcal{H})
 - in fact a linear span of $|a_k, a_l, ... \rangle$, 1D subspace

State space

- \mathcal{H} , a set of all possible states
- a separable Hilbert space

Separable Hilbert spaces

- Hilbert space
 - linear vector space: x+y, cx
 - complex valued
 - scalar (dot) product (**x**.**y** → *c*, **x**.**x** → Euclidean norm)
 - complete (all the Cauchy sequences do converge)
- basis
 - $\mathbf{x} = \sum_{\alpha} c_{\alpha} \mathbf{e}_{\alpha}$ (an infinite / or even uncountable set of \mathbf{e}_{α} , but always a finite sum)
 - orthonormal basis (\mathbf{e}_{α} . $\mathbf{e}_{\beta} = \delta_{\alpha\beta}$)
- separable
 - $\mathbf{x} = \sum_{k=1}^{+\infty} c_k \mathbf{e}_k$ (countable Schauder basis)
- all the separable Hilbert spaces are both algebraically and topologically equivalent
 - Dirac's abstract Hilbert state space
 - representations (*X*, *P*, ...)

Bra-ket formalism (Dirac)

- ket and bra vectors
 - $\mathbf{x} \rightarrow |x\rangle$
 - $\mathbf{x}^* \to \langle x |$
- scalar product
 - $\mathbf{x}.\mathbf{y} \to \langle x | y \rangle$

L_2 spaces on \mathbb{R}^n

- square-integrable functions
 - $\varphi \colon \mathbb{R}^n \to \mathbb{C}$
 - $\int_{\mathbb{R}^n} |\varphi(\mathbf{x})|^2 \mathrm{d}^n \mathbf{x} < +\infty$
- $L_2(\mathbb{R}^n)$ spaces are separable Hilbert spaces
 - $|\varphi\rangle = \varphi \colon \mathbb{R}^n \to \mathbb{C}$
 - $\langle \psi | \varphi \rangle = \int_{\mathbb{R}^n} \psi^*(\mathbf{x}) \varphi(\mathbf{x}) \mathrm{d}^n \mathbf{x}$
 - X-representations of the abstract Hilbert state space
- physical point of view
 - wave functions (why?)
 - n = 3N, where N is the number of particles (n = 3, 6, 9, ...)
 - wave function meaning: $\int_{\mathbb{R}^n} |\varphi(\mathbf{x})|^2 d^n \mathbf{x} = \langle \varphi | \varphi \rangle = 1 \implies |\varphi(\mathbf{x})|^2$ is the *probability density* of ...
 - only the absolute value (module) of φ is measurable (physically relevant), not its argument (phase)

[<u>wiki]</u> [<u>wiki</u>]

Observables, operators

classical point of view

- measurable quantities (**r**, **p**, E_k , E_p , \vec{L} , ...)
- importantly (!), $A = A(\mathbf{r}, \mathbf{p})$

quantum point of view

- self-adjoint operators (\hat{A}): $\hat{A} = \hat{A}^+$, specifically $\langle \psi | \hat{A} \varphi \rangle = \langle \hat{A} \psi | \varphi \rangle$
- measurable / allowed values of A = spectrum (eigenvalues) of $\hat{A}: \hat{A}|a\rangle = a|a\rangle$
 - $a \in \mathbb{R}$ (always!)
 - the discrete part and continuous part of a spectrum
 - the mean value of A in state $|\varphi\rangle$: if $\langle \varphi | \varphi \rangle = 1$ then $\bar{a} = \langle \varphi | \hat{A} | \varphi \rangle$
- correspondence principle (Dirac)
 - $A = f(B, C) \Rightarrow \hat{A} = f(\hat{B}, \hat{C})$
 - $\widehat{\mathbf{X}} = \mathbf{r} \wedge \widehat{\mathbf{P}} = -i\hbar \nabla \wedge A = A(\mathbf{r}, \mathbf{p}) \Rightarrow \widehat{A} = A(\mathbf{r}, -i\hbar \nabla)$

