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1 Vector-valued Functions 1

1 Vector-valued Functions

1.1 Vector-valued functions and operations on vector-valued functions

Recall that by Rn we denote a normed vector space whose elements are ordered n-tuples of real
numbers (usually denoted by x = (x1, x2, ..., xn), y = (y1, y2, ..., yn), . . . ) and that the (Euclidean)
norm is defined by

∥x∥ :=
√︂
x2

1 + ...+ x2
n .

For ε ∈ R+ we use the following notation:

U(x, ε) := {y ∈ Rn : ∥x− y∥ < ε} is an ε–neighbourhood of a point x ,
P (x, ε) := U(x, ε) \ {x} is a punctured ε–neighbourhood of a point x
(if the radius ε does not play a significant role, we will use the notation U(x) and P (x)) .

Let us further recall the definition of convergence of sequences in Rn and its properties:

ak = (ak1, ..., akn) → a = (a1, ..., an) def.⇔ ∥ak − a∥ → 0
⇔
[︁
∀i ∈ {1, ..., n} : aki → ai for k → ∞

]︁
.

Example 1.1. Determine if the sequence (ak) in Rn converges and if so, find its limit:

a) n = 2, ak :=
(︄
k3 − k

2k3 + 1 ,
3k + 2k

3k+1 + 2k+1

)︄
;

b) n = 4, ak :=
(︄

2k
k2 + 1 ,

(−1)k
k2 , 0, 2k

k

)︄
.

Solution. The task can be reduced to computing the limit of individual vector elements.

a) lim
(︄
k3 − k

2k3 + 1 ,
3k + 2k

3k+1 + 2k+1

)︄
=
(︄

lim k3 − k

2k3 + 1 , lim 3k + 2k
3k+1 + 2k+1

)︄

=

⎛⎜⎝lim
1 − 1

k2

2 + 1
k3
, lim

1 +
(︂

2
3

)︂k
3 + 2

(︂
2
3

)︂k
⎞⎟⎠ =

(︃1
2 ,

1
3

)︃
, thus ak →

(︃1
2 ,

1
3

)︃
.

b) Since lim 2k
k

= ∞ /∈ R (think this through!), the sequence (ak) diverges.

Exercise 1.2. Determine if the sequence (ak) in R5,

ak :=
(︄(︃

k + 2
k

)︃k
,
k
√
k,

sin k
k

,
k + 1√
4k2 + 1

, (−1)k(
√
k −

√
k + 1)

)︄
,

converges and if so, find its limit.
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Definition 1.3. A mapping from Rn to Rm is a vector-valued function (in more detail: a real
m–dimensional vector-valued function of n real variables).

If f is a vector-valued function from Rn to Rm (denoted by f : Rn → Rm), then every

x = (x1, ..., xn) ∈ Df ⊂ Rn

is mapped to a unique value

f(x) = (f1(x), ..., fm(x)) ∈ Hf ⊂ Rm

(Df is the domain of f , Imf is the image of f).

The functions f1, . . . , fm : Rn → R are the components of a vector-valued function f and
we write f = (f1, ..., fm).

Remark 1.4. If m = n (and mostly m = 2 or m = 3), the function f is called the vector field; if
m = 1, we use the term scalar field.

Convention 1.5. If the vector-valued function f : Rn → Rm is given only by a formula, i.e.
without explicitly specifying its domain (e.g. f(u, v, w) := (sin u, v

√
w)), we assume that its

domain is given by all x ∈ Rn, for which the formula is valid (in our case: Df = {(u, v, w) ∈ R3 :
w ≥ 0}).

Remark 1.6. Note that for f = (f1, . . . , fm) : Rn → Rm given by its formula we have

Df = Df1 ∩ Df2 ∩ · · · ∩ Dfm .

Definition 1.7. Let c ∈ R and f, g : Rn → Rm.
We define the functions f + g, f − g, c · f : Rn → Rm by:

(f ± g)(x) := f(x) ± g(x); (c · f)(x) := c · f(x).

1.2 Limit of a vector-valued function

Definition 1.8. Let f : Rn → Rm, x0 ∈ Rn, a ∈ Rm. The limit of f in x0 is a (and we write
lim
x→x0

f(x) = a), if for every sequence (xk) in Rn it holds that

x0 ̸= xk → x0 =⇒ f(xk) → a.

Theorem 1.9. Let f : Rn → Rm, x0 ∈ Rn, a ∈ Rm. Then it holds that

lim
x→x0

f(x) = a ⇐⇒ (∀U(a)) (∃P (x0)) (∀x ∈ P (x0)) : f(x) ∈ U(a).

(Note that U(a) and P (x0) are subsets of Rm and Rn, respectively.)
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Observation 1.10 (and a proof to the following theorem). Let f = (f1, ..., fm) : Rn → Rm,
x0 ∈ Rn and a = (a1, ..., am) ∈ Rm. Then

lim
x→x0

f(x) = a ⇔

⇔
[︁
x0 ̸= xk → x0 ⇒ f(xk) = (f1(xk), ..., fm(xk)) → a = (a1, ..., am)

]︁
⇔

⇔
[︁
x0 ̸= xk → x0 ⇒ ∀i ∈ {1, ...,m} : fi(xk) → ai for k → ∞

]︁
.

Theorem 1.11. Let f = (f1, . . . , fm) : Rn → Rm, x0 ∈ Rn, a = (a1, . . . , am) ∈ Rm. Then it
holds that

lim
x→x0

f(x) = a ⇐⇒
[︁
∀i ∈ {1, . . . ,m} : lim

x→x0
fi(x) = ai

]︁
.

In other words,
lim
x→x0

(f1(x), ..., fm(x)) =
(︁

lim
x→x0

f1(x), . . . , lim
x→x0

fm(x)
)︁
,

if at least one side of the equality is valid.

Exercise 1.12. Determine if the given limit exists and if it does, evaluate it:

a) lim
(x,y)→(0,0)

(︃
xy

x2 + y2 ,
(x+ y)2

sin(x4 + y6)

)︃
;

b) lim
x→0

(︃
x

tan x,
√

5 −
√

5 + x6

x3

)︃
;

c) lim
(x,y)→(0,0)

(︃
x

tan x,
√

5 −
√︁

5 + y6

y3

)︃
.

1.3 Continuity of a vector-valued function

Definition 1.13. Let f : Rn → Rm and x0 ∈ Rn.
The function f is continuous at point x0 if it holds lim

x→x0
f(x) = f(x0).

Theorem 1.14. Let f : Rn → Rm, x0 ∈ Rn ∩ Df . Then it holds that

f is continuous at point x0 ⇐⇒ [xk → x0 ⇒ f(xk) → f(x0)]

⇐⇒ (∀U(f(x0))) (∃U(x0)) (∀x ∈ U(x0)) : f(x) ∈ U(f(x0)).

Definition 1.15. Let f : Rn → Rm, M ⊂ Rn. We say that

• f is continuous at a point x0 ∈ M on a set M , if for every sequence (xk) in Rn it holds
that

M ∋ xk → x0 ⇒ f(xk) → f(x0) ;

• f is continuous on a set M , if it is continuous on M at every point x0 ∈ M ;

• f is continuous, if it is continuous on Df .
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Theorem 1.16. Let f = (f1, . . . , fm) : Rn → Rm, x0 ∈ M ⊂ Rn. Then f is continuous at
x0, continuous at x0 on M , or continuous on M if for every i ∈ {1, . . . ,m} the function fi is
continuous at x0, continuous at x0 on M , or continuous on M , respectively.

Example 1.17. Linear mapping, i.e. vector-valued function A : Rn → Rm given by the formula

A(x) :=
(︂
AxT

)︂T
,

where

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

a11, a12, . . . , a1n
a21, a22, . . . , a2n

. . . . . .

am1, am2, . . . , amn

⎞⎟⎟⎟⎟⎟⎟⎟⎠
denotes a real matrix of the dimension (m × n) is an important example of a continuous
vector-valued function.

Let us prove that the mapping A defined above is indeed continuous. Firstly notice that
DA = Rn. Let x0 ∈ Rn denote an arbitrary but fixed point and (xk) a sequence in Rn such that

xk = (xk1, ..., xkn) → x0 = (x1, ..., xn).

Then for all i ∈ {1, ..., n} we have xki → xi (for k → ∞), and thus

A(xk) =
(︂
AxTk

)︂T
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎝

a11, a12, . . . , a1n
a21, a22, . . . , a2n

. . . . . .

am1, am2, . . . , amn

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝
xk1
xk2

...
xkn

⎞⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎠

T

= (a11xk1 + · · · + a1nxkn, . . . , am1xk1 + · · · + amnxkn) →

→ (a11x1 + · · · + a1nxn, . . . , am1x1 + · · · + amnxn) =
(︂
AxT0

)︂T
= A(x0).

This concludes the proof (see Definition 1.15).

Exercise 1.18. If possible, define the vector-valued function f at point c so that it is continuous
at c:

a) f(x) :=
(︃tan(x− π)

x− π
, x2 + 6, sin x

x

)︃
, c = π;

b) f(x) :=
(︃1 − cos(2x)

x2 ,
1
x2

(︃
sin
(︃1
x

)︃
− 6

)︃
,
sin x
x

)︃
, c = 0.
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1.4 Differential of a vector-valued function

Definition 1.19. Let f : Rn → Rm and c ∈ Rn. The vector-valued function f is differentiable
at point c if there exists a linear mapping A : Rn → Rm such that for the vector-valued function
ω : Rn → Rm defined as

ω(h) := f(c+ h) − f(c) − A(h)

it holds that
lim

h→(0,...,0)

ω(h)
∥h∥

= (0, ..., 0).

The mapping A is denoted by dfc and we call it the differential of the vector-valued function f
at point c.

Remark 1.20 (illustrating the following theorem). Let f = (f1, f2, f3) : R2 → R3 with f1, f2, f3
differentiable at point c = (c1, c2) ∈ R2. Then for ‘small’ h = (h1, h2) ∈ R2 we have

(f(c+ h) − f(c))T =

⎛⎜⎝f1(c+ h) − f1(c)
f2(c+ h) − f2(c)
f3(c+ h) − f3(c)

⎞⎟⎠ .=

⎛⎜⎝ d(f1)c(h)
d(f2)c(h)
d(f3)c(h)

⎞⎟⎠ =

=

⎛⎜⎜⎜⎝
∂f1
∂x (c)h1 + ∂f1

∂y (c)h2
∂f2
∂x (c)h1 + ∂f2

∂y (c)h2
∂f3
∂x (c)h1 + ∂f3

∂y (c)h2

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
∂f1
∂x (c), ∂f1

∂y (c)
∂f2
∂x (c), ∂f2

∂y (c)
∂f3
∂x (c), ∂f3

∂y (c)

⎞⎟⎟⎟⎠
(︄
h1
h2

)︄
=

:= f ′(c)
(︄
h1
h2

)︄
= f ′(c)hT .

Theorem 1.21. If the vector-valued function f = (f1, ..., fm) : Rn → Rm is differentiable at
a point c ∈ Rn, then there exist the first partial derivatives of all functions f1, ..., fm at point c
with respect to all variables and it holds that

( dfc(h))T = f ′(c)hT ,

where

f ′(c) :=

⎛⎜⎜⎜⎜⎜⎜⎝

∂f1
∂x1

(c), ∂f1
∂x2

(c), . . . , ∂f1
∂xn

(c)

. . . . . .

∂fm
∂x1

(c), ∂fm
∂x2

(c), . . . , ∂fm
∂xn

(c)

⎞⎟⎟⎟⎟⎟⎟⎠ , f ′(c) is the Jacobi matrix,

i.e.
dfc(h) = ( d(f1)c(h), ..., d(fm)c(h)).

Theorem 1.22. A vector-valued function f = (f1, ..., fm) : Rn → Rm is differentiable at point
c ∈ Rn if and only if for every i ∈ {1, ...,m} the function fi : Rn → R is differentiable at c ∈ Rn.
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Example 1.23. Let us determine dfc , where

f : R2 → R3, f(u, v) := (cosu, sin u, v), Df =
[︃
0, π2

]︃
× [0, 2]; c =

(︃
π

4 , 1
)︃
.

Solution. Note that

f ′((u, v)) := f ′(u, v) =

⎛⎜⎝ − sin u, 0
cosu, 0

0, 1

⎞⎟⎠ , f ′(c) =

⎛⎜⎝ −
√

2
2 , 0√
2

2 , 0
0, 1

⎞⎟⎠ ,
and thus

dfc : h = (h1, h2) ↦→ (f ′(c)hT )T =

⎛⎜⎜⎝
⎛⎜⎜⎝

−
√

2
2 , 0

√
2

2 , 0
0, 1

⎞⎟⎟⎠
(︄
h1
h2

)︄⎞⎟⎟⎠
T

=
(︃

−
√

2
2 h1,

√
2

2 h1, h2

)︃
= h1

(︃
−

√
2

2 ,

√
2

2 , 0
)︃

+ h2
(︁
0, 0, 1

)︁
.

For points (u, v) ‘close’ to the point c := (c1, c2) we have

f(u, v) .= f(c1, c2) + dfc(u− c1, v − c2) =

=
(︃√

2
2 ,

√
2

2 , 1
)︃

+
(︃
u− π

4

)︃(︃
−

√
2

2 ,

√
2

2 , 0
)︃

+ (v − 1)
(︁
0, 0, 1

)︁
.

The plane

τ :=
{︃

(x, y, z) ∈ R3 : (x, y, z) =
(︃√

2
2 ,

√
2

2 , 1
)︃

+
(︃
u− π

4

)︃(︃
−

√
2

2 ,

√
2

2 , 0
)︃

+ (v − 1)
(︁
0, 0, 1

)︁
, (u, v) ∈ R2

}︃

is the tangent plane to ‘the surface’ f(Df) at the point f(c) =
(︂√

2
2 ,

√
2

2 , 1
)︂
.

Exercise 1.24. Determine if the vector-valued function f is differentiable at point c and if so,
evaluate f ′(c) and dfc(h):

a) f(x, y, z) :=
(︃
x3y2z,

x− y

z

)︃
, c = (1, 2, 3), h = (h1, h2, h3);

b) f(x) := (cosx, sin x) , c = π

4 , h = −
√

2;

c) f(x, y, z) := (xy, sin(xy), arcsin x) , c = (1, 1, 6), h = (h1, h2, h3).

Exercise 1.25. Let

f = (f1, ..., fm) : Rn → Rm and g = (g1, ..., gk) : Rm → Rk



1 Vector-valued Functions 7

denote vector-valued functions such that for every i ∈ {1, ...,m} and every j ∈ {1, ..., k} it holds
that

fi ∈ C1(Rn) and gj ∈ C1(Rm).

Prove that for every c ∈ Rn it holds that

(g ◦ f)′(c) = g′(f(c)) f ′(c).

Example 1.26. Evaluate f ′(c), g′(f(c)) and (g ◦ f)′(c), where c = (1, 1),

f(x, y) :=
(︃
x2 + y2, ln x+ ln y, x

y

)︃
, g(u, v, w) :=

(︂
uv + 1, u2 − v2 + w,w − u

)︂
.

Solution.

f ′(x, y) =

⎛⎜⎜⎜⎝
∂f1
∂x ,

∂f1
∂y

∂f2
∂x ,

∂f2
∂y

∂f3
∂x ,

∂f3
∂y

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
2x, 2y

1
x ,

1
y

1
y , − x

y2

⎞⎟⎟⎟⎠ ⇒ f ′(c) =

⎛⎜⎜⎝
2, 2
1, 1
1, −1

⎞⎟⎟⎠,

f(c) = (2, 0, 1), g′(u, v, w) =

⎛⎜⎝ v, u, 0
2u, −2v, 1
−1, 0, 1

⎞⎟⎠ ⇒ g′(f(c)) =

⎛⎜⎝ 0, 2, 0
4, 0, 1

−1, 0, 1

⎞⎟⎠,

and thus

(g ◦ f)′(c) = g′(f(c)) f ′(c) =

⎛⎜⎝ 2, 2
9, 7

−1, −3

⎞⎟⎠.
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2 Curves in Rm

Definition 2.1. A continuous vector-valued function in Rm

φ : I → Rm, where I = Dφ ⊂ R is an interval

is called a curve. The set
⟨φ⟩ := φ(I) = {φ(t) : t ∈ I} ⊂ Rm

is the image of the curve φ. If M = ⟨φ⟩, φ defines a parametrization of the set M .

A curve φ is called:

• a simple curve, if φ is injective;
• a closed curve, if I = [a, b] (a, b ∈ R; a < b) and φ(a) = φ(b);
• a simple closed curve, if φ is closed and

∀t1, t2 ∈ [a, b] : [0 < |t1 − t2| < b− a ⇒ φ(t1) ̸= φ(t2)].

If I = [a, b], the point φ(a) (φ(b)) is called the initial (the terminal) point of the curve φ. For
every curve φ : I → Rm we define the curve of opposite orientation as

−φ : J → Rm, where J = {t ∈ R : −t ∈ I} and (−φ)(t) := φ(−t).

Example 2.2. For
φ : [−1, 3] → R2, φ(t) := (t, 1 + t),

the curve with the opposite orientation is given by

−φ : [−3, 1] → R2, (−φ)(t) := (−t, 1 − t).

Definition 2.3. A curve φ = (φ1, ..., φm) : [a, b] → Rm is regular in Rm, if the following
conditions are met:

i) φ is injective (i.e. φ is simple);
ii) φ ∈ C1 in [a, b] (i.e. for every i ∈ {1, ...,m} the function φi is continuously differentiable in

[a, b]);
iii) φ′(t) = (φ′

1(t), ..., φ′
m(t)) ̸= (0, ..., 0) for every t ∈ (a, b), 1

φ′(a) := ((φ1)′
+(a), ..., (φm)′

+(a)) ̸= (0, ..., 0),
φ′(b) := ((φ1)′

−(b), ..., (φm)′
−(b)) ̸= (0, ..., 0).

