Basics of Quantum Theory

Quantum Chemistry

Lesson 1

Contents

1. Quantum theory, quantum mechanics, quantum field thoery
2. State, state space, wave function
3. Dynamic observables, operators
4. Hamilton operator, Schrödinger equation(s)
5. Quantum chemistry

Quantum theory,

Quantum theory

- mathematical framework for the description of phenomena beyond the classical physics domain (microscopic, not only)

Quantum mechanics

- quantum theory applied to systems with a finite number of degrees of freedom (= finite and constant number of particles)

Quantum field theory

- quantum theory applied to systems with an infinite number of degrees of freedom (= finite to infinite number of particles, not constant)

Quantum theory,

Quantum theory

- mathematical framework for the description of phenomena beyond the classical physics domain (microscopic, not only)

Quantum mechanics

- quantum theory applied to systems with a finite number of degrees of freedom (= finite and constant number of particles)

Quantum field theory

- quantum theory applied to systems with an infinite number of degrees of freedom (= finite to infinite number of particles, not constant)

State, state space, wave function

State

- a complete info about the system under study (= initial condition for equations of motion)
- compatible / incompatible observables
- complete set of compatible observables
- measurement outputs $\rightarrow\left|a_{k}, a_{l}, \ldots\right\rangle \subset \mathcal{H}$ (orthonormal basis set in \mathcal{H})
- in fact a linear span of $\left|a_{k}, a_{l}, \ldots\right\rangle, 1 \mathrm{D}$ subspace

State space

- \mathcal{H}, a set of all possible states
- a separable Hilbert space
[wiki]

State, state space, wave function

Separable Hilbert spaces

- Hilbert space
- linear vector space: $\mathbf{x + y}, c x$
- complex valued
- scalar (dot) product ($\mathbf{x . y} \rightarrow c, \mathbf{x . x} \rightarrow$ Euclidean norm)
- complete (all the Cauchy sequences do converge)
- basis
- $\mathbf{x}=\sum_{\alpha} c_{\alpha} \mathbf{e}_{\alpha}$ (an infinite / or even uncountable set of \mathbf{e}_{α}, but always a finite sum)
- orthonormal basis $\left(\mathbf{e}_{\alpha} \cdot \mathbf{e}_{\beta}=\delta_{\alpha \beta}\right)$
- separable
- $\mathbf{x}=\sum_{k=1}^{+\infty} c_{k} \mathbf{e}_{k}$ (countable Schauder basis)
- all the separable Hilbert spaces are both algebraically and topologically equivalent
- Dirac's abstract Hilbert state space
- representations (X, P, \ldots)

State, state space, wave function

Bra-ket formalism (Dirac)

- ket and bra vectors
- $\mathbf{x} \rightarrow|x\rangle$
- $\mathbf{x}^{*} \rightarrow\langle x|$
- scalar product
- $\mathbf{x .} \mathbf{y} \rightarrow\langle x \mid y\rangle$

State, state space, wave function

L_{2} spaces on \mathbb{R}^{n}

- square-integrable functions
- $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{C}$
- $\int_{\mathbb{R}^{n}}|\varphi(\mathbf{x})|^{2} \mathrm{~d}^{n} \mathbf{x}<+\infty$
- $L_{2}\left(\mathbb{R}^{n}\right)$ spaces are separable Hilbert spaces
- $|\varphi\rangle=\varphi: \mathbb{R}^{n} \rightarrow \mathbb{C}$
- $\langle\psi \mid \varphi\rangle=\int_{\mathbb{R}^{n}} \psi^{*}(\mathbf{x}) \varphi(\mathbf{x}) \mathrm{d}^{n} \mathbf{x}$
- X-representations of the abstract Hilbert state space
- physical point of view
- wave functions (why?)
- $n=3 N$, where N is the number of particles $(n=3,6,9, \ldots)$
- wave function meaning: $\int_{\mathbb{R}^{n}}|\varphi(\mathbf{x})|^{2} \mathrm{~d}^{n} \mathbf{x}=\langle\varphi \mid \varphi\rangle=1 \Rightarrow|\varphi(\mathbf{x})|^{2}$ is the probability density of ...
- only the absolute value (module) of φ is measurable (physically relevant), not its argument (phase)
[wiki] [wiki]