Observables, operators

Compatible / incompatible observables

- commutator: $[\hat{A}, \hat{B}] = \hat{A}\hat{B} \hat{B}\hat{A}$
- uncertainty relations: $\Delta a \Delta b \ge 1/2 |\langle \varphi | [\hat{A}, \hat{B}] | \varphi \rangle| (\langle \varphi | \varphi \rangle = 1)$
 - specifically, the Heisenberg uncertainty relations for \hat{X} and \hat{P}
 - see also <u>Annex 1</u>
- compatibility of observables
 - commuting operators \rightarrow compatible observables
 - non-commuting operators → incompatible observables

Hamilton operator

Classical Hamilton function (a single particle)

• $H(\vec{p}, \vec{r}) = \frac{\vec{p}^2}{2m} + V(\vec{r})$

- the overall / total energy of the system
- a sum of the (classical) kinetic energy and potential energy

Quantum Hamilton operator (a single particle, X-representation)

•
$$\widehat{H} = \frac{(-i\hbar\nabla)^2}{2m} + V(\overrightarrow{r}) = -\frac{\hbar^2}{2m}\Delta + V(\overrightarrow{r})$$

- the operator of the total energy of the system under study
- a sum of the kinetic energy operator and the potential energy operator

Schrödinger equations

Stationary (time-independent) Schrödinger equation

- in general: $\widehat{H}|\psi\rangle = E|\psi\rangle$
 - stationary states (time-independent)
 - measurable / allowed values of the system total energy
 - pivotal equation of quantum chemistry
- X-representation (a single particle): $-\frac{\hbar^2}{2m}\Delta\psi(\vec{r}) + V(\vec{r})\psi(\vec{r}) = E\psi(\vec{r})$
 - partial differential equation
 - boundary conditions square-integrability of $\psi: \psi \to 0$ for $r \to +\infty, ...$
 - ... lead to measurable values of the total energy (energy quantization, energetic spectrum)
 - discrete and continuous part of the energetic spectrum (in quantum chemistry, we are interested in the discrete part only, why?)
 - ground state, excited states

Schrödinger equations

Non-stationary (time-dependent) Schrödinger equation

- in general: $\hat{H}(t)|\psi(t)\rangle = i\hbar \frac{d}{dt}|\psi(t)\rangle$
 - equation of motion \rightarrow time evolution
 - in quantum chemistry: time-dependent Hamiltonians (interaction with light→photochemistry, collisions →reaction dynamics)
- X-representation (a single particle): $-\frac{\hbar^2}{2m}\Delta\psi(\vec{r},t) + V(\vec{r})\psi(\vec{r},t) = i\hbar\frac{\partial}{\partial t}\psi(\vec{r},t)$
 - partial differential equation
 - boundary conditions square-integrability of $\psi: \psi \to 0$ for $r \to +\infty$
 - initial condition: $\psi(\vec{r}, t = 0) = \psi_0(\vec{r})$
 - solution is unique \rightarrow quantum determinism

Quantum chemistry

Main subject(s)

- finding solutions to stationary SE for atoms and molecules
 - only electrons participate, atomic nuclei play a role of spectators (Born-Oppenheimer separation)
 - the total energy of the system is parametrically dependent on the positions of nuclei, potential energy surface (PES)
 - mainly, the ground state is needed only (thermal conditions), but for some specific problems, also excited states get into play (photoexcitation)
- PES exploration
 - molecular equilibrium geometries (molecular rotations)
 - (harmonic) molecular vibrations
 - gas-phase thermodynamic properties
- other calculations
 - other molecular properties (electric and/or magnetic dipole etc. moments, polarizability, ...)

Quantum chemistry

Main issues

- many-particle systems of a specific (complex) behavior (electrons = fermions)
- numerical methods are needed (analytic solutions are available for textbook problems only)
- approximations are to be made should the numerical calculations be practicable
- powerful computers are needed for realistic calculations
- involved software implementations are required which are far beyond the capability of a common user
- fortunately, such numerical methods, approximations, implementations, and computers exist
- but, the use of software packages (usually as black- or grey-boxes) requires a solid background

The end of lesson 1.

