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1 Series (of real numbers)

1.1 Sum and convergence of a series

Definition 1.1. The expression

a1 + a2 + · · · + an + . . . =
∞∑︂

n=1
an (1.1)

(i.e. a formal ordered sum) with an ∈ R for every n ∈ N is called a series (of real numbers).1

The number an is the n-th element of the series (1.1), the sequence (sn) defined by the
expression

sn := a1 + a2 + · · · + an =
n∑︂

k=1
ak

is the sequence of partial sums of (1.1).

If the limit
s := lim sn ∈ R∗

exists, it is called the sum of the series (1.1) and we write 2

∞∑︂
n=1

an = s;

moreover, if s ∈ R, then the series (1.1) is convergent (summable). If the series
∞∑︁

n=1
an has no

sum,3 or if
∞∑︁

n=1
an ∈ {+∞, −∞}, then the series (1.1) is divergent.

Examples 1.2.

a)

1 + 2 + 3 + . . . =
∞∑︂

n=1
n = +∞ ... divergent (arithmetic) series.

(︂
sn = n(n + 1)

2 → +∞ .
)︂

1I.e. (an) is a sequence of real numbers.
2Notice that by the symbol

∞∑︁
n=1

an we denote both the series and its sum, i.e. a number! There is no need to

worry though, it will always be possible to distinguish between these two from context.
3Meaning that lim sn does not exist.
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b)

1 + (−1) + 1 + (−1) + . . . =
∞∑︂

n=1
(−1)n+1 ... divergent series.

(︃
sn =

{︄
0, for n even,

1, for n odd.

)︃
Be careful about the placement of parentheses. It holds that

(1 − 1) + (1 − 1) + (1 − 1) + . . . = 0 + 0 + 0 + . . . = 0,

1 + (−1 + 1) + (−1 + 1) + . . . = 1 + 0 + 0 + . . . = 1.

c) The sum of (the geometric) series

1 + q + q2 + . . . =
∞∑︂

n=1
qn−1

with q ∈ R exists if and only if q > −1. In particular, we have
∞∑︂

n=1
qn−1 =

{︄
+∞, for q ≥ 1,

1
1−q , for − 1 < q < 1.

(︃
sn =

{︄
n, for q = 1,
1−qn

1−q , for q ̸= 1.

)︃
d)

1 + 1
2 + 1

3 + . . . =
∞∑︂

n=1

1
n

= +∞ ... divergent (the so-called harmonic) series.

Try to prove the assertion above by the (obvious) inequality

∀k ∈ N : 1
2k + 1 + 1

2k + 2 + 1
2k + 3 + · · · + 1

2k+1 ≥ 1
2k+1

(︂
2k+1 − 2k

)︂
= 1

2 .

Theorem 1.3 (Necessary condition of convergence). If the sequence
∞∑︁

n=1
an, converges, then

lim an = 0.

Proof. Due to the assumption it holds for the sequence of partial sums

sn :=
n∑︂

k=1
ak

that
s := lim sn ∈ R (!),

and thus
lim an = lim(sn − sn−1) = lim sn − lim sn−1 = s − s = 0.
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Examples 1.4.

a)
∞∑︁

n=1
(−1)nn2 diverges since lim(−1)nn2 does not exist.

b)
∞∑︁

n=1
n2 diverges since lim n2 = +∞.

c)
∞∑︁

n=1
1
n diverges even though lim 1

n = 0.

(The converse of the implication in Theorem 1.3 does not hold!)

Theorem 1.5 (Bolzano–Cauchy condition). The sequence
∞∑︁

n=1
an converges if and only if

(︂
∀ε ∈ R+

)︂
(∃n0 ∈ N) (∀m, n ∈ N; n0 ≤ m < n) :

⃓⃓⃓⃓ n∑︂
k=m+1

ak

⃓⃓⃓⃓
< ε.

Proof. The theorem is a direct corollary of the assertion that a sequence of real numbers is
convergent if and only if it is a Cauchy sequence and its equivalence to the fact that the sequence
sn :=

n∑︁
k=1

ak of partial sums of the series
∞∑︁

n=1
an is a Cauchy sequence, i.e.

(︂
∀ε ∈ R+

)︂
(∃n0 ∈ N) (∀n, m ∈ N; n, m ≥ n0) : |sn − sm| < ε.

Theorem 1.6. If the series
∞∑︁

n=1
|an| is convergent, then the series

∞∑︁
n=1

an converges as well.

Proof. First we define (for every n ∈ N):

a+
n := max{an, 0} = 1

2
(︁
|an| + an

)︁
≥ 0,

a−
n := max{−an, 0} = 1

2
(︁
|an| − an

)︁
≥ 0;

s+
n := a+

1 + a+
2 + · · · + a+

n ,

s−
n := a−

1 + a−
2 + · · · + a−

n .

We aim to prove that the sequence of partial sums

sn :=
n∑︂

k=1
ak =

n∑︂
k=1

(a+
k − a−

k ) =
n∑︂

k=1
a+

k −
n∑︂

k=1
a−

k = s+
n − s−

n

is convergent, i.e. that its limit is finite. It is sufficient to prove convergence of the sequences
(s+

n ) and (s−
n ). Both of these sequences are non-increasing and due to the assumption

∞∑︂
n=1

|an| =: s ∈ R
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and due to relations

s+
n = a+

1 + a+
2 + · · · + a+

n ≤ |a1| + |a2| + · · · + |an| ≤
∞∑︂

n=1
|an| = s,

s−
n = a−

1 + a−
2 + · · · + a−

n ≤ |a1| + |a2| + · · · + |an| ≤
∞∑︂

n=1
|an| = s,

holding for every n ∈ N the sequences are also bounded from above. Their convergence is thus a
direct consequence of the known proposition on the limit of a monotone sequence. 4

Definition 1.7. If the series
∞∑︁

n=1
|an| converges, then the (convergent!) series

∞∑︁
n=1

an is said to

converge absolutely. If the series
∞∑︁

n=1
an converges and simultaneously the series

∞∑︁
n=1

|an| diverges,

the series
∞∑︁

n=1
an is said to converge non-absolutely. 5

Examples 1.8.

a)
∞∑︁

n=1
(−1)n 1

n ... non-absolutely convergent series.

(The assertion will be proven later by the Leibniz criterion.)

b)
∞∑︁

n=1
(−1)n 1

n2 ... absolutely convergent series.

(The assertion will be proven later by the integral criterion.)

1.2 Absolute convergence tests

Convention. We say that

V (n) holds for all sufficiently large n ∈ N,

if
(∃n0 ∈ N) (∀n ∈ N, n ≥ n0) : V (n).

4Theorem (on the limit of a monotone sequence).

If the sequence (αn) is non-decreasing, it holds that

lim αn = sup {αn : n ∈ N}.

If the sequence (βn) is non-increasing, it holds that

lim βn = inf {βn : n ∈ N}.

5Notice that the sum
∞∑︁

n=1
|an| always exists (the corresponding sequence of partial sums is non-decreasing), it

can be, however, equal to +∞.
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Theorem 1.9 (Direct comparison test). Let
∞∑︁

n=1
an and

∞∑︁
n=1

bn denote series such that

i) |an| ≤ bn for all sufficiently large n ∈ N,

ii)
∞∑︁

n=1
bn converges.

Then
∞∑︁

n=1
an converges absolutely.