Observables, operators

classical point of view

- measurable quantities ($\left.\mathbf{r}, \mathbf{p}, E_{\mathrm{k}}, E_{\mathrm{p}}, \vec{L}, \ldots\right)$
- importantly (!), $A=A(\mathbf{r}, \mathbf{p})$

quantum point of view

- self-adjoint operators (\hat{A}): $\hat{A}=\hat{A}^{+}$, specifically $\langle\psi \mid \hat{A} \varphi\rangle=\langle\hat{A} \psi \mid \varphi\rangle$
- measurable / allowed values of $A=$ spectrum (eigenvalues) of $\hat{A}: \hat{A}|a\rangle=a|a\rangle$
- $a \in \mathbb{R}$ (always!)
- the discrete part and continuous part of a spectrum
- the mean value of A in state $|\varphi\rangle$: if $\langle\varphi \mid \varphi\rangle=1$ then $\bar{a}=\langle\varphi| \hat{A}|\varphi\rangle$
- correspondence principle (Dirac)
- $A=f(B, C) \Rightarrow \hat{A}=f(\hat{B}, \hat{C})$
- $\widehat{\mathbf{X}}=\mathbf{r} \wedge \widehat{\mathbf{P}}=-i \hbar \nabla \wedge A=A(\mathbf{r}, \mathbf{p}) \Rightarrow \hat{A}=A(\mathbf{r},-i \hbar \nabla)$

Observables, operators

Compatible / incompatible observables

- commutator: $[\hat{A}, \hat{B}]=\hat{A} \widehat{B}-\hat{B} \hat{A}$
- uncertainty relations: $\Delta a \Delta b \geq 1 / 2|\langle\varphi|[\hat{A}, \hat{B}]| \varphi\rangle \mid(\langle\varphi \mid \varphi\rangle=1)$
- specifically, the Heisenberg uncertainty relations for \hat{X} and \hat{P}
- see also Annex 1
- compatibility of observables
- commuting operators \rightarrow compatible observables
- non-commuting operators \rightarrow incompatible observables

Hamilton operator

Classical Hamilton function (a single particle)

- $H(\vec{p}, \vec{r})=\frac{\vec{p}^{2}}{2 m}+V(\vec{r})$
- the overall / total energy of the system
- a sum of the (classical) kinetic energy and potential energy

Quantum Hamilton operator (a single particle, X-representation)

- $\widehat{H}=\frac{(-i \hbar \nabla)^{2}}{2 m}+V(\vec{r})=-\frac{\hbar^{2}}{2 m} \Delta+V(\vec{r})$
- the operator of the total energy of the system under study
- a sum of the kinetic energy operator and the potential energy operator

Schrödinger equations

Stationary (time-independent) Schrödinger equation

- in general: $\widehat{H}|\psi\rangle=E|\psi\rangle$
- stationary states (time-independent)
- measurable / allowed values of the system total energy
- pivotal equation of quantum chemistry
- X-representation (a single particle): $-\frac{\hbar^{2}}{2 m} \Delta \psi(\vec{r})+V(\vec{r}) \psi(\vec{r})=E \psi(\vec{r})$
- partial differential equation
- boundary conditions - square-integrability of $\psi: \psi \rightarrow 0$ for $r \rightarrow+\infty, \ldots$
- ... lead to measurable values of the total energy (energy quantization, energetic spectrum)
- discrete and continuous part of the energetic spectrum (in quantum chemistry, we are interested in the discrete part only, why?)
- ground state, excited states

Schrödinger equations

Non-stationary (time-dependent) Schrödinger equation

- in general: $\widehat{H}(t)|\psi(t)\rangle=i \hbar \frac{\mathrm{~d}}{\mathrm{~d} t}|\psi(t)\rangle$
- equation of motion \rightarrow time evolution
- in quantum chemistry: time-dependent Hamiltonians (interaction with light \rightarrow photochemistry, collisions \rightarrow reaction dynamics)
- X-representation (a single particle): $-\frac{\hbar^{2}}{2 m} \Delta \psi(\vec{r}, t)+V(\vec{r}) \psi(\vec{r}, t)=i \hbar \frac{\partial}{\partial t} \psi(\vec{r}, t)$
- partial differential equation
- boundary conditions - square-integrability of $\psi: \psi \rightarrow 0$ for $r \rightarrow+\infty$
- initial condition: $\psi(\vec{r}, t=0)=\psi_{0}(\vec{r})$
- solution is unique \rightarrow quantum determinism

Quantum chemistry

Main subject(s)

- finding solutions to stationary SE for atoms and molecules
- only electrons participate, atomic nuclei play a role of spectators (Born-Oppenheimer separation)
- the total energy of the system is parametrically dependent on the positions of nuclei, potential energy surface (PES)
- mainly, the ground state is needed only (thermal conditions), but for some specific problems, also excited states get into play (photoexcitation)
- PES exploration
- molecular equilibrium geometries (molecular rotations)
- (harmonic) molecular vibrations
- gas-phase thermodynamic properties
- other calculations
- other molecular properties (electric and/or magnetic dipole etc. moments, polarizability, ...)

