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Quantum theory, ...

Quantum theory

• mathematical framework for the description of phenomena beyond the classical physics 
domain (microscopic, not only)

Quantum mechanics

• quantum theory applied to systems with a finite number of degrees of freedom (= finite and 
constant number of particles)

Quantum field theory

• quantum theory applied to systems with an infinite number of degrees of freedom (= finite 
to infinite number of particles, not constant)
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State, state space, wave function

State

• a complete info about the system under study (= initial condition for equations of motion)
• compatible / incompatible observables

• complete set of compatible observables

• measurement outputs → ۧ|𝑎𝑘 , 𝑎𝑙 , … ⊂ ℋ (orthonormal basis set in ℋ)

• in fact a linear span of ۧ|𝑎𝑘 , 𝑎𝑙 , … , 1D subspace

State space

• ℋ, a set of all possible states

• a separable Hilbert space

[wiki]

https://en.wikipedia.org/wiki/Quantum_state


State, state space, wave function

Separable Hilbert spaces

• Hilbert space
• linear vector space: x+y, cx

• complex valued

• scalar (dot) product (x.y c, x.x Euclidean norm )

• complete (all the Cauchy sequences do converge)

• basis
• 𝐱 = σ𝛼 𝑐𝛼𝐞𝛼 (an infinite / or even uncountable set of 𝐞𝛼, but always a finite sum)

• orthonormal basis (𝐞𝛼 . 𝐞𝛽 = 𝛿𝛼𝛽)

• separable
• 𝐱 = σ𝑘=1

+∞ 𝑐𝑘𝐞𝑘 (countable Schauder basis)

• all the separable Hilbert spaces are both algebraically and topologically equivalent 
• Dirac’s abstract Hilbert state space

• representations (X, P, ...)
[wiki]

https://en.wikipedia.org/wiki/Hilbert_space


State, state space, wave function

Bra-ket formalism (Dirac)

• ket and bra vectors
• 𝐱 → ۧ|𝑥

• 𝐱∗ → |𝑥ۦ

• scalar product
• 𝐱. 𝐲 → 𝑥|𝑦ۦۧ

[wiki]

https://en.wikipedia.org/wiki/Bra%E2%80%93ket_notation


State, state space, wave function

L2 spaces on ℝ𝒏

• square-integrable functions
• 𝜑:ℝ𝑛 → ℂ

• ℝ𝑛׬ |𝜑(𝐱)|
2d𝑛𝐱 < +∞

• 𝐿2(ℝ
𝑛) spaces are separable Hilbert spaces

• ۧ|𝜑 = 𝜑:ℝ𝑛 → ℂ

• 𝜓|𝜑ۦۧ = ℝ𝑛𝜓׬
∗(𝐱)𝜑(𝐱)d𝑛𝐱

• X-representations of the abstract Hilbert state space

• physical point of view
• wave functions (why?)

• 𝑛 = 3𝑁, where 𝑁 is the number of particles (𝑛 = 3, 6, 9, …)

• wave function meaning: ׬ℝ𝑛 |𝜑(𝐱)|
2d𝑛𝐱 = 𝜑|𝜑ۦۧ = 1 ⇒ 𝜑(𝐱) 2 is the probability density of ...

• only the absolute value (module) of 𝜑 is measurable (physically relevant), not its argument (phase)

[wiki] [wiki]

https://en.wikipedia.org/wiki/Square-integrable_function
https://en.wikipedia.org/wiki/Wave_function


Observables, operators

classical point of view

• measurable quantities (r, p, Ek, Ep,𝐿, ...)

• importantly (!), 𝐴 = 𝐴(r, p)

quantum point of view

• self-adjoint operators ( መ𝐴): መ𝐴 = መ𝐴+, specifically ൿۦ𝜓| መ𝐴𝜑 = ൿൻ መ𝐴𝜓|𝜑

• measurable / allowed values of 𝐴 = spectrum (eigenvalues) of መ𝐴: ൿመ𝐴|𝑎 = 𝑎 ۧ|𝑎
• 𝑎 ∈ ℝ (always!)