Proof. From the assumptions it follows that the sequence of partial sums of the sequence
∞∑︁

n=1
|an|

is bounded from above, and since it is – as we found out earlier – non-decreasing, it has a finite

limit. The limit is
∞∑︁

n=1
|an|. 6

Example 1.10.
∞∑︂

n=1

(−1)n

n

(︃ 1
1977

)︃n

converges absolutely, since for every n ∈ N it holds that⃓⃓⃓⃓(−1)n

n

(︃ 1
1977

)︃n ⃓⃓⃓⃓
≤
(︃ 1

1977

)︃n

and
∞∑︁

n=1

(︂
1

1977

)︂n
is a convergent (geometric) series (−1 < q := 1

1977 < 1).

Observation (and a direct corollary of Theorem 1.9.)

Let
∞∑︁

n=1
an and

∞∑︁
n=1

bn denote series such that 0 ≤ an ≤ bn for all sufficiently large n ∈ N and

assume that
∞∑︁

n=1
an = +∞. Then it holds that

∞∑︁
n=1

bn = +∞.

Example 1.11.
∞∑︂

n=1

ln(1966 + n)
n

diverges, because we have

0 ≤ 1
n

≤ ln(1966 + n)
n

(for all n ∈ N)

and moreover
∞∑︁

n=1
1
n = +∞.

Theorem 1.12 (Ratio test (D’Alembert’s criterion)). For an arbitrary series
∞∑︁

n=1
an the following

assertions hold.
6If the proof is not clear enough, the reader is advised to think through all the steps carefully!
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i) If there exists q ∈ (0, 1)such that⃓⃓⃓⃓
an+1
an

⃓⃓⃓⃓
≤ q for all sufficiently large n ∈ N,

then the series
∞∑︁

n=1
an converges absolutely.

ii) If ⃓⃓⃓⃓
an+1
an

⃓⃓⃓⃓
≥ 1 for all sufficiently large n ∈ N,

then the series
∞∑︁

n=1
an diverges.

Proof.
a) First we prove assertion i).

|a1| + |a2| + · · · + |an0 | + |an0+1| + |an0+2| + . . .

≤ |a1| + |a2| + · · · + |an0−1| + |an0 | + q|an0 | + q2|an0 | + . . .

= |a1| + |a2| + · · · + |an0−1| + |an0 |(1 + q + q2 + . . . )

= |a1| + |a2| + · · · + |an0−1| + |an0 |
∞∑︂

n=1
qn−1

= |a1| + |a2| + · · · + |an0−1| + |an0 | 1
1 − q

< +∞.

b) Also the proof of ii) is straightforward. From the assumption⃓⃓⃓⃓
an+1
an

⃓⃓⃓⃓
≥ 1 for all sufficiently large n ∈ N

it follows that
(∃n0 ∈ N) (∀n ∈ N, n ≥ n0) : |an+1| ≥ |an| > 0,

and thus
(∃n0 ∈ N) (∀n ∈ N, n ≥ n0) : |an| ≥ |an0 | > 0.

One can easily conclude that the necessary condition for series convergence, lim an = 0 (see
Theorem 1.3), does not hold for

∞∑︁
n=1

an. The series
∞∑︁

n=1
an is thus divergent.

The following theorem is a direct corrolary of Theorem 1.12.

Theorem 1.13 (Limit ratio test (Limit d’Alembert criterion)).
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i) If
lim

⃓⃓⃓⃓
an+1
an

⃓⃓⃓⃓
< 1,

then the series
∞∑︁

n=1
an converges absolutely.

ii) If
lim

⃓⃓⃓⃓
an+1
an

⃓⃓⃓⃓
> 1,

then the series
∞∑︁

n=1
an diverges.

Proof.
a) First we investigate why assertion i) holds. Let us (arbitrarily) choose

q ∈
(︃

lim
⃓⃓⃓⃓
an+1
an

⃓⃓⃓⃓
, 1
)︃

⊂ (0, 1).

Then it is obvious that ⃓⃓⃓⃓
an+1
an

⃓⃓⃓⃓
≤ q for all sufficiently large n ∈ N,

and the assertion follows directly from the already proven assertion i) of Theorem 1.12.
b) Proof of assertion ii). If

lim
⃓⃓⃓⃓
an+1
an

⃓⃓⃓⃓
> 1,

then it follows that ⃓⃓⃓⃓
an+1
an

⃓⃓⃓⃓
≥ 1 for all sufficiently large n ∈ N.

Thus, divergence of the series
∞∑︁

n=1
an follows directly from assertion ii) of Theorem 1.12.

Examples 1.14.

1. ∞∑︂
n=1

(−1)n n2

3n
converges absolutely,

because ⃓⃓⃓⃓
⃓⃓(−1)n+1 (n+1)2

3n+1

(−1)n n2

3n

⃓⃓⃓⃓
⃓⃓ = 1

3
(n + 1)2

n2 → 1
3 < 1.
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2. ∞∑︂
n=1

n!
10n

diverges,

since ⃓⃓⃓⃓
⃓⃓ (n+1)!

10n+1

n!
10n

⃓⃓⃓⃓
⃓⃓ = 1

10
(n + 1)!

n! = 1
10(n + 1) → +∞ > 1.

3. Be careful! The ratio test is not helpful for e.g.
∞∑︁

n=1
1
n since

1 >

⃓⃓⃓⃓
⃓

1
n+1

1
n

⃓⃓⃓⃓
⃓ = n

n + 1 → 1.

Theorem 1.15 (Root test (Cauchy’s criterion)). For an arbitrary series
∞∑︁

n=1
an the following

assertions hold.

i) If there exists q ∈ (0, 1) such that

n

√︂
|an| ≤ q for all sufficiently large n ∈ N,

then the series
∞∑︁

n=1
an converges absolutely.

ii) If it holds for infinitely many n ∈ N

n

√︂
|an| ≥ 1,

then the series
∞∑︁

n=1
an diverges.

Proof.
a) First let us prove assertion i). From the assumptions it follows that

|an| ≤ qn for all sufficiently large n ∈ N

and that the series ∑︁∞
n=1 qn converges (since it is a geometric series with common ratio

q ∈ (0, 1)). Thus the assertion follows from the direct comparison test (see Theorem 1.9).
b) It remains to prove assertion ii). From the assumptions we have for infinitely many n ∈ N

that |an| ≥ 1. This, however, means that lim an = 0 does not hold, i.e. the necessary
condition for convergence of ∑︁∞

n=1 an is not satisfied (see Theorem 1.3). Thus the series∑︁∞
n=1 an diverges.
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The ‘limit’ version of the theorem follows.

Theorem 1.16 (Limit root test, (Limit Cauchy’s criterion)).

i) If
lim n

√︂
|an| < 1,

then the series
∞∑︁

n=1
an converges absolutely.

ii) If
lim n

√︂
|an| > 1,

then the series
∞∑︁

n=1
an diverges.

Proof.
a) Proof of assertion i). Let us choose (arbitrarily)

q ∈
(︃

lim n

√︂
|an|, 1

)︃
⊂ (0, 1).

Then it obviously holds that

n

√︂
|an| ≤ q for all sufficiently large n ∈ N.

The assertion then follows from the first part of Theorem 1.15.
b) Proof of assertion ii). If

lim n

√︂
|an| > 1,

then
n

√︂
|an| ≥ 1 for all sufficiently large n ∈ N,

and thus
n

√︂
|an| ≥ 1 for infinitely many n ∈ N.

The divergence of the series
∞∑︁

n=1
an then directly follows from assertion ii) of Theorem 1.15.

Examples 1.17.