1We abuse the notation by writing
φ′(t) = (φ′

1(t), ..., φ′
m(t))

instead of
(φ′(t))T = (φ′

1(t), ..., φ′
m(t)).
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Remark 2.4 (to the geometrical interpretation of φ′(t)).
Let φ : [a, b] → Rm denote a regular curve. Then

φ′(t) =
(︃

lim
h→0

φ1(t+ h) − φ1(t)
h

, ... , lim
h→0

φm(t+ h) − φm(t)
h

)︃
= lim

h→0

(︃
φ1(t+ h) − φ1(t)

h
, ... ,

φm(t+ h) − φm(t)
h

)︃
= lim

h→0

φ(t+ h) − φ(t)
h

.

The line
{φ(t) + hφ′(t) : h ∈ R}

is called the tangent line to the curve φ in point t; the vector φ′(t) is called the tangent vector to
the curve φ in point t.

φ(t)

φ(t+ h)

φ(t+h)−φ(t)
h

φ′(t)

Figure 2.1: to illustrate the geometrical interpretation of φ′(t)

Definition 2.5. A curve φ : [a, b] → Rm is piecewise smooth, if there exists a partitioning

D : a = t0 < t1 < ... < tn = b

of the interval [a, b] such that for every i ∈ {1, ..., n} the curve

ψi := φ|[ti−1,ti]

(i.e. Dψi = [ti−1, ti], ψi(t) := φ(t))

is regular.

Example 2.6. Draw the image of the given curves and determine which of them are

• simple;
• closed;
• simple closed;
• regular;
• piecewise smooth:

a) φa(t) := (3 + 2 cos t, 2 + 2 sin t), Dφa = [0, 2π];
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b) φb(t) := (3 + 2 cos(2t), 2 + 2 sin(2t)), Dφb = [0, 2π];

c) φc(t) :=
(︂

2000√
1+t2 ,

2000t√
1+t2

)︂
, Dφc = R;

d) φd(t) := (t, |t|), Dφd = [−2, 2].

Solution.

1

2

3

4

1 2 3 4 5
x

y

t = 0, 2π

t =
π

2

t = π

t =
3π

2

Figure 2.2: ⟨φa⟩ from Ex. 2.6a)

1

2

3

4

1 2 3 4 5
x

y

t = 0, π, 2π

t =
π

4
,
5π

4

t =
π

2
,
3π

2

t =
3π

4
,
7π

4

Figure 2.3: ⟨φb⟩ from Ex. 2.6b)

2000

−2000

2000

x

y

t = 0

t = −1

t = 1

t = −5

t = 5

Figure 2.4: ⟨φc⟩ from Ex. 2.6c)

1

2

-2 -1 1 2
x

y

t = −2

t = 0

t = 2

Figure 2.5: ⟨φd⟩ from Ex. 2.6d)

One can easily check (the images of the given curves in Figures 2.2-2.5 provide helpful hints)
that

• φc and φd are simple;
• φa and φb are closed;
• φa is the only closed simple curve;
• none of the curves is regular;
• φa, φb, and φd are piecewise smooth.

Remarks 2.7 (to Ex. 2.6).
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• for the curve φ(t) := (3 + 2 cos t, 2 + 2 sin t), Dφ = [0, 3π], it holds that ⟨φ⟩ = ⟨φa⟩ = ⟨φb⟩,
but φ is not closed;

• there does not exist a regular curve that parametrizes ⟨φd⟩;
• for the curve φ(t) =

(︁
t3, |t3|

)︁
, t ∈ [− 3√2, 3√2], it holds that ⟨φ⟩ = ⟨φd⟩, but φ is not

piecewise smooth.

Exercise 2.8. Draw the image of the curve φ defined in the interval I and determine whether it
defines a simple, closed, regular, or piecewise smooth curve:

a) φ(t) := (cos t, 2 + arcsin(cos t)), I = [−π, π];
b) φ(t) := (2 sin2 t, 4 cos2 t), I = [0, π2 ];
c) φ(t) := (t2 − 2t+ 3, t2 − 2t+ 1), I = (1,+∞).

Example 2.9. Parametrize Ω if

a) Ω = {(x, y) ∈ R2 : 3x+ 2y = 1 ∧ x ∈ [1, 3]};

b) Ω = {(x, y) ∈ R2 : x2

4 + y2

9 = 1};
c) Ω = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 9 ∧ 2x+ y − 3z = 0};
d) Ω = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 4 ∧ x2 + y2 = 2x ∧ z ≥ 0}.

Solution.

a) Ω = {(x, y) ∈ R2 : y = 1−3x
2 ∧ x ∈ [1, 3]} = ⟨φ⟩, where

φ(t) :=
(︃
t,

1 − 3t
2

)︃
, t ∈ [1, 3].

b) The given set is an ellipse with axes of lengths 2 and 3. To parametrize it we make use of
the generalized polar coordinates:

Ω =
{︂

(2r cos t, 3r sin t) : (2r cos t)2

4 + (3r sin t)2

9 = 1 ∧ r ≥ 0 ∧ t ∈ [0, 2π]
}︂

=
{︂

(2 cos t, 3 sin t) : t ∈ [0, 2π]
}︂
,

and thus
Ω = ⟨φ⟩, where φ(t) := (2 cos t, 3 sin t), t ∈ [0, 2π].

c) The set Ω defines a circle in space (centered in s = (0, 0, 0) with the radius r = 3 and lying
in the plane 2x+ y − 3z = 0). In Example 2.6a) we showed that the set{︁

(x, y) ∈ R2 : (x, y) = (3 + 2 cos t, 2 + 2 sin t)
= (3, 2) + 2 cos t (1, 0) + 2 sin t (0, 1), t ∈ [0, 2π]

}︁
is a circle (in R2) centered in (3, 2) and with the radius of 2. Similarly it can be shown
(think this through) that the set{︁

(x, y, z) ∈ R3 : (x, y, z) = (s1, s2, s3) + r cos t (u1, u2, u3) + r sin t (v1, v2, v3), t ∈ [0, 2π]
}︁
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is a circle (in R3) centered in s = (s1, s2, s3) and of the radius r, which ‘lies’ in the plane
defined by the mutually orthogonal direction vectors

u = (u1, u2, u3) and v = (v1, v2, v3).

Let us now return to our task. We already know the origin s and the radius r. It remains
to find two (arbitrary) vectors u and v described above. It suffices to choose two (arbitrary)
linearly independent vectors in the plane 2x+ y − 3z = 0, e.g. ũ = (1,−2, 0) a ṽ = (3, 0, 2)
and orthonormalize them:

u = ũ

∥ũ∥
= 1√

5
(1,−2, 0), v = ṽ − (ṽ · u)u

∥ṽ − (ṽ · u)u∥
= 1√

70
(6, 3, 5),

where ṽ · u = (3, 0, 2) · ( 1√
5 ,

−2√
5 , 0) = 3√

5 is the inner product of the vectors ṽ and u.
Another option is to choose an arbitrary unit vector in the plane 2x + y − 3z = 0, e.g.
u = ũ

∥ũ∥ = 1√
5(1,−2, 0), and determine v as the cross product of the vector u and a unit

normal vector of the plane 2x+ y − 3z = 0, i.e. the vector n = 1√
14(2, 1,−3).

To conclude – one (of the infinitely many) parametrizations of the set Ω is given by the
curve

φ(t) := (0, 0, 0) + 3 cos t 1√
5

(1,−2, 0) + 3 sin t 1√
70

(6, 3, 5) =

=
(︃ 3√

5
cos t+ 18√

70
sin t,− 6√

5
cos t+ 9√

70
sin t, 15√

70
sin t

)︃
, t ∈ [0, 2π].

d) Let us present two ways of tackling the task. The first one, making use of cylindrical
coordinates, leads to

Ω =
{︁
(r cos t, r sin t, z) ∈ R3 : r2 + z2 = 4 ∧ r2 = 2r cos t ∧ z ≥ 0 ∧
∧ r ≥ 0 ∧ t ∈ [−π, π]

}︁
=
{︁
(r cos t, r sin t, z) ∈ R3 : z =

√︁
4 − r2 ∧ r = 2 cos t ∧ r ≥ 0 ∧ t ∈ [−π, π]

}︁
=
{︂

(2 cos2 t, sin(2t), 2| sin t|) ∈ R3 : t ∈
[︂

− π

2 ,
π

2
]︂}︂

and the parametrization

φ1(t) :=
(︂
2 cos2 t, sin(2t), 2| sin t|

)︂
, Dφ1 =

[︂
− π

2 ,
π

2
]︂
.

The second approach is based on the observation

Ω =
{︁
(x, y, z) ∈ R3 : (x− 1)2 + y2 = 1 ∧ z =

√
4 − 2x

}︁
=
{︁(︁

cos t+ 1, sin t,
√︂

4 − 2(cos t+ 1)
)︁

∈ R3 : t ∈ [0, 2π]
}︁
,

and thus Ω = ⟨φ2⟩, where

φ2(t) :=
(︁

cos t+ 1, sin t,
√

2 − 2 cos t
)︁

=
(︃

cos t+ 1, sin t, 2 sin t

2

)︃
, Dφ2 = [0, 2π].
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Exercise 2.10. Parametrize the set Ω, if

a) Ω = {(x, y) ∈ R2 : x2 − y2 = 1 ∧ x ≥ 0};
b) Ω = {(x, y) ∈ R2 : y2 = x ∧ x ≤ 2};
c) Ω = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 9 ∧ x2 + y2 − z2 = 0 ∧ z ≥ 0};
d) Ω = {(x, y, z) ∈ R3 : z = x2 − y2 ∧ x2 + y2 = 6};
e) Ω = {(x, y, z) ∈ R3 : y2 = x ∧ z2 = y}.
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3 Line Integral

3.1 Line integral of the first kind

Motivation 3.1. Assume that φ : [a, b] → R2 denotes a regular curve and f : R2 → R denotes
a positive continuous function in ⟨φ⟩. Let us compute the ‘surface area’ τ , where

τ = {(x, y, z) ∈ R3 : (x, y) ∈ ⟨φ⟩ ∧ 0 ≤ z ≤ f(x, y)}.

For a partitioning D,
D : a = t0 < t1 < · · · < tn = b

of the interval [a, b] it is natural to approximate the area by

n−1∑︂
k=0

f(φ(tk)) · ∥φ(tk+1) − φ(tk)∥
.=
n−1∑︂
k=0

f(φ(tk)) · ∥φ′(tk) · (tk+1 − tk)∥

=
n−1∑︂
k=0

f(φ(tk)) · ∥φ′(tk)∥ · (tk+1 − tk) ≈
∫︂ b

a
f(φ(t)) · ∥φ′(t)∥ dt.

Remark 3.2. Now we could continue in the same spirit as in the definition of Riemann integral,
i.e. consider a function f : R2 → R (only) bounded in ⟨φ⟩, define for each partitioning of [a, b]
the corresponding lower and upper sums, . . .

However, to make things easier in the following we only define the line integral of the first
kind for continuous functions.

Definition 3.3. Let φ : [a, b] → Rm be a regular curve and let f : Rm → R be continuous in
⟨φ⟩ = φ([a, b]). We define the line integral of the first kind of the function f along the curve φ
by the equality ∫︂

φ
f(x) ds :=

∫︂ b

a
f(φ(t)) · ∥φ′(t)∥ dt . (3.1)

If φ : [a, b] → Rm is a piecewise smooth curve (i.e. there exists a partitioning D,

D : a = t0 < t1 < ... < tn = b

of the interval [a, b] such that for every i ∈ {1, ..., n} the curve ψi,

ψi := φ|[ti−1,ti],

is a regular curve) and the function f : Rm → R is continuous in ⟨φ⟩, we define∫︂
φ
f(x) ds :=

n∑︂
i=1

∫︂
ψi

f(x) ds . (3.2)
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Remark 3.4. If φ = (φ1, ..., φm) : [a, b] → Rm defines a regular curve and f : Rm → R is
continuous in ⟨φ⟩, then the function t,

t ↦→ f(φ(t)) · ∥φ′(t)∥ = f(φ(t)) ·
√︂

(φ′
1(t))2 + ... + (φ′

m(t))2 ∈ R

from (3.1) is continuous, and thus integrable in [a, b].
Remark 3.5. It can be shown that the definition

∫︁
φ f(x) ds (see (3.2)) is independent of ‘the

partitioning’ of the piecewise smooth curve φ into regular curves ψi.

Features of the line integral (linearity, aditivity, . . . ) follow from the features of the definite
(Riemann) integral.

Example 3.6. Evaluate

a)
∫︁
φ(x2 + y2) ds, where φ : [0, 2π] → R2, φ(t) :=

(︁
cos(2t), sin(2t)

)︁
;

b)
∫︁
φ(x2 + y2 + z2) ds, where φ : [0, 2π] → R3, φ(t) :=

(︁
2 cos t, 2 sin t, t

)︁
;

c)
∫︁
φ(2z −

√︁
x2 + y2) ds, where φ : [0, 2π] → R3, φ(t) :=

(︁
t cos t, t sin t, t

)︁
.

Solution.

a)
∫︂
φ
(x2 + y2) ds =

∫︂ 2π

0
(cos2(2t) + sin2(2t)) · ∥(−2 sin(2t), 2 cos(2t))∥ dt =

∫︂ 2π

0
2 dt = 4π .

b)
∫︂
φ
(x2 + y2 + z2) ds =

∫︂ 2π

0
(4 cos2 t+ 4 sin2 t+ t2) · ∥(−2 sin t, 2 cos t, 1)∥ dt

=
∫︂ 2π

0
(4 + t2)

√
5 dt =

√
5
(︂
8π + 8π3

3
)︂
.

c)
∫︂
φ
f(x, y, z) ds =

∫︂ 2π

0
(2t−

√
t2) · ∥

(︁
cos t− t sin t, sin t+ t cos t, 1

)︁
∥ dt

=
∫︂ 2π

0
t
√︁
t2 + 2 dt (s1)= 1

2

∫︂ 2+4π2

2

√
udu = 1

2
[︂2
3u

3
2
]︂2+4π2

2
= 2

√
2

3
(︁
(1 + 2π2)

3
2 − 1

)︁
.

((s1) : we substituted t2 + 2 = u).

Exercise 3.7. Evaluate

a)
∫︂
φ

√︁
1 + 4x2 ds, where φ : [−1, 2] → R2, φ(t) :=

(︁
t, t2

)︁
;

b)
∫︂
φ

z2

x2 + y2 ds, where φ : [0, 2π] → R3, φ(t) :=
(︁
cos t, sin t, t

)︁
.

Example 3.8. Evaluate ∫︂
φ
x3y ds,

∫︂
−φ

x3y ds

with
φ : [−1, 3] → R2, φ(t) := (t, 1 + t).
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Solution. ∫︂
φ
x3y ds =

∫︂ 3

−1
t3(1 + t) · ∥(1, 1)∥ dt =

∫︂ 3

−1
(t3 + t4)

√
2 dt = 344

5
√

2 ;

∫︂
−φ

x3y ds =
∫︂ 1

−3
(−t)3(1 − t) · ∥(−1,−1)∥ dt =

∫︂ 1

−3
(t4 − t3)

√
2 dt = 344

5
√

2 .

Theorem 3.9 (on the independence of parametrization). Let φ and ψ denote simple or simple
closed piecewise smooth curves in Rm, let ⟨φ⟩ = ⟨ψ⟩ and assume that f : Rm → R is continuous
in ⟨φ⟩. Then ∫︂

φ
f(x) ds =

∫︂
ψ
f(x) ds .

Convention 3.10. Note that under the assumptions from Theorem 3.9 the value
∫︁
φ f(x) ds is

uniquely determined by the function f , the set ⟨φ⟩ and the fact that φ is a simple (or simple
closed) piecewise smooth curve.

In literature it is customary to write∫︂
k
f(x) ds, where k ⊂ Rm,

or speak of a line integral of the first kind of f along ‘the curve’ k. This means that k = ⟨φ⟩ for
a simple (or simple closed) piecewise smooth curve φ and that∫︂

k
f(x) ds :=

∫︂
φ
f(x) ds .

If there does not exist any curve φ of the required qualities, the symbol
∫︁
k f(x) ds is mean-

ingless!

Example 3.11. Evaluate

a)
∫︁
k

√︁
x2 + y2 ds, where k =

{︁
(x, y) ∈ R2 : x2 + y2 = 6x

}︁
;

b)
∫︁
k(x+ y) ds, where k ⊂ R2 is the boundary of a triangle given by the vertices (0, 0), (1, 0),

(0, 1);

c)
∫︁
k x

2y ds, where k is the boundary of the circular sector given by the circle x2 + y2 = R2

(R > 0), the positive semi-axis x and the half-line y = x, x ≥ 0;

d)
∫︁

⟨φ⟩ y
2 ds, φ(t) :=

(︁
2(t− sin t), 2(1 − cos t)

)︁
, Dφ = [0, 2π].

Solution.

a) First we have to find a curve φ of requested qualities. Since

k =
{︁
(x, y) ∈ R2 : (x− 3)2 + y2 = 32}︁,
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0 3 6

−3

3

x

y

Figure 3.1: k from Example 3.11a)

0 1

1

x

y

Figure 3.2: k from Example 3.11b)

R
x

y

y = x

⟨φ1⟩

⟨φ2⟩
⟨φ3⟩

Figure 3.3: k = ⟨φ1⟩ ∪ ⟨φ2⟩ ∪ ⟨φ3⟩
from Example 3.11c)

4π2π

4

x

y

t = ε
t = 2π − ε

⟨φ1⟩

⟨φ2⟩

⟨φ3⟩

Figure 3.4: ⟨φ⟩ = ⟨φ1⟩ ∪ ⟨φ2⟩ ∪ ⟨φ3⟩ from Exam-
ple 3.11d)

the set k is a circle illustrated in Figure 3.1 and to parametrize it one may use (for example)
the ‘shifted’ polar coordinates, i.e. k = ⟨φ⟩, where

φ : [0, 2π] → R2, φ(t) :=
(︁
3 cos t+ 3, 3 sin t

)︁
.

