2 EXPLORATORNÍ ANALÝZA

2.1. Níže uvedená data představují částečný výsledek zaznamenaný při průzkumu zatížení jedné z ostravských křižovatek, a to barvu projíždějících automobilů. Data vyhodnoť te a graficky znázorněte.

červená	modrá	červená	zelená
modrá	červená	červená	bílá
zelená	zelená	modrá	červená

Řešení:

Je zřejmé, že se jedná o kvalitativní (slovní) proměnnou a vzhledem k tomu, že barvy automobilů nemá smysl seřazovat ani porovnávat, můžeme konstatovat, že se jedná o proměnnou nominální.

Pro její popis tedy zvolíme tabulku četností, určíme modus a barvu projíždějících automobilů znázorníme prostřednictvím histogramu a výsečového grafu.

]	TABULKA ROZDĚLENÍ ČETNOSTI				
Barvy	Absolutní četnost	Relativní četnost			
projíždějících automobilů	n _i	$\mathbf{p}_{\mathbf{i}}$			
červená	5	5/12 = 0,42			
modrá	3	3/12 = 0,25			
bílá	1	1/12 = 0,08			
zelená	3	3/12 = 0,25			
Celkem	12	1,00			

Modus = červená (tj. v zaznamenaném vzorku se vyskytlo nejvíce červených automobilů)

Celkem bylo sledováno 12 automobilů

Řešení daného problému ve Statgraphicsu:

Zadání proměnné:

Chceme-li zadávat ručně novou proměnnou, provedeme DC (dvojklik) na hlavičku sloupce a zadáme parametry proměnné (název, popis (nepovinné), šířku a typ). Přednastavený typ je Numeric, proto je nutno nastavení typu proměnné ohlídat zejména při zadávání proměnné kategoriální.

	Modify Column		
	Name:	ОК	
	Barva		
	Comment:	Cancel	
	barva automobilu	Define	
	Width:		
	13	Help	
-	Туре		
	- 🔄 O Numeric		
	Character		
Tyn	 Integer 		
proměnné	- C Date		
	 O Month 		
	C Quarter		
	C Time (HH:MM)		
	C Time (HH:MM:SS)		
	© Fixed Decimal: 2		
	C Formula		

Exploratorní analýza pro kategoriální proměnnou:

Touto analýzou získáme tabulku četnosti, histogram a výsečový graf.

TATGRAPHICS Plus - Untitled StatFolio					
File Edit Plot Describe Compare Relate Special SnapStats!! View \					
Numeric Data 🔸 🛛 💦 📷 🖬 😿 😿					
Categorical Data	►	Tabulation			
Distributions	Distributions Crosstabulation				
Life Data	Contingency Tables				
Hypothesis Tests					
Sample-Size Determination					
		_			

Ţ	abulation	
	Barva Col_2	Data: Barva (Select)
	Sort column names	
	OK Cancel	Delete Transform Help

Datový výstup analýzy:

Všimněte si, že **Statgraphics automaticky určuje kumulativní četnosti a kumulativní relativní četnosti** i pro nominální proměnnou (je tedy na uživateli, aby určil, zda mají tyto charakteristiky v konkrétním případě smysl).

Histogram:

Formát grafu změníme tak, že provedeme RC (klikneme pravým tlačítkem myši) na oblast grafu a zvolíme **Pane Option.**

Barchart Options	
Chart Type	ОК
 Clustered 	Cancel
C Stacked	
Scaling	Help
 Frequencies 	
© Percentages	
Direction	
Horizontal	
C Vertical	
Baseline: 0,	

V okně **Barchart Option** pak volíme formátování histogramu.

Grafické parametry histogramu (nadpisy, barvy...) nastavíme v okně Graphics Option, které získáme po RC na oblast grafu a volbě **Graphics Option**.

Graphics Options	
Layout Grid Fills Tickmarks and Colors – (* X-Axis C Y-Axis C Background C Border Mode Line J- Thind Colors	Top Title X-Axis Y-Axis Profile
OK Ston	no Použít Nápověda

<u>Výsečový graf:</u>

Při úpravě výsečového grafu postupujeme obdobně jako při úpravě histogramu. (Pane Option, Graphics option).

2.2. Následující data představují velikosti triček prodaných při výprodeji firmy TRIKO.

S, M, L, S, M, L, XL, XL, M, XL, XL, L, M, S, M, L, L, XL, XL, XL, L, M

a) Data vyhodnoť te a graficky znázorněte.

b) Určete kolik procent lidí si koupilo tričko velikosti nejvýše L.