1. ∞∑︂
n=1

(︃2n + 1
3n − 1

)︃n

converges absolutely,

because
n

√︄(︃2n + 1
3n − 1

)︃n

= 2n + 1
3n − 1 → 2

3 < 1.
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2. ∞∑︂
n=1

2n

n1993 diverges,

since
n

√︃
2n

n1993 = 2
( n

√
n)1993 → 2 > 1.

3. Be careful! Again, the root criterion is not helpful for testing
∞∑︁

n=1
1
n for convergence,

because (for every n ∈ N, n > 1)

1 >
n

√︃
1
n

= 1
n
√

n
→ 1.

Theorem 1.18 (Raabe’s criterion). For an arbitrary series
∞∑︁

n=1
an the following assertions hold.

i) If there exists q > 1 such that

n

(︃
1 −

⃓⃓⃓⃓
an+1
an

⃓⃓⃓⃓)︃
≥ q for all sufficiently large n ∈ N,

then the series
∞∑︁

n=1
an converges absolutely.

ii) If
n

(︃
1 −

⃓⃓⃓⃓
an+1
an

⃓⃓⃓⃓)︃
≤ 1 for all sufficiently large n ∈ N,

then the series
∑︁∞

n=1 an does not converge absolutely (i.e. it either converges non-absolutely
or it diverges).

Proof.
a) First we prove assertion i).

From the condition n
(︂
1 −

⃓⃓⃓
an+1

an

⃓⃓⃓)︂
≥ q it follows that n(|an| − |an+1|) ≥ q|an|. Therefore,

we can assume that there exists n0 ∈ N such that for every n ∈ N, n > n0, it holds that

n0(|an0 | − |an0+1|) ≥ q|an0 |,
(n0 + 1)(|an0+1| − |an0+2|) ≥ q|an0+1|,

. . .

n(|an| − |an+1|) ≥ q|an|.

Summing up the inequalities leads to

n0|an0 | + (|an0+1| + · · · + |an|) − n|an+1| ≥ q|an0 | + q(|an0+1| + · · · + |an|),

and we easily derive that

(q − 1)(|an0+1| + · · · + |an|) ≤ n0|an0 | − n|an+1| − q|an0 | ≤ n0|an0 |.
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Taking into account that q − 1 > 0 we obtain

|an0+1| + · · · + |an| ≤ n0|an0 |
q − 1 for every n ∈ N, n > n0.

We conclude that the sequence of partial sums of the series ∑︁∞
n=1 |an| is bounded from

above, and thus the series ∑︁∞
n=1 an converges absolutely.

b) Now we show that also assertion ii) holds, i.e. (under the above assumptions) that the
series ∑︁∞

n=1 |an| diverges.
The condition n

(︂
1 −

⃓⃓⃓
an+1

an

⃓⃓⃓)︂
≤ 1 can be rewritten as

⃓⃓⃓
an+1

an

⃓⃓⃓
≥ 1 − 1

n = n−1
n . Thus, there

exists n0 ∈ N, n0 ≥ 2, such that for every n ∈ N, n ≥ n0 it holds that⃓⃓⃓⃓
an0+1
an0

⃓⃓⃓⃓
≥ n0 − 1

n0
,⃓⃓⃓⃓

an0+2
an0+1

⃓⃓⃓⃓
≥ n0

n0 + 1 ,

. . .⃓⃓⃓⃓
an+1
an

⃓⃓⃓⃓
≥ n − 1

n
.

Multiplying the above inequalities (comparing positive numbers) leads to⃓⃓⃓⃓
an+1
an0

⃓⃓⃓⃓
≥ n0 − 1

n
,

and thus
|an+1| ≥ |an0 |(n0 − 1) 1

n
for every n ∈ N, n ≥ n0.

Taking into account divergence of the harmonic series ∑︁∞
n=1

1
n we conclude that ∑︁∞

n=1 |an+1|
(and therefore also ∑︁∞

n=1 |an|) diverges (see corollary of Theorem 1.9).

The following theorem is a direct corollary of Theorem 1.18.

Theorem 1.19 (Limit Raabe’s criterion).

i) If
lim n

(︃
1 −

⃓⃓⃓⃓
an+1
an

⃓⃓⃓⃓)︃
> 1,

then the series
∑︁∞

n=1 an converges absolutely.

ii) If
lim n

(︃
1 −

⃓⃓⃓⃓
an+1
an

⃓⃓⃓⃓)︃
< 1,

then the series
∑︁∞

n=1 an does not converge absolutely (i.e. it either converges non-absolutely
or it diverges).
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Proof. The proof follows the steps of the proof of Theorem 1.13 and is thus left to the diligent
reader.

Examples 1.20.
1. The series ∑︁∞

n=1
1

n3 converges, because

lim n

(︃
1 −

⃓⃓⃓⃓
an+1
an

⃓⃓⃓⃓)︃
= lim n

(︄
1 − n3

(n + 1)3

)︄

= lim n((n + 1)3 − n3)
(n + 1)3 = lim 3n3 + 3n2 + n

n3 + 3n2 + 3n + 1 = 3 > 1.

2. The series ∑︁∞
n=1

(2n)!
4n(n!)2 diverges, since

lim n

(︃
1 −

⃓⃓⃓⃓
an+1
an

⃓⃓⃓⃓)︃
= lim n

(︃
1 − (2n + 2)(2n + 1)

4(n + 1)2

)︃
= lim n

(︃
1 − 2n + 1

2(n + 1)

)︃
= lim n

2n + 2 = 1
2 < 1.

Note that the ratio test is not applicable here since

1 >
⃓⃓⃓an+1

an

⃓⃓⃓
→ 1.

Theorem 1.21 (Integral test). Let f : R → R denote a function non-increasing in [1, +∞)
and assume that for every n ∈ N it holds that |an| = f(n).

Then the series
∞∑︁

n=1
an converges absolutely if and only if the improper integral

∫︁∞
1 f(x) dx

converges (i.e. the limit limc→∞
∫︁ c

1 f(x) dx exists and is finite).

Proof. First we define

sn :=
n∑︂

k=1
|ak|

for every n ∈ N. Notice that the limits

lim sn =
∞∑︂

n=1
|an| ∈ R∗,

lim
c→∞

∫︂ c

1
f(x) = lim

∫︂ n

1
f(x) dx =

∫︂ ∞

1
f(x) dx ∈ R∗

exist7.

We have to prove the equivalence
∞∑︂

n=1
|an| < +∞ ⇔

∫︂ ∞

1
f(x) dx < +∞. (1.2)

7A question to the reader: ‘Why do they exist?’
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It follows from the assumptions that8

sn =
n∑︂

k=1
|ak| =

n∑︂
k=1

f(k) ≥
∫︂ n+1

1
f(x) dx ≥

n+1∑︂
k=2

f(k) =
n+1∑︂
k=2

|ak| = sn+1 − |a1|.

Passing to the limit (n → ∞) leads to inequalities
∞∑︂

n=1
|an| ≥

∫︂ ∞

1
f(x) dx ≥

∞∑︂
n=1

|an| − |a1|,

from which the equivalence (1.2) follows easily.

Examples 1.22.

1. ∞∑︂
n=1

(−1)n

n2 converges absolutely,

since ∫︂ ∞

1

1
x2 dx =

[︃
− 1

x

]︃∞

1
= 0 − (−1) = 1 < +∞.

2. ∞∑︂
n=1

1
n

diverges,

because ∫︂ ∞

1

1
x

dx = [ln x]∞1 = +∞ − 0 = +∞.

The reader should think through for which α ∈ R the series
∞∑︁

n=1
1

nα converges.