Then∫︂
k

√︂
x2 + y2 ds =

∫︂ 2π

0

√︂(︁
3 cos t+ 3

)︁2 +
(︁
3 sin t

)︁2⃦⃦(︁−3 sin t, 3 cos t
)︁⃦⃦

dt

= 9
√

2
∫︂ 2π

0

√
1 + cos tdt = 9

√
2
∫︂ 2π

0

√︄
2 cos2

(︃
t

2

)︃
dt = 18

∫︂ 2π

0

⃓⃓⃓⃓
cos t2

⃓⃓⃓⃓
dt = 36

∫︂ π

0
cos t2 dt

= 72 .
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b) The given triangle is depicted in Figure 3.2. We define

φ(t) :=

⎧⎪⎪⎨⎪⎪⎩
(t, 0), t ∈ [0, 1],
(2 − t, t− 1), t ∈ [1, 2],
(0, 3 − t), t ∈ [2, 3].

Then (see the convention above):∫︂
k
(x+ y) ds =

∫︂
φ
(x+ y) ds

=
∫︂ 1

0
t · ∥(1, 0)∥ dt+

∫︂ 2

1
1 · ∥(−1, 1)∥ dt+

∫︂ 3

2
(3 − t) · ∥(0,−1)∥ dt = 1 +

√
2 .

Note that it is possible to compute the integral more comfortably; we may split k into
individual segments and parametrize these as:∫︂

k
(x+ y) ds =

∫︂
k1

(x+ y) ds+
∫︂
k2

(x+ y) ds+
∫︂
k3

(x+ y) ds ,

where

k1 = ⟨φ1⟩; φ1(t) := (t, 0), t ∈ [0, 1];
k2 = ⟨φ2⟩; φ2(t) := (t, 1 − t), t ∈ [0, 1];
k3 = ⟨φ3⟩; φ3(t) := (0, t), t ∈ [0, 1].

This leads to∫︂
k
(x+ y) ds =

∫︂ 1

0
t · ∥(1, 0)∥ dt+

∫︂ 1

0
1 · ∥(1,−1)∥ dt+

∫︂ 1

0
t · ∥(0, 1)∥ dt = 1 +

√
2 .

Readers are advised to think about the correctness of the computation above.

c) Clearly ∫︂
k
x2y ds =

∫︂
φ1
x2y ds+

∫︂
φ2
x2y ds+

∫︂
φ3
x2y ds, (3.3)

where

φ1 :=
(︁
t, 0
)︁
, t ∈ [0, R],

φ2 :=
(︁
R cos t, R sin t

)︁
, t ∈

[︂
0, π4

]︂
,

φ3 :=
(︁
t, t
)︁
, t ∈

[︂
0, R√

2

]︂
,
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(see Figure 3.3). It now remains to evaluate the integrals∫︂
φ1
x2y ds =

∫︂ R

0
t2 · 0 · 1 dt = 0,

∫︂
φ2
x2y ds =

∫︂ π
4

0
R3 cos2 t sin t

√︂
R2(sin2 t+ cos2 t) dt

(s1)= −R4
∫︂ √

2
2

1
u2 du = −R4

3
[︁
u3]︁√

2
2

1 = R4

3

(︃
1 −

√
2

4

)︃
(we used the substitution (s1): cos t = u),

∫︂
φ3
x2y ds =

∫︂ R√
2

0
t3

√
2 dt =

√
2
[︂ t4

4
]︂ R√

2

0
=

√
2

4 R4 1
4 =

√
2

16 R
4,

and altogether (3.3) gives:∫︂
k
x2y ds =

∫︂
φ1
x2y ds+

∫︂
φ2
x2y ds+

∫︂
φ3
x2y ds = 16 −

√
2

48 R4.

d) An illustration of the cycloid ⟨φ⟩ is depicted in Figure 3.4. Proceeding mechanically we
obtain∫︂

⟨φ⟩
y2 ds =

∫︂ 2π

0
4(1 − cos t)2

√︂(︁
2(1 − cos t)

)︁2 + (2 sin t)2 dt

= 4
∫︂ 2π

0
(1 − cos t)2 √

8 − 8 cos t dt = 8
√

2
∫︂ 2π

0
(1 − cos t)

5
2 dt

= 8
√

2
∫︂ 2π

0

(︂
2 sin2 t

2
)︂ 5

2 dt = 64
∫︂ 2π

0
sin5 t

2 dt = 128
∫︂ π

0

(︁
1 − cos2 u

)︁2 sin u du

= 128
∫︂ −1

1

(︁
1 − z2)︁2(−1) dz = 2048

15 .

Notice that the calculation above is not correct (although it leads to the correct result).
The problem is that in the endpoints we have

φ′(0) = φ′(2π) = (0, 0),

and thus φ is not a piecewise smooth curve. The question is whether ⟨φ⟩ can be parametrized
by a piecewise smooth curve. If not, the assignment itself would be incorrect.
We ‘split’ (for some ε ∈ (0, π)2) the curve φ into three pieces:

φ1 := φ|[0,ε], φ2 := φ|[ε,2π−ε], and φ3 := φ|[2π−ε,2π].

2Figure 3.4 depicts such a case for ε = 1.
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Clearly φ2 is a regular curve and in Figure 3.4 one can see that the sets ⟨φ1⟩ and ⟨φ3⟩ are
graphs of smooth functions g and h of variable y, 3 i.e.

⟨φ1⟩ = {
(︁
g(y), y

)︁
∈ R2 : y ∈ [0, 2(1 − cos ε)]},

⟨φ3⟩ = {
(︁
h(y), y

)︁
∈ R2 : y ∈ [ 0, 2

(︁
1 − cos(2π − ε)⏞ ⏟⏟ ⏞

= cos ε

)︁
]}.

This leads to smooth parametrizations ⟨φ1⟩ = ⟨ψ1⟩ and ⟨φ3⟩ = ⟨ψ3⟩, where

ψ1(t) :=
(︁
g(t), t

)︁
, t ∈ [0, 2(1 − cos ε)],

ψ3(t) :=
(︁
h(t), t

)︁
, t ∈ [ 0, 2(1 − cos ε) ].

We conclude that ⟨φ⟩ can be parametrized by a piecewise smooth curve.
If the readers lost confidence in the accuracy of the result above, we can find it again by
writing ∫︂

⟨φ⟩
y2 ds =

∫︂
ψ1
y2 ds+

∫︂
φ2
y2 ds+

∫︂
ψ3
y2 ds

and verifying that for ε → 0+ it holds∫︂
ψ1
y2 ds → 0,

∫︂
ψ3
y2 ds → 0,

∫︂
φ2
y2 ds =

∫︂ 2π−ε

ε
. . . dt →

∫︂ 2π

0
. . . dt = 2048

15 .

3.2 Applications of line integral of the first kind

a) Arc length.

If φ denotes a piecewise smooth curve, we define its length by the number

l(φ) :=
∫︂
φ

1 ds.

b) Cylindrical surface area.

For a ‘surface’4

τ := {(x, y, z) ∈ R3 : (x, y) ∈ ⟨φ⟩ ∧ 0 ≤ z ≤ f(x, y)},

with a piecewise smooth simple (or simple closed curve) φ : [a, b] → R2, and for a function
f : R2 → R continuous and non-negative in ⟨φ⟩ we define the surface ‘area’ of τ by

σ(τ) :=
∫︂
φ
f(x, y) ds .

3Readers can make use of their knowledge of cyclometric functions and find explicit formulae for g and h.
4The inverted commas highlight the fact that the term surface has not been defined yet. The interpretation

thus relies solely on intuition and geometrical imagination.
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c) Let k = ⟨φ⟩ where φ denotes a simple (or simple closed) piecewise smooth curve in R2,
and assume that the (linear) density of the ‘curve’ k is given by a function h : R2 → R
continuous and non-negative on k. Then we define the relations:

m(k) =
∫︂
φ
h(x, y) ds ... mass of the ‘curve’ k,

Sx(k) =
∫︂
φ
y h(x, y) ds ... moment of rotation of k with respect to the x-axis,

Sy(k) =
∫︂
φ
xh(x, y) ds ... moment of rotation of k with respect to the y-axis,

T (k) =
(︃
Sy(k)
m(k) ,

Sx(k)
m(k)

)︃
... center of mass of k,

Ix(k) =
∫︂
φ
y2h(x, y) ds ... moment of intertia of k with respect to the x-axis,

Iy(k) =
∫︂
φ
x2h(x, y) ds ... moment of intertia of k with respect to the y-axis.

The formulae can be defined analogously for curves in R3.

Exercise 3.12. Compute

a) the arc length of (a single turn of a helix) φ(t) := (cos t, sin t, 2t), t ∈ [0, 2π];
b) the cylindrical surface area τ , where

τ := {(x, y, z) ∈ R3 : x2 + y2 = 1 ∧ 0 ≤ z ≤ xy ∧ x ≥ 0 ∧ y ≥ 0};

c) coordinates of the center of mass of a quarter of a circle x2 + y2 = 4 lying in the second
quadrant, whose linear density in each point is given by a square of its distance to the
point (2, 0).

3.3 Line integral of the second kind

Motivation 3.13.
1. Let (k) = [α;β] denote an oriented line segment in R2 (i.e. with initial point α ∈ R2

and terminal point β ∈ R2) and let f : R2 → R2 define a constant vector field (i.e.
f(x, y) := f0 ∈ R2). In physics it is known that work of a vector field f along the oriented
curve (k) is given by the inner product

f0 · (β − α).

2. Let φ : [a, b] → R2 denote a regular curve and let f : R2 → R2 define a continuous
vector field in ⟨φ⟩. Let us compute the work done by a vector field f along ‘the oriented
curve’⟨φ⟩. We consider a partitioning D : a = t0 < t1 < ... < tn = b of the interval [a, b].
Approximating ‘the oriented curves’ φ([tk, tk+1]) by oriented line segments ⟨φ(tk);φ(tk+1)⟩



22 3 Line Integral

and the vector field f by a piecewise constant function given by f(φ(tk)) in [φ(tk);φ(tk+1)],
we obtain this approximation of the work of field f :

n−1∑︂
k=0

f(φ(tk)) · (φ(tk+1) − φ(tk))
.=
n−1∑︂
k=0

f(φ(tk)) · (φ′(tk) (tk+1 − tk)) ≈
∫︂ b

a
f(φ(t)) · φ′(t) dt.

Definition 3.14. Let φ : [a, b] → Rm denote a regular curve and f : Rm → Rm a vector
field continuous in ⟨φ⟩ = φ([a, b]). The line integral of the second kind of the vector field f
along the curve φ is defined as∫︂

(φ)
f(x) ds :=

∫︂ b

a
f(φ(t)) · φ′(t) dt. (3.4)

If φ : [a, b] → Rm denotes a piecewise smooth curve and the vector field f : Rm → Rm is
continuous in ⟨φ⟩, we define ∫︂

(φ)
f(x) ds :=

n∑︂
i=1

∫︂
(ψi)

f(x) ds, (3.5)

with regular curves ψi given by ‘a partitioning’ of the curve φ (see Definition 2.5 of a piecewise
smooth curve).

Remark 3.15 (analogous to Remark 3.4). If the regular curve φ = (φ1, ..., φm) and the vector
field f = (f1, . . . , fm) are of the requested qualities, it holds that∫︂

(φ)
f(x) ds :=

∫︂
(φ)

f1(x) dx1 + . . . + fm(x) dxm

=
∫︂ b

a
f1(φ(t)) · φ′

1(t) + . . . + fm(φ(t)) · φ′
m(t) dt ,

with
t ↦→ f1(φ(t)) · φ′

1(t) + . . . + fm(φ(t)) · φ′
m(t) ∈ R

continuous (and thus integrable) in [a, b].
Remark 3.16 (analogous to Remark 3.5). Again, it can be shown that the definition of

∫︁
(φ) f(x) ds

(see (3.5)) is independent of the partitioning of the piecewise smooth curve φ into regular
curves ψi.

Example 3.17. Evaluate

a) I =
∫︁

(φ) f(x, y) ds, where f(x, y) := (y − 1, x), φ(t) := (3 cos t, 2 sin t), t ∈ [0, π2 ];
b) I =

∫︁
(φ)(x2 + y2) dx+ (x2 − y2) dy, where φ(t) :=

(︁
t, 1 − |1 − t|

)︁
, t ∈ [0, 2];

c) I =
∫︁

(φ) x dx+ y dy + (xz − y) dz, where φ(t) :=
(︁
t2, 2t, 4t3

)︁
, t ∈ [0, 1].

Solution.
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3

2

x

y

⟨φ⟩

Figure 3.5: ⟨φ⟩ from Example 3.17 a)

1 2

1

x

y

⟨ψ1⟩ ⟨ψ2⟩

Figure 3.6: ⟨φ⟩ = ⟨ψ1⟩ ∪ ⟨ψ2⟩ from Exam-
ple 3.17 b)

a)

I =
∫︂ π

2

0
(2 sin t− 1)(−3 sin t) + (3 cos t)(2 cos t) dt =

∫︂ π
2

0
−6 sin2 t+ 3 sin t+ 6 cos2 t dt

=
∫︂ π

2

0
6 cos(2t) + 3 sin tdt = 3

[︁
sin(2t) − cos t

]︁π
2
0 = 3 .

The geometrical image of φ, i.e. a quarter of the ellipse x2/9 + y2/4 = 1 lying in the first
quadrant, is depicted in Figure 3.5.

b) Let us choose (see Figure 3.6)

ψ1 := φ|[0,1], ψ2 := φ|[1,2].

Then (see Definition 3.14)

I =
∫︂

(ψ1)
(x2 + y2) dx+ (x2 − y2) dy +

∫︂
(ψ2)

(x2 + y2) dx+ (x2 − y2) dy

=
∫︂ 1

0
(t2 + t2) · 1 + 0 · 1 dt+

∫︂ 2

1

(︁
t2 + (2 − t)2)︁ · 1 +

(︁
t2 − (2 − t)2)︁(−1) dt

=
[︂
2 t

3

3
]︂1

0
+
[︂
2(2 − t)3

−3
]︂2

1
= 2

3 + 0 − 2
−3 = 4

3 .

c)

I =
∫︂ 1

0
t2 · 2t+ 2t · 2 + (4t5 − 2t) · 12t2 dt =

[︂
2 t

4

4 + 4 t
2

2 + 48 t
8

8 − 24 t
4

4
]︂1

0
= 5

2 .

Example 3.18. Let

f(x, y) := (x2 + y, 2y);
φ(t) : [−1, 3] → R2, φ(t) := (t, 1 + t).
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Then∫︂
(φ)

f(x, y) ds =
∫︂

(φ)
(x2 + y) dx+ 2y dy =

∫︂ 3

−1
(t2 + (1 + t), 2(1 + t)) · (1, 1) dt

=
∫︂ 3

−1
(t2 + 3t+ 3) dt = 100

3 ,

∫︂
(−φ)

f(x, y) ds =
∫︂ 1

−3
((−t)2 + (1 − t), 2(1 − t)) · (−1,−1) dt =

∫︂ 1

−3
(−t2 + 3t− 3) dt = −100

3 .

Theorem 3.19 (on the independence of parametrization). Let φ : [a, b] → Rm and ψ :
[c, d] → Rm denote simple or simple closed piecewise smooth curves in Rm, ⟨φ⟩ = ⟨ψ⟩ and
let f : Rm → Rm be continuous in ⟨φ⟩. Then it holds that∫︂

(φ)
f(x) ds =

∫︂
(ψ)

f(x) ds,

if the curves φ and ψ are of the same orientation (i.e. there exist real numbers t ∈ (a, b),
t∗ ∈ (c, d) and e > 0 such that φ(t) = ψ(t∗) and φ′(t) = eψ′(t∗)).

If the curves φ and ψ are of opposite orientation (i.e. there exist real numbers t ∈ (a, b),
t∗ ∈ (c, d) and e < 0 such that φ(t) = ψ(t∗) and φ′(t) = eψ′(t∗)) it holds that∫︂

(φ)
f(x) ds = −

∫︂
(ψ)

f(x) ds.

Convention 3.20 (analogous to Convention 3.10). If (k) ⊂ Rm denotes a set for which there
exists a simple (or simple closed) piecewise smooth curve φ such that ⟨φ⟩ = (k), we use the
notation

∫︁
(k) f(x) ds instead of the proper

∫︁
(φ) f(x) ds. For completeness, it is necessary to

accompany the ‘curve’ (k) with its ‘orientation’ (i.e. its ‘direction’) and choose the curve φ so
that it is of ‘the same orientation’. The example below will make the idea clear.

Example 3.21. Evaluate

a) I =
∫︁

(k)(ex + y) dx + xy2 dy, where (k) = {(x, y) ∈ R2 : y2 = x ∧ x ≤ 3} and ‘the
orientation’ (k) is determined by the points (3,−

√
3), (3,

√
3) in this order;

b)
∫︁

(k) f(x, y) ds, where f(x, y) := (x+ 2y, y) and (k) ⊂ R2 is the oriented boundary of the
triangle given by the vertices (0, 0), (1, 0), (0, 1), whose orientation is given by this order of
vertices;

c)
∫︁

(k) f(x, y, z) ds, where

f(x, y, z) := (y2 − z2, z2 − x2, x2 − y2),
(k) =

{︁
(x, y, z) ∈ R3 : x2 + y2 + z2 = 1 ∧ x ≥ 0 ∧ y ≥ 0 ∧ z ≥ 0 ∧ xyz = 0

}︁
and the orientation of (k) is given by the order of the points: (1, 0, 0), (0, 1, 0), (0, 0, 1).