• the discrete part and continuous part of a spectrum

• the mean value of 𝐴 in state ۧ|𝜑 : if 𝜑 𝜑 = 1 then ൿത𝑎 = |𝜑ۦ መ𝐴|𝜑

• correspondence principle (Dirac)
• 𝐴 = 𝑓 𝐵, 𝐶 ⇒ መ𝐴 = 𝑓 ෠𝐵, መ𝐶

• ෡𝐗 = 𝐫 ⋀ ෡𝐏 = −𝑖ℏ𝛻 ⋀ 𝐴 = 𝐴(𝐫, 𝐩) ⇒ መ𝐴 = 𝐴(𝐫,−𝑖ℏ𝛻)

[wiki]

https://en.wikipedia.org/wiki/Observable


Observables, operators

Compatible / incompatible observables

• commutator: መ𝐴, ෠𝐵 = መ𝐴 ෠𝐵 − ෠𝐵 መ𝐴

• uncertainty relations: Δ𝑎Δ𝑏 ≥ 1/2|ൻ𝜑 መ𝐴, ෠𝐵 ۧ𝜑 | ( 𝜑 𝜑 = 1)

• specifically, the Heisenberg uncertainty relations for ෠𝑋 and ෠𝑃

• see also Annex 1

• compatibility of observables
• commuting operators → compatible observables

• non-commuting operators → incompatible observables



Hamilton operator

Classical Hamilton function (a single particle)

• 𝐻 Ԧ𝑝, Ԧ𝑟 =
Ԧ𝑝2

2𝑚
+ 𝑉(Ԧ𝑟)

• the overall / total energy of the system

• a sum of the (classical) kinetic energy and potential energy

Quantum Hamilton operator (a single particle, X-representation)

• ෡𝐻 =
(−𝑖ℏ𝛻)2

2𝑚
+ 𝑉 Ԧ𝑟 = −

ℏ2

2𝑚
Δ + 𝑉 Ԧ𝑟

• the operator of the total energy of the system under study

• a sum of the kinetic energy operator and the potential energy operator

[wiki]

https://en.wikipedia.org/wiki/Hamiltonian_(quantum_mechanics)


Schrödinger equations

Stationary (time-independent) Schrödinger equation

• in general: ෡𝐻| ۧ𝜓 = 𝐸| ۧ𝜓

• stationary states (time-independent)

• measurable / allowed values of the system total energy

• pivotal equation of quantum chemistry

• X-representation (a single particle): −
ℏ2

2𝑚
Δ𝜓 Ԧ𝑟 + 𝑉 Ԧ𝑟 𝜓 Ԧ𝑟 = 𝐸𝜓(Ԧ𝑟)

• partial differential equation

• boundary conditions – square-integrability of 𝜓: 𝜓 → 0 for 𝑟 → +∞, ...

• ... lead to measurable values of the total energy (energy quantization, energetic spectrum)

• discrete and continuous part of the energetic spectrum (in quantum chemistry, we are interested in the 
discrete part only, why?)

• ground state, excited states

[wiki]

https://en.wikipedia.org/wiki/Schr%C3%B6dinger_equation


Schrödinger equations

Non-stationary (time-dependent) Schrödinger equation

• in general: ෡𝐻(𝑡)| ۧ𝜓(𝑡) = 𝑖ℏ
d

d𝑡
| ۧ𝜓(𝑡)

• equation of motion → time evolution

• in quantum chemistry: time-dependent Hamiltonians (interaction with light→photochemistry, collisions
→reaction dynamics)

• X-representation (a single particle): −
ℏ2

2𝑚
Δ𝜓 Ԧ𝑟, 𝑡 + 𝑉 Ԧ𝑟 𝜓 Ԧ𝑟, 𝑡 = 𝑖ℏ

𝜕

𝜕𝑡
𝜓(Ԧ𝑟, 𝑡)

• partial differential equation

• boundary conditions – square-integrability of 𝜓: 𝜓 → 0 for 𝑟 → +∞

• initial condition: 𝜓 Ԧ𝑟, 𝑡 = 0 = 𝜓0 Ԧ𝑟

• solution is unique → quantum determinism



Quantum chemistry

Main subject(s)

• finding solutions to stationary SE for atoms and molecules
• only electrons participate, atomic nuclei play a role of spectators (Born-Oppenheimer separation)

• the total energy of the system is parametrically dependent on the positions of nuclei, potential energy surface (PES)

• mainly, the ground state is needed only (thermal conditions), but for some specific problems, also excited states get 
into play (photoexcitation)

• PES exploration
• molecular equilibrium geometries (molecular rotations)

• (harmonic) molecular vibrations

• gas-phase thermodynamic properties

• other calculations
• other molecular properties (electric and/or magnetic dipole etc. moments, polarizability, ...)