1.3 Non-absolute convergence tests

Let us first note that the term ‘non-absolute convergence tests’ may sound misleading. The
following theorems do not assert that the corresponding sequences (satisfying certain qualities)
converge non-absolutely. Instead, the following tests ensure that the series converge (possibly
absolutely).

First we provide a test of convergence for alternating series (i.e. series whose terms alternate
between positive and negative).

8It is helpful to draw a figure!
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Theorem 1.23 (Leibniz criterion). Let (an) denote a monotonic sequence defined in N such
that lim an = 0.9 Then the sequence

a1 − a2 + a3 − a4 + · · · =
∞∑︂

n=1
(−1)n+1 an

converges.

Proof. Assume, for example, that

∀n ∈ N : 0 ≤ an+1 ≤ an.

From the sequence

sn :=
n∑︂

k=1
(−1)k+1ak

of partial sums of the series in question we choose subsequences of odd elements (except for the
first one) and of even elements, i.e.

s∗
n := s2n+1, s∗∗

n := s2n.

Since we know (by assumption ii)) that for every n ∈ N it holds that

s∗
n+1 = s2n+3 = s2n+1 − a2n+2 + a2n+3 ≤ s2n+1 = s∗

n,

s∗∗
n+1 = s2n+2 = s2n + a2n+1 − a2n+2 ≥ s2n = s∗∗

n ,

the limits
lim s∗

n ∈ R ∪ {−∞},

lim s∗∗
n ∈ R ∪ {+∞}

exist10. Moreover, due to assumption iii) we have

lim(s∗
n − s∗∗

n ) = lim(s2n+1 − s2n) = lim a2n+1 = 0,

and thus
lim s∗

n = lim s∗∗
n =: s ∈ R !

Now it easily follows (the readers will think this through!), that
∞∑︂

n=1
(−1)n+1 an = lim sn = s ∈ R,

which was to be proven.

9Notice that for a monotonic sequence (an) with a vanishing limit exactly one of the following possibilities
holds.

i) ∀n ∈ N : 0 ≤ an+1 ≤ an,
ii) ∀n ∈ N : 0 ≥ an+1 ≥ an.

10See Theorem on monotonic sequences.
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Example 1.24. The series

1 − 1
2 + 1

3 − 1
4 + . . . =

∞∑︂
n=1

(−1)n+1 1
n

is non-absolutely convergent, because it holds that

• ∀n ∈ N : 1
n+1 ≤ 1

n ,

• lim 1
n = 0;

•
∞∑︁

n=1

⃓⃓⃓
(−1)n+1 1

n

⃓⃓⃓
=

∞∑︁
n=1

1
n = +∞.

Theorem 1.25 (Dirichlet’s test). Let (an) denote a monotonic sequence defined in N such that
lim an = 0 and assume that the sequence of partial sums of the series

∑︁∞
n=1 bn is bounded. Then

the series
∑︁∞

n=1 anbn converges.

Proof. Without loss of generality let us assume that (an) is non-increasing (for a non-decreasing
sequence it would suffice to switch to (−an)). This means that an ≥ 0 for all n ∈ N (taking into
account lim an = 0). By the assumptions it further follows that the sequence

sn :=
n∑︂

k=1
bk

of partial sums of the series ∑︁∞
n=1 bn satisfies(︂

∃k ∈ R+
)︂

(∀n ∈ N) : |sn| ≤ k.

Now it is sufficient to show (due to Theorem 1.5) that for the series ∑︁∞
n=1 anbn the Bolzano–

Cauchy condition(︂
∀ε ∈ R+

)︂
(∃n0 ∈ N) (∀m, n ∈ N; n0 ≤ m < n) :

⃓⃓⃓ n∑︂
k=m+1

akbk

⃓⃓⃓
< ε

holds.

Let ε > 0 be given. From the assumption lim an = 0 it follows that(︁
∃n0 ∈ N

)︁
(∀n ∈ N; n ≥ n0) : an = |an| <

ε

2k
.

It remains to prove that for every m, n ∈ N, n0 ≤ m < n, it holds that
⃓⃓⃓ n∑︁

k=m+1
akbk

⃓⃓⃓
< ε.

Direct computation leads to

|am+1bm+1 + · · · + anbn| = |am+1(sm+1 − sm) + · · · + an(sn − sn−1)| =
= | − am+1sm + (am+1 − am+2)sm+1 + · · · + (an−1 − an)sn−1 + ansn|
≤ am+1|sm| + (am+1 − am+2)|sm+1| + · · · + (an−1 − an)|sn−1| + an|sn|

≤ kam+1 + k(am+1 − am+2) + · · · + k(an−1 − an) + kan = 2kam+1 < ε.
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Remark 1.26. Theorem 1.23 is now a direct corollary of Theorem 1.25. It is sufficient to define
bn := (−1)n+1. Clearly, then the sequence of partial sums of the series

∞∑︂
n=1

bn =
∞∑︂

n=1
(−1)n+1

is bounded.

Example 1.27. The series
∞∑︂

n=1

sin n

nα

is convergent for arbitrary α > 0, because the sequence
(︂

1
nα

)︂
is monotonic and converges to zero

and the sequence of partial sums of the series ∑︁∞
n=1 sin n is bounded11 (see Theorem 1.25).

Theorem 1.28 (Abel’s test). Let (an) denote a monotonic bounded sequence defined in N and
assume that the series

∑︁∞
n=1 bn converges. Then the series

∑︁∞
n=1 anbn converges as well.

Proof. By the assumptions there exists a finite lim an =: a. For every n ∈ N we define

a⋆
n := an − a.

The sequence (a⋆
n) is clearly monotonic and its limit vanishes; moreover, since the series ∑︁∞

n=1 bn

converges, its sequence of partial sums is bounded. From Dirichlet’s test (see Theorem 1.25) it
follows that the series ∑︁∞

n=1 a⋆
nbn is convergent.

The rest is simple, since for the sequence (sn) of partial sums of the series ∑︁∞
n=1 anbn it holds

that

sn :=
n∑︂

k=1
akbk =

n∑︂
k=1

(a⋆
k + a)bk =

n∑︂
k=1

a⋆
kbk + a

n∑︂
k=1

bk →
∞∑︂

k=1
a⋆

kbk + a
∞∑︂

k=1
bk ∈ R.

Examples 1.29.
a) The series

∞∑︂
n=1

(︃
arctan n

sin n

nα

)︃
11This assertion is not trivial. The interested reader can (e.g. by mathematical induction or using complex

numbers) prove that for every n ∈ N it holds that

sn :=
n∑︂

k=1

sin k =
sin n+1

2 sin n
2

sin 1
2

, and thus |sn| ≤ 1
sin 1

2
.
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converges for an arbitrary α > 0, because in Example 1.27 we showed that ∑︁∞
n=1

sin n
nα

is convergent. Furthermore, it is obvious that the sequence (arctan n) is monotonic and
bounded. The assertion then follows directly by Theorem 1.28.

b) If ∑︁∞
n=1 bn denotes an arbitrary convergent series, then also (see Theorem 1.28) the series∑︁∞

n=1
n+1

n bn converges, as the sequence
(︂

n+1
n

)︂
is monotonic and bounded.

1.4 Some final remarks

Remark 1.30 (remainder of a series). For a series
∞∑︁

n=1
an and n ∈ N we define the remainder after

the nth element as12

an+1 + an+2 + an+3 + . . . =
∞∑︂

k=n+1
ak.