3 Line Integral 25

0 3

−
√
3

√
3

x

y

Figure 3.7: (k) from Example 3.21 a)

0 1

1

x

y

Figure 3.8: (k) from Example 3.21 b)

1

1

1

y

z

x

(k2)
(k3)

(k1)

Figure 3.9: (k) = (k1) ∪ (k2) ∪ (k3) from Example 3.21 c)

Solution.

a) Clearly, we may write (see Figure 3.7)

(k) =
{︁
(t2, t) : t ∈ [−

√
3,

√
3]
}︁
,

and thus

I =
∫︂ √

3

−
√

3
(et2 + t)2t+ t4 dt =

[︂
et

2 + 2t3
3 + t5

5
]︂√3

−
√

3
= 38

√
3

5 .

b) We choose

φ(t) :=

⎧⎪⎪⎨⎪⎪⎩
(t, 0), t ∈ [0, 1],
(2 − t, t− 1), t ∈ [1, 2],
(0, 3 − t), t ∈ [2, 3],
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and notice that for this parametrization the ‘orientation is consistent’. Thus,∫︂
(k)
f(x, y) ds =

∫︂ 1

0
(t+ 0, 0) · (1, 0) dt+

∫︂ 2

1
(2 − t+ 2(t− 1), t− 1) · (−1, 1) dt

+
∫︂ 3

2
(0 + 2(3 − t), 3 − t) · (0,−1) dt =

∫︂ 1

0
tdt+

∫︂ 2

1
(−1) dt+

∫︂ 3

2
(−3 + t) dt = −1.

We may proceed in a more comfortable way (detailed argumentation is left to the diligent
reader): ∫︂

(k)
f(x, y) ds =

∫︂
(φ1)

f(x, y) ds−
∫︂

(φ2)
f(x, y) ds−

∫︂
(φ3)

f(x, y) ds,

where

φ1(t) := (t, 0), t ∈ [0, 1];
φ2(t) := (t, 1 − t), t ∈ [0, 1];
φ3(t) := (0, t), t ∈ [0, 1];

and thus ∫︂
(k)
f(x, y) ds =

∫︂ 1

0
(t, 0) · (1, 0) dt−

∫︂ 1

0
(2 − t, 1 − t) · (1,−1) dt

−
∫︂ 1

0
(2t, t) · (0, 1) dt = −1 .

c) ‘The curve’ (k) is clearly a union of quarter circles (k1), (k2) and (k3) (see Figure 3.9).
These quarter circles can be parametrized, e.g. by:

(k1):
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓

x = cos t,
y = sin t,
z = 0,
t ∈ [0, π2 ];
orientation
is consistent,

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓

(k2):
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓

x = 0,
y = cos t,
z = sin t,
t ∈ [0, π2 ];
orientation
is consistent,

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓

(k3):
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓

x = sin t,
y = 0,
z = cos t,
t ∈ [0, π2 ];
orientation
is consistent,

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓

and thus ∫︂
(k)
f ds =

∫︂ π
2

0
(sin2 t)(− sin t) + (− cos2 t)(cos t) dt

+
∫︂ π

2

0
(sin2 t)(− sin t) + (− cos2 t)(cos t) dt

+
∫︂ π

2

0
(− cos2 t)(cos t) + (sin2 t)(− sin t) dt

=
∫︂ π

2

0
−3 sin3 t− 3 cos3 t dt = −4 .
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Exercise 3.22. Evaluate

a) ∫︂
(k)

1
|x| + |y|

dx+ 1
|x| + |y|

dy ,

where (k) is the oriented boundary of a square given by its vertices (1, 0), (0, 1), (−1, 0)
and (0,−1) in this order;

b)
∫︁

(k) y
2 dx+ z2 dy + x2 dz where the orientation of ‘the curve’

(k) = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 9 ∧ x2 + y2 = 3x ∧ z ≥ 0}

is given by the order of the points: (0, 0, 3), (3
2 ,

3
2 ,

3√
2), (3, 0, 0).

3.4 The Green theorem

Definition 3.23. A set Ω ⊂ Rm is called a domain, if it holds that:

• Ω is open (i.e. (∀x ∈ Ω)(∃U(x)) : x ∈ U(x) ⊂ Ω);
• Ω is connected (i.e. each pair of points in Ω can be connected by a curve lying in Ω; or

more precisely: for each pair of points α, β ∈ Ω there exists a curve φ : [a, b] → Ω ⊂ Rm
such that φ(a) = α and φ(b) = β).

Theorem 3.24 (Jordan). Let φ denote a simple closed curve in R2. Then there exist domains
Ω1, Ω2 ⊂ R2 such that

• R2 \ ⟨φ⟩ = Ω1 ∪Ω2,
• Ω1 ∩Ω2 = ∅,
• ∂Ω1 = ∂Ω2 = ⟨φ⟩,
• Ω1 is bounded and Ω2 is unbounded in R2.

(The domain Ω1 := int φ is called the interior of the curve φ, the domain Ω2 := ext φ is called
the exterior of the curve φ.)

Definition 3.25. Let φ : [a, b] → R2 denote a simple closed piecewise smooth curve and t ∈ (a, b)
a real number such that there exists a (non-zero) tangent vector φ′(t) ∈ R2.

A non-zero vector n(t) ∈ R2 is called an exterior normal vector to the curve φ in point t, if
it holds:

• n(t) · φ′(t) = 0,
• (∃δ > 0)(∀h ∈ (0, δ)) : φ(t) + hn(t) ∈ ext φ.
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A curve φ is positively oriented if the ordered pair [n(t), φ′(t)] is oriented as the ordered pair
[e1, e2];5 or more precisely if ⃓⃓⃓⃓

⃓n1, n2
τ1, τ2

⃓⃓⃓⃓
⃓ > 0,

where
(n1, n2) := n(t), (τ1, τ2) := φ′(t).

‘When following a positively oriented curve φ its interior lies to the left’.

If ⃓⃓⃓⃓
⃓n1, n2
τ1, τ2

⃓⃓⃓⃓
⃓ < 0,

the curve φ is negatively oriented. 6

Remark 3.26. The above definition of positively (or negatively) oriented curve is correct; it is
independent of the choice of t ∈ (a, b) such that there exists φ′(t).

Example 3.27 (oriented curves).
a) The curve φ1(t) := (cos t, sin t), t ∈ [0, 2π] is positively oriented.
b) The curve φ2(t) := (sin t, cos t), t ∈ [0, 2π]is negatively oriented.

Theorem 3.28 (Green). Let φ denote s simple closed positively oriented and piecewise smooth
curve in R2 and assume that f = (f1, f2) : R2 → R2 with f1, f2,

∂f1
∂y ,

∂f2
∂x : R2 → R continuous

in Ω := intφ ∪ ⟨φ⟩.

Then it holds∫︂∫︂
Ω

(︃
∂f2
∂x

(x, y) − ∂f1
∂y

(x, y)
)︃

dx dy =
∫︂

(φ)
f1(x, y)dx+ f2(x, y)dy =

∫︂
(φ)

f(x, y)ds .

Proof. We prove the theorem only for a special case of Ω denoting a rectangular domain, i.e.

Ω = [a, b] × [c, d]
(a, b, c, d ∈ R; a < b, c < d).

5 e1 := (1, 0), e2 := (0, 1).
6 Notice that the number ⃓⃓⃓⃓

n1, n2
τ1, τ2

⃓⃓⃓⃓
defines the third coordinate of the cross product

(n1, n2, 0) × (τ1, τ2, 0).
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First, we make use of the Fubini theorem to modify the double integral on the left-hand side of
the equality:∫︂∫︂

Ω

(︂∂f2
∂x

(x, y) − ∂f1
∂y

(x, y)
)︂

dx dy =
∫︂∫︂

Ω

∂f2
∂x

(x, y) dx dy −
∫︂∫︂

Ω

∂f1
∂y

(x, y) dx dy

=
∫︂ d

c

(︄∫︂ b

a

∂f2
∂x

(x, y) dx
)︄

dy −
∫︂ b

a

(︄∫︂ d

c

∂f1
∂y

(x, y) dy
)︄

dx

=
∫︂ d

c
[f2(x, y)]bx=a dy −

∫︂ b

a
[f1(x, y)]dy=c dx

=
∫︂ d

c
(f2(b, y) − f2(a, y)) dy −

∫︂ b

a
(f1(x, d) − f1(x, c)) dx.

The line integral on the right-hand side can be modified by parametrizing individual sides of the
rectangle Ω as follows:∫︂

(φ)
f(x, y) ds =

∫︂ b

a
(f1(t, c) · 1 + f2(t, c) · 0) dt+

∫︂ d

c
(f1(b, t) · 0 + f2(b, t) · 1) dt

−
∫︂ b

a
(f1(t, d) · 1 + f2(t, d) · 0) dt−

∫︂ d

c
(f1(a, t) · 0 + f2(a, t) · 1) dt

=
∫︂ b

a
(f1(t, c) − f1(t, d)) dt+

∫︂ d

c
(f2(b, t) − f2(a, t)) dt.

Finally, notice that the underscored numbers are equal.

Example 3.29. Making use of the Green theorem evaluate

a) ∫︂
(k)

(x+ y) dx+ (y − x) dy,

where (k) is ‘a positively oriented’ ellipse{︃
(x, y) ∈ R2 : x2

a2 + y2

b2 = 1
}︃

(a, b > 0);

b) ∫︂
(k)

1
x

arctg y

x
dx+ 2

y
arctg x

y
dy,

where (k) is ‘a positively oriented’ boundary of the domain

Ω = {(x, y) ∈ R2 : (1 < x2 + y2 < 4) ∧ (x < y < x
√

3)};

c) ∫︂
(k)
yx2 dx+ xy dy,

where (k) is a boundary of a square given by vertices (0, 0), (0, 1), (1, 1), (1, 0) in this order;
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d) are of a disk of the radius r > 0

Ω = {(x, y) ∈ R2 : x2 + y2 ≤ r2}.

x

y

a

b

Ω

(k)

Figure 3.10: Illustration to Example 3.29a)

x

y

1 2

Ω

(k)

y = x

y =
√
3x

Figure 3.11: Illustration to Example 3.29b)

x

y

1

1

Ω(k)

Figure 3.12: Illustration to Example 3.29c)

x

y

rΩ

(k)

Figure 3.13: Illustration to Example 3.29d)

Solution.

a) We compute the integral using the Green theorem(︄
where Ω =

{︃
(x, y) ∈ R2 : x2

a2 + y2

b2 ≤ 1
}︃)︄

,

substitution to generalized polar coordinates

(x = ar cos t , y = br sin t ; J(r, t) = abr) ,

and the Fubini theorem:∫︂
(k)

(x+ y) dx+ (y − x) dy =
∫︂∫︂

Ω
(−1 − 1) dx dy =

∫︂ 2π

0

(︃∫︂ 1

0
(−2abr) dr

)︃
dt = −2πab .
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b) The domain Ω and ‘curve’ (k) are illustrated in Figure 3.11. Since

∂

∂x

(︂2
y

arctan x
y

)︂
= 2
y

1
1 + x2

y2

1
y

= 2
x2 + y2 ,

∂

∂y

(︂1
x

arctan y
x

)︂
= 1
x

1
1 + y2

x2

1
x

= 1
x2 + y2 ,

it holds that ∫︂
(k)

1
x

arctg y

x
dx+ 2

y
arctg x

y
dy =

∫︂∫︂
Ω

1
x2 + y2 dx dy

⋆=
∫︂ 2

1

(︄∫︂ π
3

π
4

1
r2 r dφ

)︄
dr =

(︂π
3 − π

4
)︂

[ln r]21 = π

12 ln 2.

In (⋆) we used polar coordinates with the Jacobian r and the Fubini theorem.

c) Since (k) is ‘a negatively oriented’ boundary of the domain Ω = (0, 1) × (0, 1) (see
Figure 3.12), we have∫︂

(k)
yx2 dx+ xy dy = −

∫︂∫︂
Ω

(︃
∂

∂x
(xy) − ∂

∂y
(yx2)

)︃
dx dy

= −
∫︂ 1

0

(︃∫︂ 1

0
y − x2 dx

)︃
dy = −

∫︂ 1

0
y − 1

3 dy = −
(︁1
2 − 1

3
)︁

= −1
6 .

d) Let
φ : [0, 2π] → R2, φ(t) := (r cos t, r sin t).

For the area of the disk Ω (more precisely: for the measure of the set Ω) it holds

λ(Ω) =
∫︂∫︂

Ω
1 dx dy = 1

2

∫︂
(φ)

(−y) dx+ x dy

= 1
2

∫︂ 2π

0

(︁
(−r sin t)(−r sin t) + (r cos t)(r cos t)

)︁
dt = πr2.

This should not surprise the reader.

3.5 Path independence

Observation 3.30. Let Ω ⊂ R2 denote a domain, φ = (φ1, φ2) : [a, b] → Ω a regular curve and
f = (f1, f2) : R2 → R2 a continuous vector field. Assume that there exists a function (later on a
potential) V : R2 → R of class C1 in Ω such that for every (x, y) ∈ Ω it holds that

grad V (x, y) =
(︃
∂V (x, y)
∂x

,
∂V (x, y)
∂y

)︃
= (f1(x, y), f2(x, y)).

Consider a function F : R → R given by

F (t) := V
(︁
φ(t)

)︁
= V

(︁
φ1(t), φ2(t)

)︁
.
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Since

F ′(t) = ∂V

∂x

(︁
φ1(t), φ2(t)

)︁
φ′

1(t) + ∂V

∂y

(︁
φ1(t), φ2(t)

)︁
φ′

2(t)

= f1
(︁
φ1(t), φ2(t)

)︁
φ′

1(t) + f2
(︁
φ1(t), φ2(t)

)︁
φ′

2(t),

we have

∫︂
(φ)

f(x, y) ds =
∫︂ b

a
f1
(︁
φ1(t), φ2(t)

)︁
φ′

1(t) + f2
(︁
φ1(t), φ2(t)

)︁
φ′

2(t) dt

= [F (t)]ba = V (φ(b)) − V (φ(a)).

If φ is a piecewise smooth curve, it holds that7

∫︂
(φ)

f(x, y) ds =
n∑︂
k=1

∫︂
(ψk)

f(x, y) ds =
n∑︂
k=1

(︂
V (φ(tk)) − V (φ(tk−1))

)︂
= V (φ(b)) − V (φ(a)) .

Definition 3.31. Let f : Rm → Rm be a continuous function in Ω ⊂ Rm. The vector field f
is conservative in Ω, if there exists a function V : Rm → R (a so-called potential) such that

grad V (x) = f(x) for every x ∈ Ω.

Theorem 3.32 (on path independence). Let the vector field f : Rm → Rm be continuous in
Ω ⊂ Rm. Then the following statements are equivalent:

(a) f is conservative in Ω,
(b) for every connected piecewise smooth curve φ : [a, b] → Ω it holds that∫︂

(φ)
f(x) ds = 0 ,

(c) the line integral of the second kind of f is path independent in Ω; i.e. if φ1 : [a, b] → Ω
and φ2 : [c, d] → Ω denote piecewise smooth curves such that

φ1(a) = φ2(c), φ1(b) = φ2(d),

then it holds ∫︂
(φ1)

f(x) ds =
∫︂

(φ2)
f(x) ds .

Moreover, if V is a potential of f in Ω, then the following holds∫︂
(φ)

f(x) ds = V (φ(b)) − V (φ(a)) :=
∫︂ φ(b)

φ(a)
f(x) ds

7Here we consider that same ‘partitioning’ of the curve φ into regular curves as in Definition 2.5.
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for every piecewise smooth curve φ : [a, b] → Ω.8

One may thus ask:

How to determine whether a given field is conservative?

A partial answer is given in the two remarks presented below.
Remark 3.33. Assume for a while that f = (f1, f2) : R2 → R2 is of class C1 and is conservative
(with a potential V ) in a domain Ω ⊂ R2. Then (see theorem on symmetry of second derivatives)
for every (x, y) ∈ Ω it holds that

∂f1
∂y

(x, y) = ∂

∂y

∂V

∂x
(x, y) = ∂2V

∂y∂x
(x, y) = ∂2V

∂x∂y
(x, y) = ∂

∂x

∂V

∂y
(x, y) = ∂f2

∂x
(x, y).

We have thus found a necessary condition of the existence of a potential. It can be shown that
for a simply connected domain Ω ⊂ R2 (i.e. a domain Ω such that for every simple closed curve
φ : [a, b] → Ω ⊂ R2 it holds that int φ ⊂ Ω), (and a vector function f = (f1, f2) : R2 → R2 of
class C1 in Ω) the equality

∂f1
∂y

(x, y) = ∂f2
∂x

(x, y)

also defines a sufficient condition.
Remark 3.34. For f = (f1, f2, f3) : R3 → R3 of class C1 in a domain Ω ⊂ R3 one can similarly
obtain necessary conditions of the existence of a potential:

∂f1
∂y

= ∂f2
∂x

,
∂f1
∂z

= ∂f3
∂x

,
∂f2
∂z

= ∂f3
∂y

in Ω.

Also in this case it holds that for simply connected domains9 Ω ⊂ R3 the condition is also
sufficient.

In the examples below we present a procedure of finding a potential and its utilization for
the evaluation of the line integral of the second kind.

Example 3.35. Evaluate∫︂
(φ)

y dx+ x dy, where φ(t) := (cos t, sin t), t ∈
[︂
0, π4

]︂
.

8If we use the symbol ∫︂ β

α

f(x) ds,

with α, β ∈ Rm and f : Rm → Rm, then f must either be conservative in Rm or it must be clear form the context
that we integrate along a curve (with an initial point α and a terminal point β) lying in the domain Ω, where the
vector field f is conservative.