Quantum chemistry

Main issues

- many-particle systems of a specific (complex) behavior (electrons = fermions)
- numerical methods are needed (analytic solutions are available for textbook problems only)
- approximations are to be made should the numerical calculations be practicable
- powerful computers are needed for realistic calculations
- involved software implementations are required which are far beyond the capability of a common user
- fortunately, such numerical methods, approximations, implementations, and computers exist
- but, the use of software packages (usually as black- or grey-boxes) requires a solid background

The end of lesson 1.

Annex 1: Proof of the uncertainty relations

Theorem

$$
\left.\Delta a \Delta b \geq \frac{1}{2}|\langle\varphi|[\hat{A}, \hat{B}]| \varphi\right\rangle \mid \text { with }\langle\varphi \mid \varphi\rangle=1
$$

Proof

- $\Delta \hat{A} \xlongequal{\text { dof }} \hat{A}-a \hat{I}, \Delta \hat{B} \stackrel{\text { def }}{=} \hat{B}-b \hat{I}$, where $a=\langle\varphi| \hat{A}|\varphi\rangle, b=\langle\varphi| \widehat{B}|\varphi\rangle$, and \hat{I} is a unity (identity) operator
- $\left|\varphi_{A}\right\rangle \stackrel{\text { def }}{=} \Delta \hat{A}|\varphi\rangle,\left|\varphi_{B}\right\rangle \stackrel{\text { def }}{=} \Delta \hat{B}|\varphi\rangle$
- $(\Delta a)^{2} \stackrel{\text { def }}{=}\langle\varphi|(\Delta \hat{A})^{2}|\varphi\rangle=\left\langle\varphi_{A} \mid \varphi_{A}\right\rangle=\left\|\varphi_{A}\right\|^{2}, \quad(\Delta b)^{2} \stackrel{\text { def }}{=}\langle\varphi|(\Delta \widehat{B})^{2}|\varphi\rangle=\left\langle\varphi_{B} \mid \varphi_{B}\right\rangle=\left\|\varphi_{B}\right\|^{2}$
- $(\Delta a)^{2}(\Delta b)^{2}=\left\|\varphi_{A}\right\|^{2}\left\|\varphi_{B}\right\|^{2} \geq\left|\left\langle\varphi_{A} \mid \varphi_{B}\right\rangle\right|^{2}$ (Cauchy-Schwartz-Bunyakovsky inequality)
- $\left\langle\varphi_{A} \mid \varphi_{B}\right\rangle=\langle\varphi| \Delta \hat{A} \Delta \hat{B}|\varphi\rangle=\frac{1}{2}\langle\varphi|\{\Delta \hat{A}, \Delta \widehat{B}\}|\varphi\rangle+\frac{1}{2} \underbrace{\langle\varphi|[\Delta \hat{A}, \Delta \hat{B}]|\varphi\rangle}_{\text {anticommutator }{ }^{*} \text {, }}$
self-adjoint,

$$
\text { anti-self-adjoint }{ }^{* *} \text {, }
$$

real-valued diagonal imaginary-valued diagonal $* * *$

- $\left.\left.\left.\left|\left\langle\varphi_{A} \mid \varphi_{B}\right\rangle\right|^{2}=\frac{1}{4}|\langle\varphi|\{\Delta \hat{A}, \Delta \hat{B}\}| \varphi\right\rangle\left.\right|^{2}+\frac{1}{4}|\langle\varphi|[\Delta \hat{A}, \Delta \hat{B}]| \varphi\right\rangle\left.\right|^{2} \geq \frac{1}{4}|\langle\varphi|[\Delta \hat{A}, \Delta \hat{B}]| \varphi\right\rangle\left.\right|^{2}$
- $\left.\Delta a \Delta b=\left\|\varphi_{A}\right\|\left\|\varphi_{B}\right\| \geq\left|\left\langle\varphi_{A} \mid \varphi_{B}\right\rangle\right| \geq \frac{1}{2}|\langle\varphi|[\Delta \hat{A}, \Delta \hat{B}]| \varphi\right\rangle \left.\left|=\cdots=\frac{1}{2}\right|\langle\varphi|[\hat{A}, \hat{B}]|\varphi\rangle \right\rvert\,$