Annex 1: Proof of the uncertainty relations

Theorem

 $\Delta a \Delta b \geq \frac{1}{2} |\langle \varphi | [\hat{A}, \hat{B}] | \varphi \rangle| \quad \text{with } \langle \varphi | \varphi \rangle = 1$

<u>Proof</u>

• $\Delta \hat{A} \triangleq \hat{A} - a\hat{I}$, $\Delta \hat{B} \triangleq \hat{B} - b\hat{I}$, where $a = \langle \varphi | \hat{A} | \varphi \rangle$, $b = \langle \varphi | \hat{B} | \varphi \rangle$, and \hat{I} is a unity (identity) operator

•
$$|\varphi_A\rangle \stackrel{\text{\tiny def}}{=} \Delta \hat{A} |\varphi\rangle, |\varphi_B\rangle \stackrel{\text{\tiny def}}{=} \Delta \hat{B} |\varphi\rangle$$

- $(\Delta a)^2 \stackrel{\text{\tiny def}}{=} \langle \varphi | (\Delta \hat{A})^2 | \varphi \rangle = \langle \varphi_A | \varphi_A \rangle = \| \varphi_A \|^2$, $(\Delta b)^2 \stackrel{\text{\tiny def}}{=} \langle \varphi | (\Delta \hat{B})^2 | \varphi \rangle = \langle \varphi_B | \varphi_B \rangle = \| \varphi_B \|^2$
- $(\Delta a)^2 (\Delta b)^2 = \|\varphi_A\|^2 \|\varphi_B\|^2 \ge |\langle \varphi_A | \varphi_B \rangle|^2$ (Cauchy- Schwartz-Bunyakovsky inequality)

•
$$\langle \varphi_A | \varphi_B \rangle = \langle \varphi | \Delta \hat{A} \Delta \hat{B} | \varphi \rangle = \frac{1}{2} \underbrace{\langle \varphi | \{\Delta \hat{A}, \Delta \hat{B}\} | \varphi \rangle}_{anticommutator *, self-adjoint, real-valued diagonal} + \underbrace{\frac{1}{2}}_{commutator, anti-self-adjoint **, imaginary-valued diagonal ***}$$

•
$$|\langle \varphi_A | \varphi_B \rangle|^2 = \frac{1}{4} \left| \left\langle \varphi | \{ \Delta \hat{A}, \Delta \hat{B} \} | \varphi \rangle \right|^2 + \frac{1}{4} \left| \left\langle \varphi | [\Delta \hat{A}, \Delta \hat{B}] | \varphi \rangle \right|^2 \ge \frac{1}{4} \left| \left\langle \varphi | [\Delta \hat{A}, \Delta \hat{B}] | \varphi \rangle \right|^2 \right|^2$$

• $\Delta a \Delta b = \|\varphi_A\| \|\varphi_B\| \ge |\langle \varphi_A | \varphi_B \rangle| \ge \frac{1}{2} |\langle \varphi | [\Delta \hat{A}, \Delta \hat{B}] | \varphi \rangle| = \dots = \frac{1}{2} |\langle \varphi | [\hat{A}, \hat{B}] | \varphi \rangle|$

 $* \{\hat{P}, \hat{Q}\} \stackrel{\text{def}}{=} \hat{P}\hat{Q} + \hat{Q}\hat{P} \qquad \qquad * * \hat{P}^{+} = -\hat{P} \qquad \qquad * * * \langle \varphi | \hat{P}\varphi \rangle = \langle \hat{P}^{+}\varphi | \varphi \rangle = -\langle \hat{P}\varphi | \varphi \rangle = -\overline{\langle \varphi | \hat{P}\varphi \rangle}$

Annex 1: Proof of the uncertainty relations

Theorem

 $* \{\hat{P}, \hat{Q}\} \stackrel{\text{def}}{=} \hat{P}\hat{Q} + \hat{Q}\hat{P} \qquad \qquad * * \hat{P}^{+} = -\hat{P} \qquad \qquad * * * \langle \varphi | \hat{P}\varphi \rangle = \langle \hat{P}^{+}\varphi | \varphi \rangle = -\langle \hat{P}\varphi | \varphi \rangle = -\overline{\langle \varphi | \hat{P}\varphi \rangle}$