9A rigorous definition of a simply connected domain in R3 would be too tedious, we make do with and intuitive
understanding that it is a domain ‘without holes’.
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Solution. Since R2 is a simply connected domain, where it holds that

∂y

∂y
= 1 = ∂x

∂x
,

the vector field f(x, y) := (y, x) is conservative in R2.

The aim is to find a potential f , i.e. a function V : R2 → R such that in R2 it holds that

∂V

∂x
(x, y) = y a ∂V

∂y
(x, y) = x .

Integrating the equality
∂V

∂x
(x, y) = y

leads to
V (x, y) = xy + ψ(y)

for a yet unknown function ψ : R → R and every (x, y) ∈ R2. Substituting into the second
condition (∂V∂y (x, y) = x) yields

x = ∂

∂y
(xy + ψ(y)) = x+ ψ′(y),

and thus ψ′(y) = 0. We conclude that ψ(y) = c for some c ∈ R. Think over carefully (!) that the
functions

V (x, y) := xy + c, with c ∈ R,

define all potentials of f in R2.

To compute the integral one can use any of the potentials above (see Theorem 3.32). For
simplicity we choose c = 0 to obtain∫︂

(φ)
y dx+ x dy = V

(︂
φ
(︂π

4
)︂)︂

− V (φ(0)) = V

(︃√
2

2 ,

√
2

2

)︃
− V (1, 0) = 1

2 .

Example 3.36. Evaluate

a) I =
(−1,−2)∫︁

(2,1)
(9x2y + 24xy2 + 6 + 5y) dx+ (3x3 + 24x2y + 8 + 5x) dy;

b) I =
(π4 ,2)∫︁
(0,π4 )

(2xy − y sin(xy)) dx+ (x2 + 2 − x sin(xy)) dy;

c) I =
(2,−1,3)∫︁
(1,0,0)

2xy dx+ (x2 − z) dy + (1 − y) dz;

d) I =
(1,0,0)∫︁
(0,0,0)

(2x+ 3y + sin(z2)) dx+ (2x) dy + (2xz cos(z2)) dz.
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Solution.

a) V (x, y) = 3x3y + 12x2y2 + 6x+ 5xy + 8y ⇒ I = V (−1,−2) − V (2, 1) = −60 .

b) V (x, y) = x2y + cos(xy) + 2y ⇒ I = V (π4 , 2) − V (0, π4 ) = π2

8 − π
2 + 3 .

c) Notice that the assignment is correct since the vector field

f(x, y, z) := (2xy, x2 − z, 1 − y)

is conservative in the simply connected domain R3

(︄
∂(2xy)
∂y

= 2x = ∂(x2 − z)
∂x

,
∂(2xy)
∂z

= 0 = ∂(1 − y)
∂x

,
∂(x2 − z)

∂z
= −1 = ∂(1 − y)

∂y

)︄
.

Seek a potential V :

∂V

∂x
(x, y, z) = 2xy ⇒ V (x, y, z) = x2y + ψ(y, z),

for a – yet unknown – function ψ : R2 → R;

∂V

∂y
(x, y, z) = x2 − z = ∂

∂y
(x2y + ψ(y, z)) = x2 + ∂ψ

∂y
(y, z)

⇒ ∂ψ

∂y
(y, z) = −z ⇒ ψ(y, z) = −zy + ξ(z),

for a – yet unknown – function ξ : R → R;

∂V

∂z
(x, y, z) = 1 − y = ∂

∂z
(x2y − zy + ξ(z)) = −y + ξ′(z) ⇒ ξ′(z) = 1 ⇒ ξ(z) = z + c,

for some c ∈ R. Again, if we choose c = 0, we have

V (x, y, z) = x2y − zy + z,

and thus∫︂ (2,−1,3)

(1,0,0)
2xy dx+ (x2 − z) dy + (1 − y) dz = V (2,−1, 3) − V (1, 0, 0) = 2 .

d) The assignment is not correct since

∂

∂x
(2x+ 3y + sin(z2)) = 3 ̸= 2 = ∂

∂x
(2x),

and thus the integrated field is not conservative. (Read the footnote after Theorem 3.32.)

Exercise 3.37. Evaluate I, if
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a) I =
(2,0)∫︁

(π2 ,1)
(3x2y + y cos(xy)) dx+ (x3 + 1 + x cos(xy)) dy;

b) I =
(1,1)∫︁
(2,0)

(2yexy + 2x+ 2y2) dx+ (2xexy + 4xy + 2y) dy;

c) I =
(0,1,2)∫︁

(−1,3,0)
3x2y2z dx+ (2x3yz − z2) dy + (x3y2 − 2yz + 3z2) dz;

d) I =
(1,1,1)∫︁
(0,0,1)

(y2z2 + 2z) dx+ (2xyz2 + 2y) dy + (2xy2z + 2x+ 1) dz.

Exercise 3.38. Prove that the vector field

f(x, y) :=
(︃

− y

x2 + y2 ,
x

x2 + y2

)︃
is not conservative in the domain R2 \ {(0, 0)} even though in R2 \ {(0, 0)} it holds that that

∂

∂y

(︃
− y

x2 + y2

)︃
= ∂

∂x

(︃
x

x2 + y2

)︃
.

(Do not miss the connection to Remark 3.33.)

3.6 Applications of the line integral of the second kind

a) Work of a vector field along an oriented curve.
Let f : Rm → Rm be continuous on ‘and oriented curve’ (k) ⊂ Rm, where (k) = ⟨φ⟩ for a
simple (or simple closed) piecewise smooth curve φ.
Work of a vector field f along ‘an oriented curve’ (k) is defined by the number

A(k) :=
∫︂

(φ)
f(x) ds.

Obviously, we assume that the orientation of (k) is ‘consistent’ with the curve φ.
b) Area (more precisely measure) of plane shapes.

Let Ω = int φ ∪ ⟨φ⟩, where φ is a simple closed positively oriented piecewise smooth curve
in R2. Then it holds (see Green theorem 3.28)

λ(Ω) = 1
2

∫︂
(φ)

(−y) dx+ x dy =
∫︂

(φ)
x dy = −

∫︂
(φ)

y dx.

Exercise 3.39.

a) Evaluate the work of the vector field f(x, y, z) = −(0, 0,mg) along five turns of the helix

φ(t) :=
(︂
r cos t, r sin t,− h

10π t
)︂
, t ∈ [0, 10π].
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Amount of energy obtained by a person of the weight m > 0 sliding five turns on a slide of
the height h > 0 and turn radius r > 0; the constant g > 0 denotes the gravity of Earth.

b) For a, b > 0 compute the area (measure) of the ellipse

Ω =
{︃

(x, y) ∈ R2 : x2

a2 + y2

b2 ≤ 1
}︃
.
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4 Surfaces

Definition 4.1. A continuous vector-valued function

ψ : G → R3,

for which there exists a non-empty domain Ω ⊂ R2 such that Ω ⊂ G = Dψ ⊂ Ω is called a
surface (in R3).

The set
⟨ψ⟩ := ψ(G) = {ψ(u, v) : (u, v) ∈ G} ⊂ R3

is called the geometrical image of the surface ψ. If M = ⟨ψ⟩, ψ defines a parametrization of the
set M .

Exercise 4.2. Parametrize M if

a) M = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 100 ∧ −8 ≤ z ≤ 6};

b) M = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 4 ∧ x2 + y2 ≤ 2x ∧ z ≥ 0}.

Similarly as in the case of curves this definition is too general for our purposes. Therefore, in
the following we will consider additional ‘differential’ conditions.

Definition 4.3. A bounded domain Ω ⊂ R2 is a regular domain if there exists a simple closed
piecewise smooth curve (in R2) φ such that Ω = int φ.

Definition 4.4. A surface ψ = (ψ1, ψ2, ψ3) : Ω → R3 with Ω ⊂ R2 denoting a regular domain
is called a regular surface if all the following holds:

i) ψ is injective;

ii) there exists a vector-valued function h = (h1, h2, h3) : R2 → R3 of class C1 in an open set
M ⊃ Ω satisfying 10 ψ = h|Ω ;

iii) for every (u, v) ∈ Ω the vectors

∂ψ

∂u
(u, v) :=

(︃
∂h1
∂u

(u, v), ∂h2
∂u

(u, v), ∂h3
∂u

(u, v)
)︃
,

∂ψ

∂v
(u, v) :=

(︃
∂h1
∂v

(u, v), ∂h2
∂v

(u, v), ∂h3
∂v

(u, v)
)︃

are linearly independent.11

10I.e. all partial derivatives of the first order h1, h2 and h3 are continuous in M .
11Notice that for (u, v) ∈ Ω we have

∂ψ

∂u
(u, v) :=

(︂
∂ψ1

∂u
(u, v), ∂ψ2

∂u
(u, v), ∂ψ3

∂u
(u, v)

)︂
,

∂ψ

∂v
(u, v) :=

(︂
∂ψ1

∂v
(u, v), ∂ψ2

∂v
(u, v), ∂ψ3

∂v
(u, v)

)︂
.
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The set
Oψ := ψ(∂Ω) = {ψ(u, v) : (u, v) ∈ ∂Ω}

is the boundary of the regular surface ψ.

Example 4.5 (of regular surfaces).

• ψ1(u, v) := (cosu, sin u, v), Dψ1 = [0, π2 ] × [0, 2].

• ψ2(u, v) := (cosu cos v, sin u cos v, sin v), Dψ2 = [0, π2 ] × [0, π4 ].

Remark 4.6 (to the geometrical interpretation of the vectors ∂ψ
∂u (u, v), ∂ψ

∂v (u, v)).
Notice that

∂ψ

∂u
(u, v) and ∂ψ

∂v
(u, v)

define direction vectors of the tangent plane to ‘surface’ ⟨ψ⟩ in point ψ(u, v).
The attentive reader knows we have already used this in Example 1.23.
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5 Surface Integral

5.1 Surface integral of the first kind over a regular surface

Motivation 5.1. Let ψ = (ψ1, ψ2, ψ3) : Ω → R3 denote a regular surface. Our aim is to
compute ‘the weight of the surface’ ⟨ψ⟩ if the (surface) density in ⟨ψ⟩ is given by a continuous
and non-negative function f : R3 → R.

Consider a two-dimensional interval [a, b]×[c, d] such that Ω ⊂ [a, b]×[c, d], and its partitioning
D = (Du, Dv), i.e. a system of two-dimensional intervals

Jkl = [uk, uk+1] × [vl, vl+1] .

Our goal is to approximate the weight m(⟨ψ⟩) by the sum ∑︁
k,lm(ψ(Jkl)) over k and l such that

Jkl ⊂ Ω.

Since

ψ(uk+1, vl) − ψ(uk, vl)
.= dψ(uk,vl)(uk+1 − uk, 0) =

(︄
ψ′(uk, vl) ·

(︄
uk+1 − uk

0

)︄)︄T

=

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝
∂ψ1
∂u (uk, vl), ∂ψ1

∂v (uk, vl)
∂ψ2
∂u (uk, vl), ∂ψ2

∂v (uk, vl)
∂ψ3
∂u (uk, vl), ∂ψ3

∂v (uk, vl)

⎞⎟⎟⎟⎠ ·
(︄
uk+1 − uk

0

)︄⎞⎟⎟⎟⎠
T

= (uk+1 − uk)
∂ψ

∂u
(uk, vl)

and (by an analogous computation)

ψ(uk, vl+1) − ψ(uk, vl)
.= (vl+1 − vl)

∂ψ

∂v
(uk, vl),

it is natural to approximate ‘the area of the surface’ ψ(Jkl) by 12⃦⃦⃦⃦
(uk+1 − uk)

∂ψ

∂u
(uk, vl) × (vl+1 − vl)

∂ψ

∂v
(uk, vl)

⃦⃦⃦⃦
=

=
⃦⃦⃦⃦
∂ψ

∂u
(uk, vl) × ∂ψ

∂v
(uk, vl)

⃦⃦⃦⃦
(uk+1 − uk)(vl+1 − vl).

Approximating f on every ψ(Jkl) by the constant f(ψ(uk, vl)) leads to the following approximation
of the desired weight:

m(⟨ψ⟩) .=
∑︂
k,l

m(ψ(Jkl))
.=
∑︂
k,l

f(ψ(uk, vl))
⃦⃦⃦⃦
∂ψ

∂u
(uk, vl) × ∂ψ

∂v
(uk, vl)

⃦⃦⃦⃦
(uk+1 − uk)(vl+1 − vl)

≈
∫︂∫︂

Ω
f(ψ(u, v))

⃦⃦⃦⃦
∂ψ

∂u
(u, v) × ∂ψ

∂v
(u, v)

⃦⃦⃦⃦
du dv.

One should notice that for f ≡ 1 we compute ‘the surface area’ of ⟨ψ⟩.
12We use ‘u× v’, with u = (u1, u2, u3), v = (v1, v2, v3) ∈ R3, to denote the cross product of the vectors u and v,

u× v := (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1).
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Definition 5.2. Let ψ : Ω → R3 denote a regular surface and let f : R3 → R denote a function
continuous in ⟨ψ⟩ = ψ(Ω). The surface integral of the first kind of f over a regular surface ψ is
defined by the equality∫︂∫︂

ψ

f(x, y, z) dσ :=
∫︂∫︂

Ω
f(ψ(u, v))

⃓⃓⃓⃓⃓⃓⃓⃓
∂ψ

∂u
(u, v) × ∂ψ

∂v
(u, v)

⃓⃓⃓⃓⃓⃓⃓⃓
du dv.

Remark 5.3 (to Definition 5.2). Under the assumptions above the function

(u, v) ↦→ f(ψ(u, v))
⃦⃦⃦⃦
∂ψ

∂u
(u, v) × ∂ψ

∂v
(u, v)

⃦⃦⃦⃦
is continuous in the closed set Ω, and thus integrable in Ω.
Example 5.4. Evaluate

∫︁∫︁
ψ f(x, y, z) dσ for

a) f(x, y, z) := x+ y + z, ψ(u, v) := (1, u, v), Ω = Dψ = [0, 1] × [0, 1];

b) f(x, y, z) := z
√︁
x2 + y2, ψ(u, v) := (cosu cos v, sin u cos v, sin v), Ω = Dψ = [0, π2 ]×[0, π4 ].

Solution.

a) We evaluate
∂ψ

∂u
(u, v) = (0, 1, 0) , ∂ψ

∂v
(u, v) = (0, 0, 1) ,

∂ψ

∂u
(u, v) × ∂ψ

∂v
(u, v) = (1, 0, 0) ,

⃦⃦⃦⃦
∂ψ

∂u
(u, v) × ∂ψ

∂v
(u, v)

⃦⃦⃦⃦
= 1,

and thus ∫︂∫︂
ψ
f(x, y, z) dσ =

∫︂ 1

0

(︂ ∫︂ 1

0
1 + u+ v du

)︂
dv =

∫︂ 1

0
1 + 1

2 + v dv = 2 .

b) Since for (u, v) ∈ Ω it holds that
∂ψ

∂u
(u, v) = (− sin u cos v, cosu cos v, 0),

∂ψ

∂v
(u, v) = (− cosu sin v,− sin u sin v, cos v),

∂ψ

∂u
(u, v) × ∂ψ

∂v
(u, v) = (cos2 v cosu, cos2 v sin u, sin v cos v),⃦⃦⃦⃦

∂ψ

∂u
(u, v) × ∂ψ

∂v
(u, v)

⃦⃦⃦⃦
=

√
cos2 v = | cos v| = cos v,

we have ∫︂∫︂
ψ
z
√︂
x2 + y2 dσ =

∫︂∫︂
Ω

sin v cos v cos v dudv = π

2

∫︂ π
4

0
cos2 v sin v dv =

= π

2

∫︂ √
2

2

1
−w2 dw = π

24(4 −
√

2) .
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Remark 5.5. For the evaluation of ∥a× b∥, where a, b ∈ R3, one can use the equality

∥a× b∥ =
√︂

∥a∥2∥b∥2 − (a · b)2 .

The proof is left to the reader.

5.2 Surface integral of the first kind over a piecewise smooth surface

In practice we have to deal with more complicated surfaces than just regular ones; e.g. parametriza-
tions of the boundary of a cuboid, sphere, pyramid, . . . These can be described by piecewise
smooth surfaces. It is reasonable to expect that the definition of such surfaces follows the same
lines as the definition of piecewise smooth curves. However, for simplicity we proceed in an
alternative way and define a piecewise smooth surface as a set of points of certain qualities.

Definition 5.6. The set S ⊂ R3 is a piecewise smooth surface, if there exist regular surfaces
ψ1, ψ2, . . . , ψn such that:

i)

S =
n⋃︂
i=1

⟨ψi⟩ = ⟨ψ1⟩ ∪ ⟨ψ2⟩ ∪ . . . ∪ ⟨ψn⟩ ;

ii)
i ̸= j ⇒ ⟨ψi⟩ ∩ ⟨ψj⟩ ⊂ Oψi ∩ Oψj

and ⟨ψi⟩ ∩ ⟨ψj⟩ can either be parametrized by a simple or simple closed piecewise smooth
curve (then ψi and ψj are neighbouring surfaces), or ⟨ψi⟩ ∩ ⟨ψj⟩ is a singleton, or is empty;

iii) i ̸= j ̸= k ̸= i ⇒ ⟨ψi⟩ ∩ ⟨ψj⟩ ∩ ⟨ψk⟩ is a singleton or is empty;

iv) i ̸= 1 ⇒ the surface ψi neighbours to at least one of the surfaces ψ1, ψ2, . . . , ψi−1.

(Under this setting the regular surfaces ψ1, . . . , ψn define a partitioning of a piecewise smooth
surface S into regular surfaces.)

Definition 5.7. A simple curve φ : [a, b] → R3 is a part of the boundary S if there exists a
partitioning of S into regular surfaces ψ1, ψ2, . . . , ψn and a unique index i ∈ {1, . . . , n} such
that

∅ ≠ φ(a, b) ∩ ⟨ψi⟩ ⊂ Oψi .