It is often useful (for a convergent series) to estimate the sum of the remainder.13 However,
this might not be easy. For illustration let us note that under the assumptions of the Leibniz
criterion it holds for every n ∈ N that14

⃓⃓⃓⃓
⃓

∞∑︂
n=1

(−1)n+1an −
n∑︂

k=1
(−1)k+1ak

⃓⃓⃓⃓
⃓ =

⃓⃓⃓⃓
⃓⃓ ∞∑︂
k=n+1

(−1)k+1ak

⃓⃓⃓⃓
⃓⃓ ≤ |an+1|.

The reader can also attempt to estimate the remainder under the assumptions of other
convergence tests.
Remark 1.31 (Rearranging series). If the mapping

φ : N → N

is

• defined in all N,

• injective,

• surjective (i.e. φ(N) = N),

12The symbol ‘
∞∑︁

n=α

an’, where 1 < α ∈ N, is used to denote ‘whole’ series, not only their remainders (after all, a

remainder of a sequence is a ‘whole’ sequence). It will be clear for the reader which series are dealt with, if we

write – for example –
∞∑︁

n=3

1
n−2 ,

∞∑︁
n=18

ln(n−17)
n5 , . . .

13Note the obvious assertion that

A series is convergent if and only if its remainder after the nth element is convergent.

14It is a matter of honor for every reader to proof the estimate.
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then the series ∞∑︂
n=1

aφ(n)

is a rearrangement of the series
∞∑︁

n=1
an.

It can be shown that the following holds.

i) If the series
∞∑︁

n=1
an is absolutely convergent, then also

∞∑︁
n=1

aφ(n) converges absolutely
and their sums are equal.

ii) If the sequence
∞∑︁

n=1
an is non-absolutely convergent, there exist rearrangements such

that the new series sums to an a-priori given number in R∗, or such that the sum does not
exist at all.

Remark 1.32 (series of complex numbers). The expression

a1 + a2 + · · · + an + . . . =
∞∑︂

n=1
an,

where an ∈ C for every n ∈ N is called a series of complex numbers.

Let us denote for every n ∈ N:
αn = Re an,

βn = Im an,

i.e.
an = αn + βni;

αn, βn ∈ R.

The series
∞∑︁

n=1
an converges if there exist finite(!) sums of the series

∞∑︂
n=1

αn =: α ∈ R,

∞∑︂
n=1

βn =: β ∈ R.

and the sum of the series
∞∑︁

n=1
an is defined by the (complex) number

s := α + βi.

The reader interested in series of complex numbers is referred to [2].
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2 Sequences and series of functions

2.1 Pointwise and uniform convergence

Definition 2.1. A sequence of real functions (fn) converges pointwise to a function f on a set
M ⊂ R if it holds that

∀x ∈ M : lim fn(x) = f(x),

i.e. if the following holds

(∀x ∈ M)
(︂
∀ε ∈ R+

)︂
(∃n0 ∈ N) (∀n ∈ N, n ≥ n0) : |fn(x) − f(x)| < ε.

We write fn → f on M .

Remark 2.2. In general, the natural number n0 in the condition above depends on the choice of
x ∈ M and ε ∈ R+. If the number n0 can be chosen independently of x ∈ M , the convergence is
said to be uniform on M . More precisely:

Definition 2.3. A sequence of real functions (fn) converges uniformly on a set M ⊂ R to a
function f if it holds

lim
[︄

sup
x∈M

|fn(x) − f(x)|
]︄

= 0,

i.e. if the following holds(︂
∀ε ∈ R+

)︂
(∃n0 ∈ N) (∀n ∈ N, n ≥ n0) (∀x ∈ M) : |fn(x) − f(x)| < ε.

We write fn ⇒ f on M .

Remark 2.4. Notice that the implication below follows easily

fn ⇒ f on M ⇒ fn → f on M.

Example 2.5. Let fn, where n ∈ N, denote a function defined by the formula

fn(x) := xn − x2n.

Determine if the sequence of functions(fn) converges pointwise or uniformly in the interval [0, 1].

Solution. It is not difficult to find the pointwise limit. It suffices to notice that for an arbitrary
(but fixed) x ∈ [0, 1] we have

lim x2n = lim xn =
{︄

0, for x ∈ [0, 1),
1, for x = 1,

and thus
lim fn(x) = lim(xn − x2n) = 0.
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Therefore, the sequence (fn) converges in [0, 1] pointwise to the function

f(x) := 0.

It remains to determine (and due to Remark 2.4 it is sufficient) if fn ⇒ 0 in [0, 1], i.e. if it
holds that

lim
(︄

sup
x∈[0,1]

|fn(x) − f(x)|
)︄

= lim
(︄

sup
x∈[0,1]

|fn(x)|
)︄

= 0.

It is not difficult to compute that for an arbitrary n ∈ N we have

sup
x∈[0,1]

|fn(x)| = sup
x∈[0,1]

(xn − x2n) = max
x∈[0,1]

(xn − x2n) = 1
4 ,

and therefore the sequence (fn) is not uniformly convergent in [0, 1].

Illustartion: The sequence (fn) is depicted in the following figure,

from which it is clear that for an arbitrary (but fixed) x0 ∈ [0, 1] the sequence
(︁
fn(x0)

)︁
goes to 0,

i.e. that the pointwise limit (fn) is the zero function (in [0, 1]).

If we construct a band of the width 0 < ε < 1
4 around the limit (zero) function (in the figure

we chose ε = 0.05), we find out that none of the graphs of functions fn lies fully inside the band.
This, however, means that the convergence of (fn) to the function f(x) := 0 is not uniform in
[0, 1].

Definition 2.6. Let fn and f , n ∈ N, denote functions defined on a set M ⊂ R. The function
series

f1(x) + f2(x) + · · · + fn(x) + . . . :=
∞∑︂

n=1
fn(x) (2.1)
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converges pointwise (or uniformly, respectively) on a set M to its sum f , if the sequence (sn)
of partial sums of the series (2.1) 15 converges pointwise (uniformly, respectively) to the function
f on M .

2.2 Uniform convergence tests

The proofs of theorems presented in this section are technical and will be omitted. Interested
readers can consult e.g. [1, 4].

Theorem 2.7 (Bolzano–Cauchy’s criterion). A sequence of functions (fn) converges uniformly
on a set M ⊂ R if and only if(︂

∀ε ∈ R+
)︂

(∃n0 ∈ N) (∀m, n ∈ N; m, n ≥ n0) (∀x ∈ M) : |fm(x) − fn(x)| < ε.

Theorem 2.8 (Bolzano–Cauchy’s criterion for series of functions). A series of functions∑︁∞
n=1 fn(x) converges uniformly on a set M ⊂ R if and only if

(︂
∀ε ∈ R+

)︂
(∃n0 ∈ N) (∀m, n ∈ N; n0 ≤ m < n) (∀x ∈ M) :

⃓⃓⃓⃓ n∑︂
k=m+1

fk(x)
⃓⃓⃓⃓

< ε.

(Compare to Theorem 1.5.)

Theorem 2.9 (Weierstrass’s criterion). Let M ⊂ R and let
∑︁∞

n=1 bn,
∑︁∞

n=1 fn(x) denote such a
series that

i) |fn(x)| ≤ bn for every n ∈ N and every x ∈ M ,

ii)
∑︁∞

n=1 bn converges.

Then the series
∑︁∞

n=1 fn(x) converges uniformly on M .

(Compare to Theorem 1.9.)