[wiki]

https://en.wikipedia.org/wiki/Quantum_chemistry


Quantum chemistry

Main issues

• many-particle systems of a specific (complex) behavior (electrons = fermions)

• numerical methods are needed (analytic solutions are available for textbook problems only)

• approximations are to be made should the numerical calculations be practicable

• powerful computers are needed for realistic calculations

• involved software implementations are required which are far beyond the capability of
a common user

• fortunately, such numerical methods, approximations, implementations, and computers exist

• but, the use of software packages (usually as black- or grey-boxes) requires a solid background



The end of lesson 1.



Annex 1: Proof of the uncertainty relations

Theorem

Δ𝑎Δ𝑏 ≥
1

2
|ൻ𝜑 መ𝐴, ෠𝐵 ۧ𝜑 | with 𝜑 𝜑 = 1

Proof
• Δ መ𝐴 ≝ መ𝐴 − 𝑎 መ𝐼, Δ ෠𝐵 ≝ ෠𝐵 − 𝑏 መ𝐼, where 𝑎 = 𝜑 መ𝐴 𝜑 , 𝑏 = 𝜑 ෠𝐵 𝜑 , and መ𝐼 is a unity (identity) operator

• | ۧ𝜑𝐴 ≝ Δ መ𝐴| ۧ𝜑 , | ۧ𝜑𝐵 ≝ Δ ෠𝐵| ۧ𝜑

• (Δ𝑎)2≝ 𝜑 (Δ መ𝐴)2 𝜑 = 𝜑𝐴 𝜑𝐴 = 𝜑𝐴
2,       (Δ𝑏)2≝ 𝜑 (Δ ෠𝐵)2 𝜑 = 𝜑𝐵 𝜑𝐵 = 𝜑𝐵

2

• (Δ𝑎)2(Δ𝑏)2= 𝜑𝐴
2 𝜑𝐵

2 ≥ 𝜑𝐴 𝜑𝐵
2 (Cauchy- Schwartz-Bunyakovsky inequality)

• 𝜑𝐴 𝜑𝐵 = 𝜑 Δ መ𝐴Δ ෠𝐵 𝜑 =
1

2
𝜑 {Δ መ𝐴, Δ ෠𝐵} 𝜑

anticommutator ∗,
self−adjoint,

real−valued diagonal

+
1

2
𝜑 [Δ መ𝐴, Δ ෠𝐵] 𝜑
commutator,

anti−self−adjoint ∗∗,
imaginary−valued diagonal ∗∗∗

• 𝜑𝐴 𝜑𝐵
2 =

1

4
𝜑 {Δ መ𝐴, Δ ෠𝐵} 𝜑

2
+

1

4
𝜑 [Δ መ𝐴, Δ ෠𝐵] 𝜑

2
≥

1

4
𝜑 [Δ መ𝐴, Δ ෠𝐵] 𝜑

2

• Δ𝑎Δ𝑏 = 𝜑𝐴 𝜑𝐵 ≥ 𝜑𝐴 𝜑𝐵 ≥
1

2
𝜑 Δ መ𝐴, Δ ෠𝐵 𝜑 = ⋯ =

1

2
𝜑 መ𝐴, ෠𝐵 𝜑

* ෠𝑃, ෠𝑄 ≝ ෠𝑃 ෠𝑄 + ෠𝑄 ෠𝑃 ** ෠𝑃+ = − ෠𝑃 *** 𝜑 ෠𝑃𝜑 = ෠𝑃+𝜑 𝜑 = − ෠𝑃𝜑 𝜑 = − 𝜑 ෠𝑃𝜑
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• 0 ≤ 𝜑𝐴 − 𝛼𝜑𝐵 𝜑𝐴 − 𝛼𝜑𝐵 = ⋯=
= 𝜑𝐴

2 + 𝛼 2 𝜑𝐵
2 − 𝛼 𝜑𝐴 𝜑𝐵 − ത𝛼 𝜑𝐵 𝜑𝐴

• 𝛼 ≝
𝜑𝐵 𝜑𝐴
𝜑𝐵

2 =
𝜑𝐴 𝜑𝐵

𝜑𝐵
2

• 𝜑𝐴 − 𝛼𝜑𝐵 𝜑𝐴 − 𝛼𝜑𝐵 = ⋯ = 𝜑𝐴
2 −

| 𝜑𝐴 𝜑𝐵 |2

𝜑𝐵
2 ≥ 0