Definition 5.8. Boundary of a surface S is defined by the equality

OS :=
⋃︂

φ is part
of the boundary of S

⟨φ⟩ .

If OS = ∅, i.e. there exists no curve φ being a part of the boundary of S, the surface S is closed.

Definition 5.9. A point p ∈ S for which there exists a partitioning of S into regular surfaces
ψ1, ψ2, . . . , ψn and an index i ∈ {1, ..., n} such that p ∈ ⟨ψi⟩ \ Oψi is a regular point of S.
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Observation 5.10. Notice that in a regular point p = ψi(u, v) there exists a plane tangent to
the surface S with unit normal vector

n(p) =
∂ψi
∂u (u, v) × ∂ψi

∂v (u, v)⃦⃦⃦
∂ψi
∂u (u, v) × ∂ψi

∂v (u, v)
⃦⃦⃦ .

Definition 5.11. Let ψ1, ψ2, . . . , ψn denote a partitioning of a piecewise smooth surface S ⊂ R3

into regular surfaces and let f : R3 → R be a function continuous in S.

The surface integral of the first kind of f over a piecewise smooth surface S is defined by the
equality ∫︂∫︂

S
f(x, y, z) dσ :=

n∑︂
i=1

∫︂∫︂
ψi

f(x, y, z) dσ.

Remark 5.12 (to Definition 5.11). It can be shown that the definition is independent of the
partitioning of the piecewise smooth surface S into regular surfaces ψi.

In particular, if ψ1 and ψ2 are two regular surfaces such that ⟨ψ1⟩ = ⟨ψ2⟩ and the function
f : R3 → R is continuous in ⟨ψ1⟩, it holds that∫︂∫︂

ψ1
f(x, y, z) dσ =

∫︂∫︂
ψ2
f(x, y, z) dσ.

Compare this assertion to Theorem 3.9.
Example 5.13. Evaluate

∫︁∫︁
S
f(x, y, z) dσ, where

a) f(x, y, z) := 1
(1+x+y)2 and S is the boundary of the tetrahedron defined by the vertices

(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1);

b) f(x, y, z) := x2 + y2 and S is a boundary of the body{︂
(x, y, z) ∈ R3 :

√︂
x2 + y2 ≤ z ≤ 2 ∧ z ≥ 1

}︂
;

c) f(x, y, z) := z2, S = {(x, y, z) ∈ R3 : z = xy ∧ x2 + y2 ≤ 1};

d) f(x, y, z) := xy, S = {(x, y, z) ∈ R3 : x2 + y2 = 4z ∧ x ≥ 0 ∧ y ≥ 0 ∧ z ≤ 1};

e) f(x, y, z) := z,
S = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 9 ∧ x ≥ 0 ∧ y ≥ 0 ∧ z ≥ 0 ∧ x+ y ≤ 3}.

Solution.

a) We partition the tetrahedron S into regular surfaces S = ⟨ψ1⟩ ∪ ⟨ψ2⟩ ∪ ⟨ψ3⟩ ∪ ⟨ψ4⟩, where

ψ1(x, y) := (x, y, 0), (x, y) ∈ Ω = {(u, v) ∈ R2 : u ∈ [0, 1] ∧ v ∈ [0, 1 − u]},
ψ2(x, z) := (x, 0, z), (x, z) ∈ Ω,

ψ3(y, z) := (0, y, z), (y, z) ∈ Ω,

ψ4(x, y) := (x, y, 1 − x− y), (x, y) ∈ Ω.
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Then13

∂ψ1
∂x

= (1, 0, 0), ∂ψ1
∂y

= (0, 1, 0), . . . , ∂ψ4
∂x

= (1, 0,−1), ∂ψ4
∂y

= (0, 1,−1),

and every reader surely obtains the same result that⃦⃦⃦⃦
∂ψ1
∂x

× ∂ψ1
∂y

⃦⃦⃦⃦
=
⃦⃦⃦⃦
∂ψ2
∂x

× ∂ψ2
∂z

⃦⃦⃦⃦
=
⃦⃦⃦⃦
∂ψ3
∂y

× ∂ψ3
∂z

⃦⃦⃦⃦
= 1,

⃦⃦⃦⃦
∂ψ4
∂x

× ∂ψ4
∂y

⃦⃦⃦⃦
=
⃦⃦
(1, 1, 1)

⃦⃦
=

√
3 .

We thus obtain (see Definitions 5.11 and 5.2)∫︂∫︂
S
f dσ =

∫︂∫︂
Ω

1
(1 + x+ y)2 · 1 dx dy +

∫︂∫︂
Ω

1
(1 + x)2 · 1 dx dz

+
∫︂∫︂

Ω

1
(1 + y)2 · 1 dy dz +

∫︂∫︂
Ω

1
(1 + x+ y)2 ·

√
3 dx dy

=
∫︂∫︂

Ω
(1 +

√
3) 1

(1 + x+ y)2 + 2 1
(1 + x)2 dx dy

=
∫︂ 1

0

(︂ ∫︂ 1−x

0

1 +
√

3
(1 + x+ y)2 + 2

(1 + x)2 dy
)︂

dx

=
∫︂ 1

0

2
(1 + x)2 (1 − x) − (1 +

√
3)
[︃ 1

1 + x+ y

]︃1−x

y=0
dx

=
∫︂ 1

0

2(1 − x)
(1 + x)2 − (1 +

√
3)
(︃1

2 − 1
1 + x

)︃
dx = (

√
3 − 1) ln 2 −

√
3

2 + 3
2 .

b) Since
S = ⟨ψ1⟩ ∪ ⟨ψ2⟩ ∪ ⟨ψ3⟩,

where

ψ1(r, t) := (r cos t, r sin t, r), (r, t) ∈ [1, 2] × [0, 2π],
ψ2(r, t) := (r cos t, r sin t, 1), (r, t) ∈ [0, 1] × [0, 2π],
ψ3(r, t) := (r cos t, r sin t, 2), (r, t) ∈ [0, 2] × [0, 2π],

and moreover (as can be easily checked) it holds that⃦⃦⃦⃦
∂ψ1
∂r

(r, t) × ∂ψ1
∂t

(r, t)
⃦⃦⃦⃦

=
√

2r,
⃦⃦⃦⃦
∂ψ2
∂r

(r, t) × ∂ψ2
∂t

(r, t)
⃦⃦⃦⃦

=
⃦⃦⃦⃦
∂ψ3
∂r

(r, t) × ∂ψ3
∂t

(r, t)
⃦⃦⃦⃦

= r,

13We use the shorthand notation – also in the following text – ‘ ∂ψ1
∂x

= . . . ’ instead of the proper ‘ ∂ψ1
∂x

(x, y) = . . . ’.
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we have∫︂∫︂
S
(x2 + y2) dσ =

∫︂∫︂
ψ1

(x2 + y2) dσ +
∫︂∫︂

ψ2
(x2 + y2) dσ +

∫︂∫︂
ψ3

(x2 + y2) dσ

=
∫︂ 2π

0

(︃∫︂ 2

1
(r2√

2r) dr
)︃

dt+
∫︂ 2π

0

(︃∫︂ 1

0
(r2r) dr

)︃
dt+

∫︂ 2π

0

(︃∫︂ 2

0
(r2r) dr

)︃
dt

= π

2 (15
√

2 + 17) .

The attentive reader must feel very uncomfortable as the above computation is not correct:
the surfaces ψ1, ψ2, and ψ3 are not regular. The situation is similar as in the case of
double integrals: injectivity and linear independence of vectors ∂ψi

∂r (r, t), ∂ψi
∂t (r, t) is only

violated on a set (in R2) of measure zero, which is ‘insignificant’ for the evaluation of
double integrals.
We recommend the reader a calming exercise:

evaluate the given integral correctly;

this should lead to understanding that (and why) the above presented procedure leads to
the correct result.

c) Obviously S = ⟨ψ⟩, where

ψ(r, t) := (r cos t, r sin t, r2 sin t cos t), (r, t) ∈ [0, 1] × [0, 2π].

It holds that
∂ψ

∂r
(r, t) = (cos t, sin t, 2r sin t cos t), ∂ψ

∂t
(r, t) = (−r sin t, r cos t, r2 cos 2t),

⃦⃦⃦⃦
∂ψ

∂r
× ∂ψ

∂t

⃦⃦⃦⃦
=
⃦⃦
(r2 sin t cos 2t− r2 cos t sin 2t,−r2 cos t cos 2t− r2 sin t sin 2t, r)

⃦⃦
=
√︂
r4(sin2 t cos2 2t+ cos2 t sin2 2t+ cos2 t cos2 2t+ sin2 t sin2 2t) + r2

=
√︂
r4(cos2 2t+ sin2 2t) + r2 = r

√︁
1 + r2 ,

and thus∫︂∫︂
S

f(x, y, z) dσ =
∫︂ 2π

0

(︂ ∫︂ 1

0

r4

4 sin2(2t) r
√︁

1 + r2 dr
)︂

dt

=
(︂ ∫︂ 2π

0

1 − cos 4t
8 dt

)︂(︂ ∫︂ 1

0
r4
√︁

1 + r2 r dr
)︂

= π

4

∫︂ 2

1
(w − 1)2 √

w
1
2 dw

= π

8

∫︂ 2

1
w

5
2 − 2w

3
2 + w

1
2 dw = π

(︂11
√

2
210 − 2

105
)︂
.

Below we provide an alternative way of computing the surface integral. We define

ψ(u, v) := (u, v, uv), where (u, v) ∈ Ω = {(u, v) ∈ R2 : u2 + v2 ≤ 1}.
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Then S = ⟨ψ⟩ (S is a graph of a bivariate function (u, v) ↦→ uv),

∂ψ

∂u
= (1, 0, v), ∂ψ

∂u
= (0, 1, u),

⃦⃦∂ψ
∂u

× ∂ψ

∂v

⃦⃦
=
⃦⃦
(−v,−u, 1)

⃦⃦
=
√︁

1 + u2 + v2 ,

and thus ∫︂∫︂
S
f dσ =

∫︂∫︂
Ω
u2v2

√︁
1 + u2 + v2 dudv

=
∫︂ 2π

0

(︂ ∫︂ 1

0
r4 sin2 t cos2 t

√︁
1 + r2 r dr

)︂
dt

=
∫︂ 2π

0

(︂ ∫︂ 1

0

r4

4 sin2(2t)
√︁

1 + r2 r dr
)︂

dt = π
(︂11

√
2

210 − 2
105

)︂
.

In the evaluation of the double integral we used the polar coordinates

Ω =
{︁
(r cos t, r sin t) ∈ R2 : r ∈ [0, 1] ∧ t ∈ [0, 2π]

}︁
and the Fubini theorem. The resulting integral has already been evaluated before.

d) Clearly

S =
{︂(︂
r cos t, r sin t, r

2

4
)︂

∈ R3 : r ∈ [0,∞] ∧ t ∈ [0, 2π] ∧

∧ cos t ≥ 0 ∧ sin t ≥ 0 ∧ r2

4 ≤ 1
}︂

= ⟨ψ⟩,

where
ψ(r, t) :=

(︂
r cos t, r sin t, r

2

4
)︂
, (r, t) ∈ [0, 2] ×

[︂
0, π2

]︂
.

It follows that

∂ψ

∂r
=
(︂

cos t, sin t, r2
)︂
,

∂ψ

∂t
=
(︁

− r sin t, r cos t, 0
)︁
,

⃦⃦⃦∂ψ
∂r

× ∂ψ

∂t

⃦⃦⃦
=
⃦⃦⃦(︂

− r2

2 cos t,−r2

2 sin t, r
)︂⃦⃦⃦

=

√︄
r4

4 + r2 = r

√︄
1 + r2

4 .

Combining the intermediate steps leads to the final result

∫︂∫︂
S
f dσ =

∫︂ π
2

0

(︂ ∫︂ 2

0
r2 cos t sin t

√︄
1 + r2

4 r dr
)︂

dt =

=
(︂ ∫︂ 1

0
udu

)︂(︂ ∫︂ 2

1
4(v − 1)

√
v 2 dv

)︂
= 4

[︃
v

5
2

5
2

− v
3
2

3
2

]︃2

1
= 16

15
(︁
1 +

√
2
)︁
.

We made use of substitutions sin t = u and 1 + r2

4 = v.
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e) If we parametrize

S =
{︂(︂
x, y,

√︂
9 − x2 − y2

)︂
∈ R3 : x ≥ 0 ∧ y ≥ 0 ∧ x+ y ≤ 3

}︂
= ⟨ψ⟩,

where

ψ(x, y) := (x, y,
√︂

9 − x2 − y2),

(x, y) ∈ Ω =
{︁
(x, y) ∈ R2 : x ∈ [0, 3] ∧ y ∈ [0, 3 − x]

}︁
,

we have

∂ψ

∂x
=
(︃

1, 0, −x√︁
9 − x2 − y2

)︃
,

∂ψ

∂y
=
(︃

0, 1, −y√︁
9 − x2 − y2

)︃
,⃦⃦⃦⃦

∂ψ

∂x
× ∂ψ

∂y

⃦⃦⃦⃦
=
⃦⃦⃦⃦(︃

x√︁
9 − x2 − y2 ,

y√︁
9 − x2 − y2 , 1

)︃⃦⃦⃦⃦
= 3√︁

9 − x2 − y2 ,

and thus ∫︂∫︂
S
f dσ =

∫︂∫︂
Ω

√︂
9 − x2 − y2 3√︁

9 − x2 − y2 dx dy = 3λ(Ω) = 27
2 .

A question to the reader: Why is the above computation incorrect and still leads to the
correct result?

Exercise 5.14. Evaluate
∫︁∫︁
S
f(x, y, z) dσ, where

a) f(x, y, z) := xy + yz + zx, S = {(x, y, z) ∈ R3 : z =
√︁
x2 + y2 ∧ x2 + y2 ≤ 2x};

b) f(x, y, z) := xyz, S = {(x, y, z) ∈ R3 : x2 + y2 = z2 ∧ x ≥ 0 ∧ y ≥ 0 ∧ 0 ≤ z ≤ 1};

c) f(x, y, z) := x2 + y2 + z and S is the boundary of the set

{(x, y, z) ∈ R3 : x2 + y2 + z2 ≤ 4 ∧ z ≥ 0}.

5.3 Applications of the surface integral of the first kind

a) Surface area.
For P ⊂ R3 denoting a piecewise smooth surface we define its area by

σ(P ) :=
∫︂∫︂

P
1 dσ .

b) Let P ⊂ R3 denote a piecewise smooth surface, whose (surface) density is given by the
function h : R3 ↦→ R, which is continuous and non-negative on P . Then it is reasonable to
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define the following quantities:

m(P ) :=
∫︂∫︂

P
h(x, y, z) dσ . . . weight of the surface P,

Syz(P ) :=
∫︂∫︂

P
xh(x, y, z) dσ

. . . moment of rotation of P with respect to the plane x = 0,

Szx(P ) :=
∫︂∫︂

P
y h(x, y, z) dσ

. . . moment of rotation of P with respect to the plane y = 0,

Sxy(P ) :=
∫︂∫︂

P
z h(x, y, z) dσ

. . . moment of rotation of P with respect to the plane z = 0,

T (P ) :=
(︃
Syz(P )
m(P ) ,

Szx(P )
m(P ) ,

Sxy(P )
m(P )

)︃
. . . center of mass P.

One can analogously define moments of inertia of P with respect to the coordinate axes.
Example 5.15. Compute the surface area S using surface integral if

a) S =
{︁
(x, y, z) ∈ R3 : (x− 8)2 + (y − 7)2 + (6 − z)2 = 25

}︁
;

b) S =
{︁
(x, y, z) ∈ R3 : z = 1

2(x2 + y2) ∧ x2 + y2 ≤ 1
}︁
.

Solution.
a) We parametrize the sphere S by

ψ(u, v) := (8, 7, 6) + (5 cosu cos v, 5 sin u cos v, 5 sin v), (u, v) ∈ [0, 2π] ×
[︂

− π

2 ,
π

2
]︂
.

For this parametrization it holds that
∂ψ

∂u
= 5(− sin u cos v, cosu cos v, 0), ∂ψ

∂v
= 5(− cosu sin v,− sin u sin v, cos v),⃦⃦⃦⃦

∂ψ

∂u
× ∂ψ

∂v

⃦⃦⃦⃦
=
⃦⃦
25(cosu cos2 v, sin u cos2 v, sin v cos v)

⃦⃦
= 25| cos v| = 25 cos v

since v ∈ [−π
2 ,

π
2 ]. For the surface area S we have

σ(S) =
∫︂∫︂

S
1 dσ =

∫︂ 2π

0

(︃∫︂ π
2

−π
2

25 cos v dv
)︃

du = 25 · 2π ·
[︁
sin v

]︁π
2
−π

2
= 100π .

b) The surface S, which is a part of a rotational paraboloid, can be parametrized by the
vector-valued function

ψ(r, t) :=
(︃
r cos t, r sin t, r

2

2

)︃
, (r, t) ∈ [0, 1] × [0, 2π],

for which the following holds:
∂ψ

∂r
= (cos t, sin t, r), ∂ψ

∂t
= (−r sin t, r cos t, 0),⃦⃦⃦⃦

∂ψ

∂r
× ∂ψ

∂t

⃦⃦⃦⃦
=
⃦⃦
(−r2 cos t,−r2 sin t, r)

⃦⃦
=
√︁
r4 + r2 = r

√︁
r2 + 1 .
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The resulting surface area reads

σ(S) =
∫︂ 1

0

(︃∫︂ 2π

0
r
√︁

1 + r2 dt
)︃

dr = 2π
∫︂ 2

1

√
u

1
2 du = π

[︂2
3u

3
2
]︂2

1
= 2π

3 (
√

8 − 1) .

In the calculations we used the substitution u = 1 + r2.