Example 2.10. The series
∞∑︂

n=1

sin nx

n2 + x2

converges uniformly in R, because

(∀n ∈ N) (∀x ∈ R) :
⃓⃓⃓⃓ sin nx

n2 + x2

⃓⃓⃓⃓
≤ 1

n2 + x2 ≤ 1
n2

and the real series ∑︁∞
n=1

1
n2 converges (e.g. according to the integral test – see Theorem 1.21).

Definition 2.11. A sequence of functions (fn) is monotonic on a set M ⊂ R if one of the
conditions below holds:

15sn(x) :=
n∑︁

k=1
fk(x).
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i) (∀n ∈ N) (∀x ∈ M) : fn(x) ≤ fn+1(x),

ii) (∀n ∈ N) (∀x ∈ M) : fn(x) ≥ fn+1(x).

Definition 2.12. A sequence of functions (fn) is uniformly bounded on a set M ⊂ R if(︂
∃c ∈ R+

)︂
(∀n ∈ N) (∀x ∈ M) : |fn(x)| ≤ c.

Theorem 2.13 (Dirichlet’s criterion for series of functions). Let (fn) denote sequence of functions
on a set M , which satisfies fn ⇒ 0 on M , and assume that the sequence of partial sums of the
series

∑︁∞
n=1 gn(x) is uniformly bounded in M .16 Then the series

∑︁∞
n=1 fn(x)gn(x) converges

uniformly in M .

(Compare to Theorem 1.25.)

Example 2.14. Thanks to the Dirichlet test from Theorem 2.13 we know that the series
∞∑︂

n=1

sin nx

n

converges uniformly in the interval

Iα = [α, 2π − α],

where α ∈ (0, π).
(︁
The sequence of constant functions

(︂
1
n

)︂
is monotonic, 1

n ⇒ 0 in Iα and the
sequence of partial sums of the series

∞∑︂
n=1

sin nx

is uniformly bounded in Iα.17)︁
Remark 2.15. In the last example we showed that for an arbitrarily small α ∈ (0, π) the series of
functions ∞∑︂

n=1

sin nx

n

converges uniformly in [α, 2π − α]. It can be shown that the series converges in [0, 2π], however,
the convergence is not uniform.

16I.e.
(︁
∃c ∈ R+)︁ (∀n ∈ N) (∀x ∈ M) :

⃓⃓∑︁n

k=1 gk(x)
⃓⃓

≤ c.
17By the assertion

(∀x ∈ Iα) (∀n ∈ N) :
n∑︂

k=1

sin kx =
sin
(︂

n+1
2 x
)︂

sin
(︂

n
2 x
)︂

sin x
2

,

which can be proven e.g. by mathematical induction, we easily obtain

(∀n ∈ N) (∀x ∈ Iα) :

⃓⃓⃓⃓
⃓

n∑︂
k=1

sin kx

⃓⃓⃓⃓
⃓ ≤ 1⃓⃓

sin x
2

⃓⃓ ≤ 1
sin α

2
=: c ∈ R+.

This is exactly the above mentioned uniform boundedness of the sequence of partial sums of the series
∑︁∞

n=1 sin nx.
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Theorem 2.16 (Abel’s criterion for series of functions). Let (fn) denote a monotonic and
uniformly bounded sequence of functions in M and assume that the series

∑︁∞
n=1 gn(x) is uniformly

convergent in M . Then also the series
∑︁∞

n=1 fn(x)gn(x) is uniformly convergent in M .

(Compare to Theorem 1.28.)

2.3 Properties of uniformly convergent sequences and series of functions

Theorem 2.17. Let the sequence of functions (fn) converge uniformly to f in an interval I ⊂ R.
If the functions fn are continuous in I for all sufficiently large n ∈ N, then also the function f is
continuous in I.

Remark 2.18. The assumption of uniform convergence cannot be replaced by poitwise convergence.
For example, consider the sequence of functions (fn) defined in the interval I = [0, 1] by

fn(x) := xn.

Obviously, for every x ∈ I it holds that

lim fn(x) = f(x),

where

f(x) =
{︄

0 for x ∈ [0, 1),
1 for x = 1.

All functions fn are continuous in I, fn → f in I, but the limit function f is not continuous in I.

Corollary 2.19. Let I ⊂ R denote an interval and assume that the series of functions
∑︁∞

n=1 fn(x)
converges to its sum

f(x) :=
∞∑︂

n=1
fn(x)

uniformly in I. If the the functions fn are continuous in I for every n ∈ N then the function f
is continuous in I as well.

Theorem 2.17 says that the uniform limit of continuous functions is continuous itself. In a
sense we show below that the assertion can be (under additional requirements) conversed.

Theorem 2.20 (Dini). Assume that a, b ∈ R, a < b, and

i) (fn) is a monotonic sequence of functions continuous in [a, b],

ii) fn → f in [a, b],

iii) the function f is continuous in [a, b].

Then fn ⇒ f in [a, b].
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Corollary 2.21. Let (fn) denote a sequence of non-negative (or non-positive, respectively)
functions continuous in the interval I = [a, b], where a, b ∈ R, a < b, and assume that the
function f(x) := ∑︁∞

n=1 fn(x) is continuous in I. Then the sequence of functions
∑︁∞

n=1 fn(x)
converges uniformly to f in I.

Theorem 2.22. Let the sequence of functions (fn) converge uniformly to f in the interval [a, b],
where a, b ∈ R, a < b. If all the functions fn are (Riemann) integrable in [a, b], then also f is
integrable in [a, b] and it holds ∫︂ b

a
f(x) dx = lim

∫︂ b

a
fn(x) dx.

Remark 2.23. The previous theorem says that under the given assumptions we can interchange a
limit and an integral, i.e. ∫︂ b

a
lim fn(x) dx = lim

∫︂ b

a
fn(x) dx.

In the case of a pointwise convergence we generally cannot interchange the limit a integral
operators. This is demonstrated in the following example.

Example 2.24. Consider a sequence of functions (fn) defined in the interval I = [0, 1] by

fn(x) :=

⎧⎪⎪⎨⎪⎪⎩
n2x for x ∈

[︁
0, 1

2n

]︁
,

n − n2x for x ∈
(︁ 1

2n , 1
n

)︁
,

0 for x ∈
[︁ 1

n , 1
]︁
.

All functions fn are continuous (and thus integrable) in I and it is not difficult to see that for
every x ∈ I it holds that

lim fn(x) = 0.

Direct computation, however, leads to∫︂ 1

0
lim fn(x) dx =

∫︂ 1

0
0 dx = 0 ̸= 1

4 = lim
∫︂ 1

0
fn(x) dx.

Corollary 2.25. Let the series of functions
∑︁∞

n=1 fn(x) converge uniformly in the interval [a, b],
where a, b ∈ R, a < b, to its sum

f(x) :=
∞∑︂

n=1
fn(x).

If all functions fn are (Riemann) integrable in [a, b], then also the function f is integrable in
[a, b] and it holds that ∫︂ b

a
f(x) dx =

∞∑︂
n=1

(︄∫︂ b

a
fn(x) dx

)︄
.

Remark 2.26. The corrollary above says that (under the given assumptions) we can interchange
an integral and a sum (of a series), i.e.∫︂ b

a

(︄ ∞∑︂
n=1

fn(x)
)︄

dx =
∞∑︂

n=1

(︄∫︂ b

a
fn(x) dx

)︄
.
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Theorem 2.27. Let (fn) denote a sequence of functions, each differentiable in an open interval
I ⊂ R, and assume that the sequence (fn) converges (pointwise) to a function f in I and that
the sequence of derivatives (f ′

n) converges uniformly in I. Then the function f is differentiable
in I and it holds that

f ′(x) = lim f ′
n(x) for every x ∈ I,

i.e.
(lim fn)′ = lim f ′

n in I.