Řešení:

ada) Zřejmě se jedná o kvalitativní (slovní) proměnnou a vzhledem k tomu, že velikosti triček lze seřadit, jde o proměnnou ordinální. Pro její popis proto použijeme tabulku četností pro ordinální proměnnou, v níž varianty velikosti triček budou seřazeny od nejmenší po největší (S, M. L, XL) a modus.

	TABULKA ROZDĚLENÍ ČETNOSTI				
Velikosti triček	Absolutní četnost	Kumulativní četnost	Relativní četnost	Relativní kum.četnost	
	n _i	m _i	pi	F _i	
S	3	3	3/22 = 0,14	3/22 = 0,14	
М	6	3 + 6 = 9	6/22 = 0,27	9/22 = 0,41	
L	6	9+6=15	6/22 = 0,27	15/22 = 0,68	
XL	7	15 + 7 = 22	7/22 = 0,32	22/22 = 1,00	
Celkem	22		1,00		

Modus = XL (nejvíce lidí si koupilo tričko velikosti XL)

Grafický výstup bude tvořit histogram, výsečový graf a polygon kumulativních četností (jelikož se nejedná o technická data, Paretův graf vytvářet nebudeme).

Grafický výstup:

Histogram

Celkem bylo prodáno 22 triček

Galtonova ogiva, S-křivka

adb) Na tuto otázku nám dá odpověď relativní kumulativní četnost pro variantu L, která určuje jaká část prodaných triček byla velikosti L a nižších. Tj. 68% zákazníků si koupilo tričko velikosti L a menší.

2.3. N ol	ásledují rchestrů ěku hude	cí data j . Promě ebníků.	oředstav nnou vě	ují věk k považ	hudební zujte za s	iků vystu spojitou	upujícíc . Určete	h na pře průmě	chlídce d r, shorth	lechovýc n a modu	:h us
22	82	27	43	19	47	41	34	34	42	35	
Řešení:											

a) Určení průměru:

V tomto případě jednoznačně použijeme aritmetický průměr (zdůvodnění snad není nutné):

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{22 + 82 + 27 + 43 + 19 + 47 + 41 + 34 + 34 + 42 + 35}{11} = 38,7 \ let$$

Průměrný věk hudebníka vystupujícího na přehlídce dechových orchestrů je 38,7 let.

Prohlédněte si ještě jednou zadaná data a promyslete si nakolik je průměrný věk reprezentativní statistikou daného výběru (odlehlá pozorování).

b) Určení shorthu:

Náš výběrový soubor má 11 hodnot, z čehož vyplývá, že v shorthu bude ležet 6 z nich (rozsah souboru je 11 (lichý počet hodnot), 50% z toho je 5,5 (5,5 hodnoty se špatně určuje, že?) a nejbližší vyšší přirozené číslo je 6 – neboli: $n/2+\frac{1}{2} = 11/2 + 1/2 = 12/2 = 6$).

A další postup?

- Proměnnou seřadíme
- Určíme délky všech 6-ti členných intervalů, v nichž $x_i < x_{i+1} < ... < x_{i+5}$
- Nejkratší z těchto intervalů prohlásíme za shorth (délka intervalu = $x_{i+s} x_i$)

Originální data	Seřazená data	Délky 6-ti členných intervalů
22	19	16 (= 35 - 19)
82	22	19 (= 41 - 22)
27	27	15 (= 42 - 27)
43	34	9 (= 43 - 34)
19	34	13 (= 47 - 34)
47	35	47 (= 82 - 35)
41	41	
34	42	
34	43	
42	47	
35	82	

Z tabulky je zřejmé, že nejkratší interval má délku 9, čemuž odpovídá jediný interval: (34;43).

Shorth = $\langle 34;43 \rangle$, což můžeme interpretovat např. tak, že polovina hudebníků je ve věku 34 až 43 let (jde přitom o nejkratší interval ze všech možných).

c) Určení modu:

Modus je definován jako střed shorthu:

$$\hat{x} = \frac{34 + 43}{2} = 38,5$$

Modus = 38,5 let, tj. typický věk hudebníka vystupujícího na přehlídce dechových orchestrů je 38,5 let.