Exercise 5.16. Determine the coordinates of the center of mass of S if

a) S =
{︁
(x, y, z) ∈ R3 : x2 + y2 + z2 = 36 ∧ z ≥ 0

}︁
, and the (surface) density is given by the

function h(x, y, z) :=
√︁
x2 + y2;

b) S =
{︁
(x, y, z) ∈ R3 : z2 = x2 + y2 ∧ 1 ≤ z ≤ 2

}︁
, and the (surface) density in each point is

given by its distance from the z-axis.

5.4 Surface integral of the second kind over a regular surface

Motivation 5.17.

1. Consider incompressible fluid flowing through a plane surface τ in the direction of its
normal vector. Assume that the velocity of the flow is constant in space and time and is
given by a vector f0 ∈ R3. The amount of fluid which ‘flows’ through the surface τ with
area (= measure) λ(τ), corresponds to the value(︃

f0 · n

∥n∥

)︃
λ(τ).

2. Let ψ : Ω → R3 denote a regular surface and f : R3 → R3 a vector field continuous
in ⟨ψ⟩. Again: f defines the flow velocity constant in time. We aim to compute how
much fluid flows through the surface ⟨ψ⟩ in the direction given by the normal vectors
∂ψ
∂u (u, v) × ∂ψ

∂v (u, v) in a time unit.
Proceeding analogously as in the beginning of Section 5.1, we obtain this approximation14

of the desired volume

K(⟨ψ⟩) .=
∑︂
k,l

K(ψ(Jkl))

.=
∑︂
k,l

(︃
f(ψ(uk, vl)) ·

(︃
∂ψ

∂u
(uk, vl) × ∂ψ

∂v
(uk, vl)

)︃)︃
(uk+1 − uk) (vl+1 − vl)

≈
∫︂∫︂

Ω
f(ψ(u, v)) ·

(︃
∂ψ

∂u
(u, v) × ∂ψ

∂v
(u, v)

)︃
dudv.

14Here we used the equality:(︄
f (ψ(uk, vl)) ·

∂ψ
∂u

(uk, vl) × ∂ψ
∂v

(uk, vl)⃦⃦
∂ψ
∂u

(uk, vl) × ∂ψ
∂v

(uk, vl)
⃦⃦)︄ ⃦⃦⃦∂ψ

∂u
(uk, vl) × ∂ψ

∂v
(uk, vl)

⃦⃦⃦
= f (ψ(uk, vl)) ·

(︂
∂ψ

∂u
(uk, vl) × ∂ψ

∂v
(uk, vl)

)︂
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Definition 5.18. Let ψ : Ω → R3 denote a regular surface and f : R3 → R3 a function continu-
ous on ⟨ψ⟩ = ψ(Ω). The surface integral of the second kind of function f over a regular surface
ψ is defined by the equality∫︂∫︂

(ψ)

f(x, y, z) dσ :=
∫︂∫︂
Ω

f(ψ(u, v)) ·
(︃
∂ψ

∂u
(u, v) × ∂ψ

∂v
(u, v)

)︃
dudv.

Remark 5.19. For f = (f1, f2, f3) one can use the notation∫︂∫︂
(ψ)

f(x, y, z) dσ :=
∫︂∫︂

(ψ)
f1(x, y, z) dy ∧ dz + f2(x, y, z) dz ∧ dx+ f3(x, y, z) dx ∧ dy.

Example 5.20. Compute
∫︁∫︁

(ψ)
f(x, y, z) dσ for

a) f(x, y, z) := (0, 0, x2 + y2), ψ(r, t) := (r cos t, r sin t, 0), Dψ = [1, 2] × [−π
2 ,

π
2 ];

b) f(x, y, z) := (x− y, y − z, z − x+ 1), ψ(u, v) := (u, v, 1 − u− v),
Dψ = Ω = {(u, v) ∈ R2 : u+ v ≤ 1 ∧ u ≥ 0 ∧ v ≥ 0}.

Solution.

a) Since we have

∂ψ

∂r
= (cos t, sin t, 0) , ∂ψ

∂t
= (−r sin t, r cos t, 0) , ∂ψ

∂r
× ∂ψ

∂t
= (0, 0, r) ,

it holds that∫︂∫︂
(ψ)

f(x, y, z) dσ =
∫︂ 2

1

(︂ ∫︂ π
2

−π
2

(0, 0, r2) · (0, 0, r) dt
)︂

dr = π
[︂r4

4
]︂2

1
= 15

4 π .

b) Proceeding analogously as in the previous assignment we get

∂ψ

∂u
= (1, 0,−1) , ∂ψ

∂v
= (0, 1,−1) , ∂ψ

∂u
× ∂ψ

∂v
= (1, 1, 1) ,

and thus∫︂∫︂
(ψ)

f(x, y, z) dσ =
∫︂∫︂

Ω
(u− v, u+ 2v − 1,−2u− v + 2) · (1, 1, 1) dudv =

=
∫︂ 1

0

(︂ ∫︂ 1−u

0
1 dv

)︂
du = 1

2 .

Exercise 5.21. Evaluate
∫︁∫︁

(ψ)
f(x, y, z) dσ for

f(x, y, z) := (−x2z, y, 2xy) ,

ψ(u, v) := (cosu cos v, 2 sin u cos v, sin v) , Dψ =
[︂
0, π2

]︂
×
[︂
0, π2

]︂
.
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5.5 Surface integral of the second kind over a piecewise smooth surface

We intentionally keep the following definition inaccurate (its proper formulation is rather compli-
cated; it is similar to the definition of a positively oriented curve).

‘Definition’ 5.22. Let ψ denote a regular surface and let the curve φ be a part of the boundary
⟨ψ⟩. The surfaces ψ and φ are of the same orientation if it holds that ‘when walking along ⟨φ⟩ in
the direction of the orientation of φ and the head pointing in the direction of the vector ∂ψ

∂u × ∂ψ
∂v ,

the surface ⟨ψ⟩ is on the left-hand side’.

Definition 5.23. Let ψ1 and ψ2 denote neighbouring surfaces and let φ be a simple curve such
that

⟨φ⟩ ⊂ ⟨ψ1⟩ ∩ ⟨ψ2⟩.

Then ψ1 and ψ2 are of the same orientation if the following holds:

ψ1 and φ are of the same orientation ⇔ ψ2 and (−φ) are of the same orientation.

A piecewise smooth surface S is orientable (or two-sided) if there exists its partitioning into
regular surfaces ψ1, ψ2, . . . , ψn such that each pair of neighbouring surfaces ψi and ψj of this
decomposition are of the same orientation (the partitioning of S is then called orientable).

To orient an orientable surface S means to choose a unit vector n(p) ∈ R3 perpendicular to the
surface S in each of its regular points p such that for every oriented partitioning ψ1, ψ2, . . . , ψn
of the surface S exactly one of the following implications holds true:

ψi(u, v) = p ∈ ⟨ψi⟩ \ Oψi ⇒ n(p) =
∂ψi
∂u (u, v) × ∂ψi

∂v (u, v)⃦⃦⃦
∂ψi
∂u (u, v) × ∂ψi

∂v (u, v)
⃦⃦⃦ ,

ψi(u, v) = p ∈ ⟨ψi⟩ \ Oψi ⇒ n(p) = −
∂ψi
∂u (u, v) × ∂ψi

∂v (u, v)⃦⃦⃦
∂ψi
∂u (u, v) × ∂ψi

∂v (u, v)
⃦⃦⃦ .

Remark 5.24 (to Definition 5.23).

i) For an orientable surface S ⊂ R3 there exist exactly two vector-valued functions n and
n∗ defining its orientation (since it clearly holds that n = −n∗, we speak of opposite
orientations of S); to orient S it is thus sufficient to determine n(p) in a single (arbitrarily
chosen) regular point p ∈ S.

ii) There exist non-orientable (also called single-sided) piecewise smooth surfaces. The
Möbius strip is an example of such a surface (see Figure 5.1):{︃(︂

cos v + u cos
(︂v

2
)︂

cos v, sin v + u cos
(︂v

2
)︂

sin v, u sin
(︂v

2
)︂)︂

∈ R3 :

(u, v) ∈ [−1, 1] × [0, 2π]
}︃
.
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Figure 5.1: Möbius strip

iii) Every closed piecewise smooth surface is orientable.

Definition 5.25. Let S ⊂ R3 denote a piecewise smooth surface oriented by its oriented
partitioning ψ1, ψ2, . . . , ψn

15 and let a vector-field f : R3 → R3 be continuous on S.

The surface integral of the second kind of f over an oriented piecewise smooth surface S 16

is defined by the equality ∫︂∫︂
(S)

f(x, y, z) dσ :=
n∑︂
i=1

∫︂∫︂
(ψi)

f(x, y, z) dσ.

Remark 5.26. It can be shown that the above definition is correct; it does not depend on choice
of oriented partitioning of S (chosen in accordance to the orientation of S).

Moreover, if ψ1, . . . , ψn and ψ∗
1, . . . , ψ

∗
m are oriented partitionings of S that define opposite

orientations of S, it holds that
n∑︂
i=1

∫︂∫︂
(ψi)

f(x, y, z) dσ = −
m∑︂
j=1

∫︂∫︂
(ψ∗
j )
f(x, y, z) dσ.

Example 5.27. Evaluate the surface integral of the second kind
∫︁∫︁

(S) f(x, y, z) dσ if

a) f(x, y, z) := (x2, y2, z2) and S is the boundary of the cube [0, 6] × [0, 6] × [0, 6] oriented by
the ‘exterior’ normal vectors;

15This means that the vector field n : R3 → R3 defining the orientation of surface S is in every regular point
p = ψi(u, v) defined by the equality

n(p) :=
∂ψi
∂u

(u, v) × ∂ψi
∂v

(u, v)⃦⃦
∂ψi
∂u

(u, v) × ∂ψi
∂v

(u, v)
⃦⃦ .

16Sometimes we speak of the flow of a vector-field f through an oriented surface S.
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b) f(x, y, z) := (2y − z, 6z − 2x, 3x− y) and the surface

S =
{︁
(x, y, z) ∈ R3 : 2x+ y + 2z = 6 ∧ x ≥ 0 ∧ y ≥ 0 ∧ z ≥ 0

}︁
is oriented by the vector field n(x, y, z) := 1

3(2, 1, 2);

c) f(x, y, z) := (x, y, xyz) and the surface

S =
{︁
(x, y, z) ∈ R3 : z = xy ∧ x2 + y2 ≤ 5

}︁
is oriented by normal vectors such that the angles between the normal vectors and the
vector (0, 0, 1) are acute.

Solution.

a) Firstly parametrize the sides of the cube by

ψ1(u, v) := (u, v, 0), (u, v) ∈ [0, 6] × [0, 6],
ψ2(u, v) := (u, v, 6), (u, v) ∈ [0, 6] × [0, 6],
ψ3(u, v) := (u, 0, v), (u, v) ∈ [0, 6] × [0, 6],
ψ4(u, v) := (u, 6, v), (u, v) ∈ [0, 6] × [0, 6],
ψ5(u, v) := (0, u, v), (u, v) ∈ [0, 6] × [0, 6],
ψ6(u, v) := (6, u, v), (u, v) ∈ [0, 6] × [0, 6],

and compute the corresponding normal vectors:

∂ψ1
∂u

(u, v) × ∂ψ1
∂v

(u, v) = (0, 0, 1),

∂ψ2
∂u

(u, v) × ∂ψ2
∂v

(u, v) = (0, 0, 1),
...

Now notice (!!!) that the prescribed orientation of the side [0, 6] × [0, 6] × {0} is opposite
to the orientation of the chosen parametrization ψ1 and that the orientation of ψ2 and the
corresponding side [0, 6] × [0, 6] × {6} are the same. Making use of the symmetry of the
vector field

f(x, y, z) := (x2, y2, z2)

and the surface S leads to∫︂∫︂
(S)

f(x, y, z) dσ = −3
∫︂∫︂

(ψ1)
f(x, y, z) dσ + 3

∫︂∫︂
(ψ2)

f(x, y, z) dσ

= −3
∫︂ 6

0

(︂ ∫︂ 6

0
(u2, v2, 0) · (0, 0, 1) du

)︂
dv

+ 3
∫︂ 6

0

(︂ ∫︂ 6

0
(u2, v2, 36) · (0, 0, 1) du

)︂
dv = 3888 .
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b) Clearly

S =
{︃(︂
x, y, 3 − x− y

2
)︂

∈ R3 : x ≥ 0 ∧ y ≥ 0 ∧ 3 − x− y

2 ≥ 0
}︃

= ⟨ψ⟩,

where

ψ(u, v) :=
(︃
u, v, 3 − u− v

2

)︃
, Dψ = {(u, v) ∈ R2 : u ∈ [0, 3] ∧ v ∈ [0, 6 − 2u]}.

Moreover it holds that

∂ψ

∂u
= (1, 0,−1), ∂ψ

∂v
=
(︃

0, 1,−1
2

)︃
,
∂ψ

∂u
× ∂ψ

∂v
=
(︃

1, 1
2 , 1

)︃
(thus the orientation agrees), and so∫︂∫︂

(S)
f(x, y, z) dσ =

∫︂ 3

0

(︃∫︂ 6−2u

0

(︁
− 3 + u+ 5v

2 , 18 − 8u− 3v, 3u− v
)︁

·
(︃

1, 1
2 , 1

)︃
dv
)︃

du

=
∫︂ 3

0
6(6 − 2u) du = 54 .

c) One of the possible parametrizations of S = ⟨ψ⟩ is

ψ(r, t) :=
(︁
r cos t, r sin t, r2 cos t sin t

)︁
=
(︃
r cos t, r sin t, r

2

2 sin(2t)
)︃
,

Dψ =
{︁
(r, t) ∈ R2 : r ∈ [0,

√
5] ∧ t ∈ [−π, π]

}︁
,

for which we have

∂ψ

∂r
=
(︁

cos t, sin t, r sin(2t)
)︁
,

∂ψ

∂t
=
(︁

− r sin t, r cos t, r2 cos(2t)
)︁
,

∂ψ

∂r
× ∂ψ

∂t
=
(︁
r2(cos2 t− sin2 t) sin t− 2r2 cos2 t sin t,

− r2(cos2 t− sin2 t) cos t− 2r2 cos t sin2 t, r)

(the orientation agrees!), and we can conclude that
∫︂∫︂

(S)
f(x, y, z) dσ =

∫︂ √
5

0

(︂ ∫︂ π

−π
−2r3(cos3 t sin t+ sin3 t cos t) + r5 cos2 t sin2 t dt

)︂
dr

=
(︂[︂r6

6
]︂√5

0

)︂ (︂1
4

∫︂ π

−π

1 − cos(4t)
2 dt

)︂
= 125

24 π .

We used the fact that the functions cos3 t sin t and sin3 t cos t are odd.
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5.6 The Gauss – Ostrogradsky theorem

Definition 5.28. Let the vector field f = (f1, f2, f3) : R3 → R3 be of class C1 in an open set
M ⊂ R3.17 Divergence of the vector field f (in M) is defined (in M) by the equality

divf(x, y, z) := ∂f1
∂x

(x, y, z) + ∂f2
∂y

(x, y, z) + ∂f3
∂z

(x, y, z).

Definition 5.29. A bounded domain Ω ⊂ R3 is a regular domain, if its boundary ∂Ω is a
closed piecewise smooth surface.

Theorem 5.30 (Gauss – Ostrogradsky).
Let the vector field f = (f1, f2, f3) : R3 → R3 be of class C1 in an open set M ⊂ R3, let Ω ⊂ R3

denote a regular domain such that

Ω ⊂ Ω = Ω ∪ ∂Ω ⊂ M,

and let ∂Ω be oriented by its ‘exterior’ normal vectors (such orientation is called positive ∂Ω).
Then it holds that ∫︂∫︂

(∂Ω)
f(x, y, z) dσ =

∫︂∫︂∫︂
Ω

divf(x, y, z) dx dy dz.

Proof. We prove the theorem for a special case when Ω is a cuboid, i.e.

Ω = [a, b] × [c, d] × [e, g].

(Notice the analogy to the proof of the Green theorem 3.28 in a rectangle.)

Let us choose

ψ1(u, v) := (a, u, v), (u, v) ∈ [c, d] × [e, g],
ψ2(u, v) := (b, u, v), (u, v) ∈ [c, d] × [e, g],
ψ3(u, v) := (u, c, v), (u, v) ∈ [a, b] × [e, g],
ψ4(u, v) := (u, d, v), (u, v) ∈ [a, b] × [e, g],
ψ5(u, v) := (u, v, e), (u, v) ∈ [a, b] × [c, d],
ψ6(u, v) := (u, v, g), (u, v) ∈ [a, b] × [c, d],

and compute the corresponding normal vectors

∂ψ1
∂u

(u, v) × ∂ψ1
∂v

(u, v) = (1, 0, 0) = ∂ψ2
∂u

(u, v) × ∂ψ2
∂v

(u, v), . . .

17I.e., f1, f2, f3 ∈ C1(M).
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Similarly as in Example 5.27, after ‘taking care’ of the orientation we obtain∫︂∫︂
(∂Ω)

f(x, y, z) dσ = −
∫︂∫︂

(ψ1)
f(x, y, z) dσ +

∫︂∫︂
(ψ2)

f(x, y, z) dσ +
∫︂∫︂

(ψ3)
f(x, y, z) dσ

−
∫︂∫︂

(ψ4)
f(x, y, z) dσ −

∫︂∫︂
(ψ5)

f(x, y, z) dσ +
∫︂∫︂

(ψ6)
f(x, y, z) dσ

= −
∫︂∫︂

[c,d]×[e,g]
f(ψ1(u, v)) · (1, 0, 0) dudv +

∫︂∫︂
[c,d]×[e,g]
f(ψ2(u, v)) · (1, 0, 0) dudv + . . .