Corollary 2.28. Let (fn) denote a sequence of functions differentiable in an open interval
I ⊂ R. Assume that

∑︁∞
n=1 fn(x) converges (pointwise) to a function f in I and that the series

of derivatives
∑︁∞

n=1 f ′
n(x) converges uniformly in I. Then the function f is differentiable in I

and it holds that
f ′(x) =

∞∑︂
n=1

f ′
n(x) for every x ∈ I,

i.e. (︄ ∞∑︂
n=1

fn(x)
)︄′

=
∞∑︂

n=1
f ′

n(x) in I.

2.4 Power and Taylor series

Definition 2.29. A function

a0 + a1(x − x0) + a2(x − x0)2 + · · · =
∞∑︂

n=0
an(x − x0)n, (2.2)

with an ∈ R for every n ∈ N ∪ {0} is called a power series centered in x0 ∈ R.

Let us study the convergence of series (2.2), i.e. let us find out for which x ∈ R the
corresponding series of numbers converges. Clearly, series (2.2) converges for x = x0, i.e. in its
center, where it sums to a0. Now assume that series (2.2) converges in a point x1 ̸= x0 and that
a point x ∈ R satisfies |x − x0| < |x1 − x0|. Then for every n ∈ N it holds that

|an(x − x0)n| = |an(x1 − x0)n|
⃓⃓⃓⃓

x − x0
x1 − x0

⃓⃓⃓⃓n
. (2.3)

From the assumption that the series
∞∑︁

n=0
an(x1 − x0)n converges it follows that (see the

necessary condition of convergence in Theorem 1.3)

lim (an(x1 − x0)n) = 0,

and thus there exists k ∈ R+ such that for every n ∈ N it holds that |an(x1 − x0)n| ≤ k. Moreover,
from the assumption

⃓⃓⃓
x−x0
x1−x0

⃓⃓⃓
< 1 it follows that the (geometric) series

∞∑︂
n=0

k

⃓⃓⃓⃓
x − x0
x1 − x0

⃓⃓⃓⃓n
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converges and by (2.3) (and the comparison test from Theorem 1.9) we obtain that
∞∑︁

n=0
an(x−x0)n

converges absolutely. This observation is further generalized in the following theorem.

Theorem 2.30 (Abel). Let series (2.2) converge in a point x1 ̸= x0 and let us denote

ε = |x1 − x0| > 0.

Then

(i) for x ∈ (x0 − ε, x0 + ε) series (2.2) converges absolutely,
(ii) power series (2.2) converges locally uniformly in the interval 18

(x0 − ε, x0 + ε).

Corollary. If the power series
∞∑︁

n=0
an(x − x0)n diverges in a point x2 ∈ R, it also diverges in

every point of the set
{x ∈ R : |x − x0| > |x2 − x0|}.

The assertion of Abel’s theorem directly leads to the following definition.

Definition 2.31. The number

R := sup
{︄

|x − x0| :
∞∑︂

n=0
an(x − x0)n converges

}︄

is called the radius of convergence of the power series (2.2).

Remark 2.32. Note that these direct corollaries of Abel’s theorem 2.30 and Definition 2.31 of
radius of convergence R ∈ [0, +∞) ∪ {+∞} hold:

(i) if
R = 0,

then the series
∞∑︁

n=0
an(x − x0)n converges if and only if x = x0;

(ii) if
R > 0,

then series (2.2) converges absolutely and locally uniformly in the interval19

(x0 − R, x0 + R);

(iii) series (2.2) diverges if |x − x0| > R.
18Locally uniform convergence in an interval I ⊂ R is a convergence uniform in every closed bounded interval

[a, b] ⊂ I.
19The so-called interval of convergence of the power series (2.2).
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Remark 2.33. Assume that for the radius of convergence R of the power series (2.2) it holds that

0 < R < +∞.

Note that generally we cannot judge on the convergence of this series in the boundary points
of the interval of convergence, i.e. in points x0 − R and x0 + R.

We illustrate this fact by the following three power series:20

∞∑︂
n=1

xn,
∞∑︂

n=1

xn

n
,

∞∑︂
n=1

xn

n2 .

Since for every 0 ̸= x ∈ R it holds that⃓⃓⃓⃓
⃓xn+1

xn

⃓⃓⃓⃓
⃓ → |x|,

⃓⃓⃓⃓
⃓⃓ xn+1

n+1
xn

n

⃓⃓⃓⃓
⃓⃓ → |x|,

⃓⃓⃓⃓
⃓⃓ xn+1

(n+1)2

xn

n2

⃓⃓⃓⃓
⃓⃓ → |x|,

each of the series is convergent for |x| < 1 and divergent for |x| > 1 (see d’Alembert’s criterion
in Theorem 1.13). Thus, (recall Remark 2.32) the radius of convergence of all series is 1 and the
interval of convergence is (−1, 1). We can say the following on the convergence of the series in
points −1 and 1.

• series
∞∑︁

n=1
xn diverges for x = −1 and for x = 1 (in neither case the necessary condition of

convergence is satisfied – see Theorem 1.3);

• the series
∞∑︁

n=1
xn

n converges (non-absolutely) for x = −1 and diverges for x = 1 (see the
Leibniz criterion and integral test in Theorems 1.23 and 1.21, respectively);

• series
∞∑︁

n=1
xn

n2 converges (absolutely) for both x = −1, x = 1 (these assertions easily follow
from the integral test in Theorem 1.21).

Theorem 2.34. Assume that the limits

lim
⃓⃓⃓⃓
an+1
an

⃓⃓⃓⃓
:= L and

(︃
lim n

√︂
|an| := K

)︃

exist. Then it holds for the radius of convergence R of the power series
∞∑︁

n=0
an(x − x0)n that

R =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
L , if 0 < L < +∞,

0, if L = +∞,

+∞, if L = 0,

⎛⎜⎜⎝R =

⎧⎪⎪⎨⎪⎪⎩
1
K , if 0 < K < +∞,

0, if K = +∞,

+∞, if K = 0.

⎞⎟⎟⎠
20In all cases the power series are of the form

∞∑︁
n=0

an(x − x0)n, where x0 = 0 and a0 = 0.
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Proof. It is sufficient to realize that for x ̸= x0 we have

lim
⃓⃓⃓⃓
⃓an+1(x − x0)n+1

an(x − x0)n

⃓⃓⃓⃓
⃓ = L|x − x0| and lim n

√︂
|an(x − x0)n| = K|x − x0|,

and we can use ratio and root tests, from Theorems 1.13, 1.16, respectively.

Example 2.35. Find the interval of convergence of the power series 21 (centered in 1)
∞∑︂

n=0

n

2n
(x − 1)n.

Solution.
lim n

√︃
n

2n
= lim

n
√

n

2 = 1
2 ,

and thus R = 2; the given series converges (absolutely) for every x ∈ (−1, 3) and diverges for
every x ∈ R such that |x − 1| > 2.

For x = −1 and x = 3 the series
∞∑︁

n=0
n
2n (x − 1)n does not converge, since for neither of the

points the necessary condition of convergence is satisfied22 (see Theorem 1.3).

The interval of convergence of the given series is (−1, 3).

Example 2.36. Find the radius of convergence of the power series
∞∑︂

n=0

(2n)!
(n!)2 xn.