2.4. Pro data z předcházejícího příkladu určete:

- a) všechny kvartily,
- b) interkvartilové rozpětí
- c) MAD
- d) zakreslete empirickou distribuční funkci

Řešení:

ada) Naším úkolem je určit dolní kvartil $x_{0,25}$; medián $x_{0,5}$ a horní kvartil $x_{0,75}$. Budeme-li dodržovat postup doporučený pro určování kvantilů, znamená to – data seřadit a přiřadit jim pořadí. Splnění prvních dvou bodů postupu ukazuje následující tabulka:

Originální data	Seřazená data	Pořadí
22	19	1
82	22	2
27	27	3
43	34	4
19	34	5
47	35	6
41	41	7
34	42	8
34	43	9
42	47	10
35	82	11

A můžeme přejít k bodu 3, tj. stanovit pořadí hodnot proměnné pro jednotlivé kvartily a tím i jejich hodnoty:

Dolní kvartil x_{0,25}: $p = 0,25; n = 11 \Rightarrow z_p = 11.0,25 + 0,5 = 3,25$,

Dolní kvartil je tedy průměrem prvků s pořadím 3 a 4 - $x_{0,25} = \frac{27+34}{2} = 30,5$ let.

Tj. 25% hudebníků vystupujících na přehlídce dechových orchestrů je mladších než 30,5 let (75% z nich má 30,5 let a více).

Medián x_{0,5}:
$$p = 0,5; n = 11 \Rightarrow z_p = 11.0,5 + 0,5 = 6 \Rightarrow x_{0.5} = 35$$

Tj. polovina hudebníků vystupujících na přehlídce dechových orchestrů je mladších než 35 let (50% z nich má 35 let a více).

Horní kvartil x_{0,75}: $p = 0,75; n = 11 \Rightarrow z_p = 11.0,75 + 0,5 = 8,75$

Horní kvartil je tedy průměrem prvků s pořadím 8 a 9 - $x_{0,75} = \frac{42+43}{2} = 42,5$ let.

Tj. 75% hudebníků vystupujících na přehlídce dechových orchestrů je mladších než 42,5 let (25% z nich má 42,5 let a více).

adb) Interkvartilové rozpětí IQR:

IQR = $x_{0,75} - x_{0,25} = 42,5 - 30,5 = 12$

adc) MAD

Chceme-li určit tuto statistiku, budeme postupovat přesně podle toho co nám říká definice (medián absolutních odchylek od mediánu), tudíž dodržíme výše uvedený postup, jehož aplikaci vám ukazuje následující tabulka.

X0,5	=	35
------	---	----

Origin	Seřaz	Absolutní hodnoty	Seřazené absolutní hodnoty
ální data	ená data	odchylek seřazených dat	odchylek seřazených dat od
v	X 7	od jejich mediánu	jejich mediánu
л _і	Уi	ou jejien medianu	Jejien meulanu
		$y_i - x_{0,5}$	$\mathbf{M}_{\mathbf{i}}$
22	19	16 = 19 - 35	0
82	22	13 = 22 - 35	1
27	27	8 = 27 - 35	1
43	34	1 = 34 - 35	6
19	34	1 = 34 - 35	7
47	35	0 = 35 - 35	8
41	41	6 = 41 - 35	8
34	42	7 = 42 - 35	12
34	43	8 = 43 - 35	13
42	47	12 = 47 - 35	16
35	82	47 = 82 - 35	47

 $MAD = M_{0,5}$

 $p = 0,5; n = 11 \Longrightarrow z_p = 11.0, 5 + 0, 5 = 6 \Longrightarrow M_{0,5} = 8$

(MAD je medián absolutních odchylek od mediánu, tj. 6. hodnota seřazeného souboru absolutních odchylek od mediánu). MAD = 8.

add) Zbývá nám poslední úkol – sestrojit **empirickou distribuční funkci**. Připomeňme si proto její definici – a postupujme podle ní:

$$F(x) = \begin{cases} 0 & pro \ x \le x_1 \\ \sum_{i=1}^{j} p(x_i) & pro \ x_j < x \le x_{j+1}, 1 \le j \le n-1 \\ 1 & pro \ x_n < x \end{cases}$$

- do tabulky si zapíšeme seřazené hodnoty proměnné, jejich četnosti, relativní četnosti a z nich odvodíme empirickou distribuční funkci:

Origin ální data _{Xi}	Seřaz ené hodnoty a _i	Absolutní četnosti seřazených hodnot n i	Relativní četnosti seřazených hodnot P i	Empirická dist. funkce F(a _i)
22	19	1	1/11	0
82	22	1	1/11	1/11
27	27	1	1/11	2/11
43	34	2	2/11	3/11
19	35	1	1/11	5/11
47	41	1	1/11	6/11
41	42	1	1/11	7/11
34	43	1	1/11	8/11
34	47	1	1/11	9/11
42	82	1	1/11	10/11
35				

Z definice emp. dist. funkce F(x) tedy plyne, že pro všechna x menší než 19 je F(x) rovna nule, pro x větší než 19 a menší nebo rovna 22 je F(x) rovna 1/11, pro x větší než 22 a menší nebo rovna 27 je F(x) rovna 1/11 + 1/11, atd.