Annex 1: Proof of the uncertainty relations

Theorem

$$
\left.\Delta a \Delta b \geq \frac{1}{2}|\langle\varphi|[\hat{A}, \hat{B}]| \varphi\right\rangle \mid \text { with }\langle\varphi| \varphi \mid
$$

Proof

- $\Delta \hat{A} \stackrel{\text { def }}{=} \hat{A}-a \hat{I}, \Delta \hat{B}$ 墅 $\hat{B}-b \hat{I}$, where $a=\langle\varphi| \hat{A} \mid \varphi$
- $\left|\varphi_{A}\right\rangle \stackrel{\text { def }}{=} \Delta \hat{A}|\varphi\rangle,\left|\varphi_{B}\right\rangle \stackrel{\text { def }}{=} \Delta \hat{B}|\varphi\rangle$

$$
\text { - } \begin{aligned}
0 & \leq\left\langle\varphi_{A}-\alpha \varphi_{B} \mid \varphi_{A}-\alpha \varphi_{B}\right\rangle=\cdots= \\
& =\left\|\varphi_{A}\right\|^{2}+|\alpha|^{2}\left\|\varphi_{B}\right\|^{2}-\alpha\left\langle\varphi_{A} \mid \varphi_{B}\right\rangle-\bar{\alpha}\left\langle\varphi_{B} \mid \varphi_{A}\right\rangle
\end{aligned}
$$

- $\alpha \stackrel{\text { def }}{=} \frac{\left\langle\varphi_{B} \mid \varphi_{A}\right\rangle}{\left\|\varphi_{B}\right\|^{2}}=\frac{\overline{\left\langle\varphi_{A} \mid \varphi_{B}\right\rangle}}{\left\|\varphi_{B}\right\|^{2}}$
- $\left\langle\varphi_{A}-\alpha \varphi_{B} \mid \varphi_{A}-\alpha \varphi_{B}\right\rangle=\cdots=\left\|\varphi_{A}\right\|^{2}-\frac{\mid\left\langle\varphi_{A} \mid \varphi_{B}\right\rangle \|^{2}}{\left\|\varphi_{B}\right\|^{2}} \geq 0$
- $(\Delta a)^{2} \stackrel{\text { def }}{=}\langle\varphi|(\Delta \hat{A})^{2}|\varphi\rangle=\left\langle\varphi_{A} \mid \varphi_{A}\right\rangle=\left\|\varphi_{A}\right\|^{2}$,

$$
(\Delta D)^{-}=|\varphi|(\Delta)
$$

- $(\Delta a)^{2}(\Delta b)^{2}=\left\|\varphi_{A}\right\|^{2}\left\|\varphi_{B}\right\|^{2} \geq\left|\left\langle\varphi_{A} \mid \varphi_{B}\right\rangle\right|^{2}$ (Cauchy-Schwartz-Bunyakovsky inequality)

self-adjoint,

$$
\text { anti-self-adjoint } * *,
$$

$$
\text { real-valued diagonal imaginary-valued diagonal } * * *
$$

- $\left.\left.\left.\left|\left\langle\varphi_{A} \mid \varphi_{B}\right\rangle\right|^{2}=\frac{1}{4}|\langle\varphi|\{\Delta \hat{A}, \Delta \hat{B}\}| \varphi\right\rangle\left.\right|^{2}+\frac{1}{4}|\langle\varphi|[\Delta \hat{A}, \Delta \hat{B}]| \varphi\right\rangle\left.\right|^{2} \geq \frac{1}{4}|\langle\varphi|[\Delta \hat{A}, \Delta \hat{B}]| \varphi\right\rangle\left.\right|^{2}$
- $\left.\Delta a \Delta b=\left\|\varphi_{A}\right\|\left\|\varphi_{B}\right\| \geq\left|\left\langle\varphi_{A} \mid \varphi_{B}\right\rangle\right| \geq \frac{1}{2}|\langle\varphi|[\Delta \hat{A}, \Delta \hat{B}]| \varphi\right\rangle \left.\left|=\cdots=\frac{1}{2}\right|\langle\varphi|[\hat{A}, \hat{B}]|\varphi\rangle \right\rvert\,$