=
∫︂∫︂

[c,d]×[e,g]
(f1(b, u, v) − f1(a, u, v)) dudv + . . .

Now (using the Fubini theorem) we transform the integral on the right-hand side of the equality∫︂∫︂∫︂
Ω

div f(x, y, z) dx dy dz

=
∫︂∫︂∫︂

Ω

(︃
∂f1
∂x

(x, y, z) + ∂f2
∂y

(x, y, z) + ∂f3
∂z

(x, y, z)
)︃

dx dy dz

=
∫︂∫︂

[c,d]×[e,g]

(︂ b∫︂
a

∂f1
∂x

(x, y, z) dx
)︂

dy dz + . . . =
∫︂∫︂

[c,d]×[e,g]
[f1(x, y, z)]bx=a dy dz + . . .

=
∫︂∫︂

[c,d]×[e,g]
(f1(b, y, z) − f1(a, y, z)) dy dz + . . .

The reader who notices that the underlined numbers are equal can consider this proof finished.

Remark 5.31 (to the physical interpretation of the Gauss – Ostrogradsky theorem). If we
interpret f as a (stationary) velocity field of incompressible fluid, then∫︂∫︂

(∂Ω)
f(x, y, z) dσ

determines the amount of fluid, which flows through the surface ∂Ω in the direction of the normal
vector in a time unit.

If ∫︂∫︂
(∂Ω)

f(x, y, z) dσ = 0,

the inflow and outflow through Ω is the same.

If ∫︂∫︂
(∂Ω)

f(x, y, z) dσ ̸= 0,

there have to exist points in Ω which are sources; i.e. points adding the fluid to the system or
sinks where the fluid drains.
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It can be shown that for p ∈ Ω it holds that

div f(p) = lim
ε→0+

∫︁∫︁
(∂U(p,ε))

f(x, y, z) dσ

λ(U(p, ε)) ,

where ∂U(p, ε) denotes a positively oriented sphere of the radius ε centered in p. Thus, the
number div f(p) describes the yield of the source in point p (div f(p) > 0 then p is a source;
div f(p) < 0 then p is a sink). If divf vanishes (in M), the vector field f is divergence-free (or
solenoidal) (in M).

Example 5.32. Evaluate ∫︂∫︂
(S)

f(x, y, z) dσ,

using the Gauss – Ostrogradsky theorem, if

a) f(x, y, z) := (x2, y2, z2) and S is a positively oriented sphere

Ω = {(x, y, z) ∈ R3 : (x− 1)2 + (y − 1)2 + (z − 1)2 ≤ 1};

b) f(x, y, z) := (x− y+ z, y− z + x, z− y+ x) and S is a negatively oriented boundary of the
octahedron

Ω = {(x, y, z) ∈ R3 : |x| + |y| + |z| ≤ 3}.

Solution.

a) Due to the Gauss – Ostrogradsky theorem and the substitution

x = ϱ cosu cos v + 1, y = ϱ sin u cos v + 1, z = ϱ sin v + 1,

where
ϱ ∈ [0, 1], u ∈ [0, 2π], v ∈

[︂
− π

2 ,
π

2
]︂
,

it holds that 18∫︂∫︂
(S)

f(x, y, z) dσ =
∫︂∫︂∫︂

Ω
(2x+ 2y + 2z) dx dy dz

= 2
∫︂ 1

0

(︂ ∫︂ 2π

0

(︂ ∫︂ π
2

−π
2

(ϱ cosu cos v + ϱ sin u cos v + ϱ sin v + 3) ϱ2 cos v dv
)︂

du
)︂

dϱ = 8π .

b) Using the Gauss – Ostrogradsky theorem (be careful about the negative orientation of S)
yields ∫︂∫︂

(S)
f(x, y, z) dσ = −

∫︂∫︂∫︂
Ω

(1 + 1 + 1) dx dy dz
(︂

= −3λ(Ω)
)︂

= −24
∫︂ 3

0

(︂ ∫︂ 3−x

0

(︂ ∫︂ 3−x−y

0
dz
)︂

dy
)︂

dx = −24
∫︂ 3

0

(︂ ∫︂ 3−x

0
3 − x− y dy

)︂
dx

= −24
∫︂ 3

0
(3 − x)2 − (3 − x)2

2 dx = −12
[︂(3 − x)3

−3
]︂3

0
= 4(0 − 27) = −108 .

18Do not forget the Jacobian!
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Exercise 5.33. Evaluate ∫︂∫︂
(S)

(x3 − yz, y3 − xz, z3 − xy) dσ,

using the Gauss – Ostrogradsky theorem, if S is a positively oriented sphere

Ω = {(x, y, z) ∈ R3 : x2 + y2 + z2 ≤ 18z}.

5.7 Stokes theorem

Definition 5.34. Let the vector field f = (f1, f2, f3) : R3 → R3 be of class C1 in an open set
M ⊂ R3. Curl of the vector field f (in M) is given by the vector field defined (in M) by the
equality

curl f(x, y, z) :=
(︃(︃

∂f3
∂y

− ∂f2
∂z

)︃
(x, y, z),

(︃
∂f1
∂z

− ∂f3
∂x

)︃
(x, y, z),

(︃
∂f2
∂x

− ∂f1
∂y

)︃
(x, y, z)

)︃
.

Remark 5.35. To compute curl f we can make use of the formal equality19

‘ curl f =

⃓⃓⃓⃓
⃓⃓⃓⃓e1, e2, e3
∂
∂x ,

∂
∂y ,

∂
∂z

f1, f2, f3

⃓⃓⃓⃓
⃓⃓⃓⃓

’

.

‘Definition’ 5.36. Let S ⊂ R3 denote an oriented piecewise smooth surface such that its
boundary OS is a geometrical image of a simple closed piecewise smooth curve. Then S and OS
are of the same orientation, if the following holds: ‘when walking along OS in the direction of
the orientation of OS and the head pointing in the direction of the vector field n, the surface S
is on the left-hand side’.

(Compare this ‘definition’ to ‘Definition’ 5.22.)

Theorem 5.37 (Stokes). Let the vector field f : R3 → R3 be of class C1 in an open set M ⊂ R3

and let S ⊂ M denote a piecewise smooth surface of the same orientation as OS. Then∫︂
(∂S)

f(x, y, z) ds =
∫︂∫︂

(S)
curl f(x, y, z) dσ.

Remark 5.38 (to the physical interpretation of curl f(x, y, z)).
We interpret again the vector field f as the velocity field of a stationary flow of incompressible fluid.
It can be shown that rot f(x, y, z) corresponds (roughly speaking) to the direction vector of the
line passing through the point (x, y, z) around which the fluid rotates in a ‘small’ neihgbourhood
of (x, y, z). The norm of the vector curl f(x, y, z) corresponds (in a certain sense) to the angular
velocity of this rotation.

If curl f vanishes (in M), the vector-field f is irrotational (in M).
19e1, e2, and e3 denote ‘the coordinate’ vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1), respectively.
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Example 5.39. Evaluate
∫︁

(k) f(x, y, z) ds using the Stokes theorem, if

a) f(x, y, z) := (y2, z2, x2) and (k) is the boundary of the triangle given by the vertices (3, 0, 0),
(0, 0, 3), and (0, 3, 0) in this order;

b) f(x, y, z) := (z, x, y),

(k) =
{︃

(x, y, z) ∈ R3 : x2 + y2 = 4 ∧ x

2 + z

3 = 1
}︃

and orientation of (k) is given by the order of the vertices (2, 0, 0), (0, 2, 3), and (−2, 0, 6);

c) f(x, y, z) := (−y, x, 0) and (k) (including its orientation) is given by the parametrization

φ(t) := (sin t, cos t, 0), Dφ = [0, 2π].

Solution.

a) We choose

ψ(u, v) := (u, v, 3 − u− v),

Dψ = Ω =
{︂

(u, v) ∈ R2 : u+ v ≤ 3 ∧ u ≥ 0 ∧ v ≥ 0
}︂
.

Since
∂ψ

∂u
(u, v) × ∂ψ

∂v
(u, v) = (1, 1, 1),

we have (see the Stokes theorem)∫︂
(k)
y2 dx+ z2 dy + x2 dz = −

∫︂∫︂
(ψ)

rot (y2, z2, x2) dσ

= −
∫︂∫︂

(ψ)
(−2z,−2x,−2y) dσ = −(−2)

∫︂∫︂
Ω

(3 − u− v, u, v) · (1, 1, 1) dudv

= 2
∫︂ 3

0

(︂ ∫︂ 3−u

0
3 dv

)︂
du = 6

∫︂ 3

0
3 − udu = 6

[︁
3u− u2

2
]︁3
0 = 27 .

A question to the reader:

Why is there a minus sign in front of the surface integral?

b) Since curl (z, x, y) = (1, 1, 1), we have (due to the Stokes theorem)∫︂
(k)
f(x, y, z) ds =

∫︂∫︂
(S)

(1, 1, 1) dσ

e.g. for the surface

S =
{︃

(x, y, z) ∈ R3 : x2 + y2 ≤ 4 ∧ x

2 + z

3 = 1
}︃
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of the same orientation as (k). We parametrize S = ⟨ψ⟩, where

ψ(u, v) :=
(︃
u, v, 3

(︂
1 − u

2
)︂)︃
, Dψ = K =

{︁
(u, v) ∈ R2 : u2 + v2 ≤ 4

}︁
.

Then
∂ψ

∂u
=
(︃

1, 0,−3
2

)︃
,

∂ψ

∂v
=
(︁
0, 1, 0

)︁
,

∂ψ

∂u
× ∂ψ

∂v
=
(︃3

2 , 0, 1
)︃

(the orientation agrees), and thus∫︂
(k)
f(x, y, z) ds =

∫︂∫︂
K

(1, 1, 1) ·
(︃3

2 , 0, 1
)︃

dudv = 5
2λ(K) = 5

2 · π · 4 = 10π .

c) We present two approaches to the evaluation of the integral. First, we replace the line
integral by a surface integral of the second kind over the disk K = ⟨ψ⟩, where

ψ(r, t) := (r cos t, r sin t, 0), Dψ =
{︁
(r, t) ∈ R2 : r ∈ [0, 1] ∧ t ∈ [0, 2π]

}︁
.

Then
∂ψ

∂r
= (cos t, sin t, 0), ∂ψ

∂t
= (−r sin t, r cos t, 0), ∂ψ

∂r
× ∂ψ

∂t
= (0, 0, r),

curl (−y, x, 0) = (0, 0, 2),

and thus (be careful about ‘the opposite orientation’ of ψ and φ)∫︂
(k)
f(x, y, z) ds = −

∫︂ 2π

0

(︂ ∫︂ 1

0
(0, 0, 2) · (0, 0, r) dr

)︂
dt = −2π .

Now we present how to replace the given integral by an integral over ‘the upper hemisphere’
S = ⟨ψ̃⟩, where

ψ̃(u, v) := (cosu cos v, sin u cos v, sin v), Dψ̃ = [0, 2π] ×
[︂
0, π2

]︂
.

For the parametrization ψ̃ it holds that

∂ψ̃

∂u
= (− sin u cos v, cosu cos v, 0), ∂ψ̃

∂v
= (− cosu sin v,− sin u sin v, cos v),

∂ψ̃

∂u
× ∂ψ̃

∂v
= (. . . , . . . , sin v cos v).

Notice that (︃
∂ψ̃

∂u
× ∂ψ̃

∂v

)︃(︂
0, π4

)︂
=
(︂
. . . , . . . ,

1
2
)︂
,

and we thus again obtain ‘opposite orientations’ of ψ̃ and φ. Then it easily follows that∫︂
(k)
f(x, y, z) ds = −

∫︂ 2π

0

(︂ ∫︂ π
2

0
2 sin v cos v dv

)︂
du = −2π

[︂
− cos(2v)

2
]︂π

2

0
= −2π .
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Exercise 5.40. Evaluate ∫︂
(φ)

x dx+ (x+ y) dy + (x+ y + z) dz,

using the Stokes theorem if φ(t) := (3 cos t, 3 sin t, 3(cos t+ sin t)), Dφ = [0, 2π].

Remark 5.41. The definition of the differential operators of the first order including gradient,
divergence, and curl can be memorized by using ‘the nabla operator’

∇ :=
(︃
∂

∂x
,
∂

∂y
,
∂

∂z

)︃
and formal equalities

“ grad f = ∇f ” (f : R3 → R),

“ div f = ∇ · f ” (f : R3 → R3),

“ curl f = ∇ × f ” (f : R3 → R3).

Exercise 5.42. Let the vector field f = (f1, f2, f3) : R3 → R3 be of class C1 and assume it is
conservative in a domain M ⊂ R3. Prove that f is irrotational in M .

5.8 Applications of the surface integral of the second kind

a) Flow of a vector field through an oriented surface.
Let the vector field f : R3 ↦→ R3 be continuous on an oriented smooth surface S.
Flow of the vector field f through the oriented surface S is defined, as has been mentioned
above, by

τ(S) :=
∫︂∫︂

(S)
f(x, y, z) dσ.

b) Volume of a body (more precisely measure of a set).
Let Ω ⊂ R3 denote a regular domain. Then it holds that (see the Gauss – Ostrogradsky
theorem)20

λ(Ω) = 1
3

∫︂∫︂
(∂Ω)

(x, y, z) dσ =
∫︂∫︂

(∂Ω)
(x, 0, 0) dσ = . . . .

Example 5.43. Compute the flow of the vector field f(x, y, z) := (x2, y2, z2) through a positively
oriented sphere with the radius of 1 centered in (1, 1, 1).

Solution. We denote

S =
{︁
(x, y, z) ∈ R3 : (x− 1)2 + (y − 1)2 + (z − 1)2 = 1

}︁
,

Ω =
{︁
(x, y, z) ∈ R3 : (x− 1)2 + (y − 1)2 + (z − 1)2 ≤ 1

}︁
.

20We obviously assume that the closed piecewise smooth surface ∂Ω is positively oriented.
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From the Gauss – Ostrogradsky theorem it directly follows that (S is positively oriented)

τ(S) =
∫︂∫︂

(S)
(x2, y2, z2) dσ =

∫︂∫︂∫︂
Ω

2x+ 2y + 2z dx dy dz

= 2
∫︂ 2π

0

(︂ ∫︂ π
2

−π
2

(︂ ∫︂ 1

0
(3 + r cosu cos v + r sin u cos v + r sin v) r2 cos v dr

)︂
du
)︂

dv

= 6 · 2π
(︂ ∫︂ 1

0
r2 dr

)︂(︂ ∫︂ π
2

−π
2

cos v dv
)︂

= 12π · 1
3 · 2 = 8π .

We used the substitution

x = r cosu cos v, y = r sin u cos v, z = r sin v,

r ∈ [0, 1], u ∈ [0, 2π], v ∈
[︂

− π

2 ,
π

2
]︂
, J = r2 cos v

and obvious equalities∫︂ 2π

0
cosudu =

∫︂ 2π

0
sin udu = 0,

∫︂ π
2

−π
2

sin v cos v dv = 0 .

Exercise 5.44. Let a, b denote real numbers satisfying a > b > 0. Compute the volume of the
body Ω (torus) bounded by the surface ψ, if

ψ(u, v) :=
(︁
(a+ b cos v) cosu, (a+ b cos v) sin u, b sin v

)︁
,

Dψ = [0, 2π] × [0, 2π].
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components of the vector-valued function, 2
continuity of a function, 3

at a point, 3
on a set, 3
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curl of a vector field, 58
curve, 8, 51

arc length, 20
centre of mass, 21
closed, 8

exterior normal vector, 27
interior, exterior, 27
positively, negatively oriented, 28

image, 8
mass, 21
moment of inertia, 21
moment of rotation, 21
opposite orientation, 8
oriented line segment, 21
piecewise smooth, 9
regular, 8
same, opposite orientation, 24
simple, 8
simple closed, 8
tangent line, 9

differential, 5
divergence of a vector field, 55
domain, 27

regular, 38, 55

field
scalar, 2
vector, 2

conservative in a domain, 32
constant, 21
curl, 58

divergence, 55
divergence-free (solenoidal), 57
flow through an oriented surface, 61
irrotational, 58

flow of a vector field, 61
function

vector-valued, 1, 2
differentiable, 5

limit
of a vector-valued function, 2

line integral
of the first kind, 14

cylindrical surface area, 20
of the second kind, 22

area of plane shapes, 36
path independent, 32
work along an oriented curve, 36

matrix
Jacobi, 5

moment
of inertia, 48
static, 48

neighbourhood, 1
punctured, 1

neighbouring surfaces, 51
norm

Euclidean, 1

operator
differential of the first order, 61
nabla, 61

parametrization of a set, 8, 38
partitioning

of a piecewise smooth curve, 22
of a piecewise smooth surface, 42

point
curve

initial, terminal, 8
sink, 56
source, 56
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potential
conditions of existence, 33

product
cross, 12, 28, 40

same orientation, 51
sequence convergence, 1
set

connected, 27
open, 27

space Rn, 1
surface, 38

area, 47
center of mass, 48
geometrical image, 38
Möbius strip, 51
moment of rotation, 48
non-orientable (single-sided), 51
orientable (two-sided), 51
orientable partitioning, 51
orientation, 51

positive, 55
with boundary, 58

piecewise smooth, 42
boundary, 42
closed, 42
part of a boundary, 42
partitioning, 42
regular point, 42

regular, 38
boundary, 39

regular surface, 51
weight, 48

surface integral
of the first kind

over a piecewise smooth surface, 43
over a regular surface, 41

of the second kind
over a piecewise smooth surface, 52
over a regular surface, 50

tangent line to a curve, 9
tangent plane, 6
tangent vector to a curve, 9
theorem

Gauss – Ostrogradsky, 55
Green, 28
Jordan, 27
on path independence, 32
on the independence of parametrization, 16,

24
Stokes, 58

volume of a body, 61
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