X	(−∞;19) (19;2	$22\rangle$	(22	2;27)		(27;34)	(34;35)
F(x)	0	1/1	11	/	2/11		3/11	5/11
x	(35;41)	$\langle 41; 42 \rangle$	(42;	43>	(43;4	$7\rangle$	(47;82)	(82;∞)
F(x)	6/11	7/11	8/1	11	9/11		10/11	11/11

2.5. Firma vyrábějící tabulové sklo vyvinula méně nákladnou technologii pro zlepšení odolnosti skla vůči žáru. Pro testování bylo vybráno 5 tabulí skla a rozřezáno na polovinu. Jedna polovina pak byla ošetřena novou technologií, zatímco druhá byla ponechána jako kontrolní. Obě poloviny pak byly vystaveny zvyšujícímu se působení tepla, dokud nepraskly. Výsledky byly následující:

Mezní teplota (sklo prasklo) [°C]			
Stará technologie	Nová technologie		
Xi	yi		
475	485		
436	390		
495	520		
483	460		
426	488		

Porovnejte obě technologie pomocí základních charakteristik exploratorní statistiky (průměru a rozptylu, popř. směrodatné odchylky).

Řešení:

- Nejprve se pokusíme porovnat obě technologie pouze za pomocí průměru:

Průměr pro starou technologii:

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{475 + 436 + \dots + 426}{5} = 463,0 \quad [°C]$$

Průměr pro novou technologii:

$$\overline{y} = \frac{\sum_{i=1}^{n} y_i}{n} = \frac{485 + 390 + \dots + 488}{5} = 468,6 \quad [°C]$$

Na základě vypočtených průměrů bychom mohli říci, že novou technologii doporučujeme, poněvadž mezní teplota je při nové technologii téměř o 6°C vyšší.

A co na to míry variability?

Stará technologie:

Výběrový rozptyl:

$$s_x^2 = \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n-1} = \frac{(475 - 463, 0)^2 + (436 - 463, 0)^2 + \dots + (426 - 463, 0)^2}{5-1} = 916,3 \quad \left[{}^o C^2\right]$$

Výběrová směrodatná odchylka:

$$s_{x} = \sqrt{\frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n-1}} = \sqrt{s_{x}^{2}} = \sqrt{916.3} = 30.3 \quad \left[{}^{o}C \right]$$

Nová technologie:

Výběrový rozptyl:

$$s_{y}^{2} = \frac{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}{n-1} = \frac{(485 - 468, 6)^{2} + (390 - 468, 6)^{2} + \dots + (488 - 468, 6)^{2}}{5-1} = 2384, 4 \quad \left[{}^{o}C^{2} \right]$$

Výběrová směrodatná odchylka:

$$s_x = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \overline{y})^2}{n-1}} = \sqrt{s_y^2} = \sqrt{2384.4} = 48.8 \quad \left[{}^{o}C_{y_i} - C_{y_i} \right]$$

Tady pozor. Výběrový rozptyl (výběrová směrodatná odchylka) vyšel pro novou technologii mnohem vyšší než pro technologii starou. Co to znamená? Podívejte se na grafické znázornění naměřených dat.

Mezní teploty pro novou technologii jsou mnohem rozptýlenější, tzn. že tato technologie není ještě dobře zvládnutá a její použití nám nezaručí zkvalitnění výroby. V tomto případě může dojít k silnému zvýšení, ale také k silnému snížení mezní teploty – proto by se měla nová technologie ještě vrátit do vývoje.

Zdůrazněme, že tyto závěry jsou stanoveny pouze na základě exploratorní analýzy, statistika nám nabízí exaktnější metody pro rozhodnutí takovýchto případů (testování hypotéz), s nimiž se seznámíte později.

2.6. Následující data představují dobu čekání [min] zákazníka na obsluhu. Proveď te explorační analýzu pomocí Statgraphicsu.

120	80	100	90
150	5	140	130
100	70	110	100

Řešení daného problému ve Statgraphicsu:

Zadání proměnné:

Chceme-li zadávat ručně novou proměnnou, provedeme DC (dvojklik) na hlavičku sloupce a zadáme parametry proměnné (název, popis (nepovinné), šířku a typ). Přednastavený typ je Numeric, tudíž jej nemusíme měnit.