Solution.
(2(n+1))!
((n+1)!)2

(2n)!
(n!)2

= (2n + 2)(2n + 1)
(n + 1)(n + 1) → 4,

and thus R = 1
4 .

The following very important theorem follows from Corollaries 2.28, 2.25, and Abel’s theo-
rem 2.30.

Theorem 2.37 (on the differentiation and integration of power series element by element). Let
R > 0 denote the radius of convergence of the power series

a0 + a1(x − x0) + a2(x − x0)2 + a3(x − x0)3 + · · · =
∞∑︂

n=0
an(x − x0)n. (2.4)

21I.e. the set of all x ∈ R for which the series converges.
22I.e. the equality

lim n

2n
(x − 1)n = 0

does not hold.
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Then the radii of convergence of the power series

a1 + 2a2(x − x0) + 3a3(x − x0)2 + · · · =
∞∑︂

n=1
nan(x − x0)n−1,

a0(x − x0) + a1
2 (x − x0)2 + a2

3 (x − x0)3 + · · · =
∞∑︂

n=0

an

n + 1(x − x0)n+1

(obtained by differentiating and integrating series (2.4) ‘element by element’) are equal to R and
for the function S defined by

S(x) :=
∞∑︂

n=0
an(x − x0)n

and every x ∈ (x0 − R, x0 + R) it holds:

S′(x) =
∞∑︂

n=1
nan(x − x0)n−1,

∫︂ x

x0
S(t) dt =

∞∑︂
n=0

an

n + 1(x − x0)n+1.

Remark 2.38. Looking back to the previous theorem we should notice that (under the given
assumptions) the following assertions hold for the sum S of the power series:

i) S is infinitely differentiable and for every p ∈ N and every x ∈ (x0 − R, x0 + R) it holds

S(p)(x) =
∞∑︂

n=p

n (n − 1) . . . (n − p + 1) an (x − x0)n−p,

ii) the function
x ↦→

∫︂ x

x0
S(t) dt

is the primitive function to S in the interval (x0 − R, x0 + R).

Theorem 2.39 (Abel). Let 0 < R < +∞ and assume that the series
∞∑︁

n=0
an(x − x0)n converges

in point x = x0 + R (or in point x = x0 − R, respectively). Then the function S defined by

S(x) :=
∞∑︂

n=0
an(x − x0)n

is continuous from the left in x = x0 + R (or from the right in x = x0 − R, respectively), i.e.

S(x0 + R) = lim
x→x0+R −

S(x),
(︃

S(x0 − R) = lim
x→x0−R +

S(x)
)︃

.



30 2 Sequences and series of functions

Example 2.40. Let us compute the sum of the series

1 − 1
2 + 1

3 − 1
4 + · · · =

∞∑︂
n=1

(−1)n−1 1
n

.

Solution. First, notice that the Leibnitz criterion from Theorem 1.23 guarantees that the given
series converges. Now consider a function S defined by

S(x) :=
∞∑︂

n=1
(−1)n−1 xn

n
.

Because (obviously) the radius of convergence of the given power series is 1) by Theorem 2.37 it
follows that

∀x ∈ (−1, 1) : S′(x) =
∞∑︂

n=1
(−1)n−1 xn−1 =

∞∑︂
n=1

(−x)n−1 = 1
1 + x

.

Using this result (and the obvious fact that S(0) = 0) leads to

∀x ∈ (−1, 1) : S(x) = ln(1 + x).

The rest easily follows from Abel’s theorem 2.39:

∞∑︂
n=1

(−1)n−1 1
n

= S(1) = lim
x→1−

S(x) = lim
x→1−

ln(1 + x) = ln 2.

Example 2.41. Express the function

S(x) := arctan x

as a sum of a power series in the neighbourhood of 0 .

Solution. It is sufficient to observe that

∀x ∈ (−1, 1) : S′(x) = 1
1 + x2 = 1 − x2 + x4 − x6 + · · · =

∞∑︂
n=0

(−1)n x2n,

and thus (see Theorem 2.37 and use the fact that S(0) = arctan 0 = 0)

∀x ∈ (−1, 1) : S(x) = arctan x = x − x3

3 + x5

5 − x7

7 + · · · =
∞∑︂

n=0
(−1)n x2n+1

2n + 1 .

Notice that the constructed power series converges in point x = 1 (see the Leibniz criterion
in Theorem 1.23), and thus we obtain an interesting bonus from Abel’s theorem 2.39:

π

4 = 1 − 1
3 + 1

5 − 1
7 + · · · =

∞∑︂
n=0

(−1)n 1
2n + 1 .
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We conclude the section on series of functions by a short note on a special kind of power
series, namely the Taylor series.

Definition 2.42. Assume that the function f : R → R is infinitely differentiable in point x0 ∈ R.
The power series

f(x0) + f ′(x0)(x − x0) + f ′′(x0)
2! (x − x0)2 + · · · =

∞∑︂
n=0

f (n)(x0)
n! (x − x0)n (2.5)

is the Taylor series of f centered in x0

(Notice the clear connection to Taylor polynomials of f in x0.)

It is an interesting task to find out how the sum of Taylor series (2.5), i.e. a function S
defined by the formula

S(x) :=
∞∑︂

n=0

f (n)(x0)
n! (x − x0)n,

relates to the function f itself.

Example 2.43. Consider thee sum of Taylor series of function f(x) := ex centered in point
x0 = 0, i.e. the function

S(x) := 1 + x

1! + x2

2! + · · · =
∞∑︂

n=0

xn

n! . (2.6)

Since

lim
1

(n+1)!
1
n!

= lim 1
n + 1 = 0,

the radius of convergence of the given Taylor series is R = +∞ (see Theorem 2.34), and thus we
can by Theorem 2.37 say that for every x ∈ R it holds that

S′(x) =
(︂
1 + x

1! + x2

2! + x3

3! + x4

4! + . . .
)︂′

= 0 + 1 + x

1! + x2

2! + x3

3! + . . . = S(x).

This explains why
(︁
since we know that the unique solution to the Cauchy problem⎧⎨⎩f ′(x) = f(x),

f(0) = 1 (= S(0)),

in R is the exponential function f(x) := ex
)︁

we can be sure that S(x) = ex for every x ∈ R.23

Remark 2.44. Similarly as in the previous example it can be shown for many other functions
that they are equal to the sum of their Taylor series. For example

23The proof given above that the function ex is equal to the sum of its Taylor series and the assembly of the
Taylor series itself is a bit problematic – it is not clear how we define function ex. Often, the exponential function
is defined by the sum of the power series from (2.6).
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• sin x = x − x3

3! + x5

5! − x7

7! + · · · =
∞∑︂

n=0
(−1)n x2n+1

(2n + 1)! for every x ∈ R,

• cos x = 1 − x2

2! + x4

4! − x6

6! + · · · =
∞∑︂

n=0
(−1)n x2n

(2n)! for every x ∈ R,

• ln(1 + x) = x − x2

2 + x3

3 − x4

4 + · · · =
∞∑︂

n=1
(−1)n−1 xn

n
for every x ∈ (−1, 1],

. . .

Be careful! This does not hold in general. Consider the function

f(x) :=

⎧⎨⎩e− 1
x2 for x ̸= 0,

0 for x = 0.

It can be shown that all derivatives of f are continuous in R and that the Taylor series of f
centered in 0 is given by

f(0) + f ′(0)x + f ′′(0)
2! x2 + · · · = 0 + 0 + 0 + · · · =

∞∑︂
n=0

0

with its sum vanishing in R. The function f , however, vanishes only in 0.
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