Modify Column	×
Name:	пк
Doba čekání	
Comment:	Cancel
	Define
Width:	
13	Help
Туре	
Numeric	
C Character	
C Integer	
O Date	
O Month	
C Quarter	
C Time (HH:MM)	
C Time (HH:MM:SS)	
C Fixed Decimal: 2	
C Formula	

Exploratorní analýza pro numerickou proměnnou:

Textové i grafické výstupy popisné (exploratorní) statistiky získáme obdobně jako u kategoriální proměnné.

🦻 STATGRAP	HICS Plus - Untitled StatFoli	D	
File Edit Plot	Describe Compare Relate Spe	cial SnapStats!! View Win	dow Help
	Numeric Data	One-Variable Analysis	ا <mark>الہ اہم</mark> ا
	Categorical Data	Multiple-Variable Analysis	. <u><u> </u></u>
	Distributions	Subset Analysis	led>
	Life Data	Row-Wise Statistics	Doba čekání
	Hypothesis Tests	Power Transformations	120
	Sample-Size Determination	Statistical Tolerance Limits	150
		Outlier Identification	100
			3 100
			4 80
			5 5
			6 70
			7 100
			8 140
			<mark>9</mark> 110
			10 90
			11 130
			12 100

Opět si projdeme jednotlivé výstupy exploratorní analýzy.

V levém dolním okně najdeme <u>souhrnnou statistiku</u> – tj. vybrané charakteristiky příslušné numerické proměnné (doby čekání). Výběr základních charakteristik, které mají být zobrazeny nám umožní RC na oblast souhrnné statistiky. Po jeho provedení se nám objeví následující okno, v němž zvolíme požadované charakteristiky.

Summary Statistics Options		
🔽 Average	Min.	🔲 Skewness
🔽 Median	🔽 Max.	🔽 Std. Skewness
☐ Mode	🔽 Range	🔲 Kurtosis
🔲 Geo. Mean	🔽 Lower Quartile	🔽 Std. Kurtosis
🔽 Variance	🔽 Upper Quartile	Coeff. of Var.
🔽 Std. Deviation	🔲 Interquartile Range	🔲 Sum
🔽 Std. Error		
ОК	Cancel All	Help

Slovník názvů jednotlivých charakteristik:

Count	Rozsah souboru (počet hodnot)
Average	Průměr
Median	Medián
Mode	Modus

Geo. Mean	Geometrický průměr
Variance	Rozptyl (výběrový)
Std. Deviation	Směrodatná odchylka (výběrová)
Std. Error	Standardní chyba (s/\sqrt{n})
Min.	Minimum
Max.	Maximum
Range	Rozpětí (maximum – minimum)
Lower Quartile	Dolní kvartil
Upper Quartile	Horní kvartil
Interquartile range	Interkvartilové rozpětí (IQR)
Skewness	Šikmost
Std. Skewness	Standardizovaná šikmost
Kurtosis	Špičatost
Std. Kurtosis	Standardizovaná špičatost
Coeff. Of Var.	Variační koeficient (s/\overline{x})
Sum	Součet hodnot

Kliknutím na ikonu **Tabular Options** (žlutá ikona, 2. řádek, 2. zleva) se nám objeví nabídka dalších textových výstupu.

Při popisné statistice nás z této nabídky zajímá pouze možnost volby zobrazení kvantilů a číslicového histogramu.

Zvolíme-li si zobrazení kvantilů, objeví se nám textový výstup s hodnotami deseti přednastavených kvantilů. Jejich výběr můžeme změnit provedeme li RC na oblast, v níž jsou kvantily zobrazeny a zvolíme-li Pane Option.

Zvolíme-li v Tabular Options - Stem and Leaf Display, získáme Číslicový histogram

Nyní se zaměříme na pravé horní okno, v němž najdeme tzv. <u>Bodový graf</u> (nazývaný také **rozptylogram**, anglicky Scatterplot). Na ose x jsou v něm vyneseny hodnoty numerické proměnné, na ose y je pořadí, v němž byly hodnoty proměnné zapsány. Je tedy zřejmé, že bodový graf nám umožňuje vizuální posouzení rozptylu proměnné.

Chceme-li **změnit grafické parametry bodového grafu**, provedeme RC na oblast grafu a požadované parametry nastavíme v menu **Graphics Option**.

V pravém dolním rohu najdeme <u>Krabicový graf</u>. Jeho grafické parametry můžeme obdobně jako u Bodového grafu nastavit v menu **Graphics Option**.

Box-and-Whisker Plot

Použité zkratky:

- **DC** dvojklik levým tlačítkem myši
- RC kliknutí pravým tlačítkem myši