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Chapter 1

Rn as a vector and metric space

1.1 Calculation in Rn, definition of the metric

We will denote the set of all ordered n−tuples of real numbers by the symbol Rn.
Elements of Rn will be denoted in the form

x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn), . . . .

Real numbers x1, x2, . . . , xn (and y1, y2, . . . , yn respectively) are called coordinates
or components of the point x (and y respectively)1.

Define the following operations (x, y ∈ Rn, c ∈ R) in Rn:

• x+ y := (x1 + y1, x2 + y2, . . . , xn + yn),

• c · x := (cx1, cx2, . . . , cxn),

1We will omit using indices to distinguish coordinates of the vector, frequently. For example
we will write

(x, y, z) ∈ R3, (u, v) ∈ R2, . . . .
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x− y := x+ ((−1) · y) = (x1 − y1, x2 − y2, . . . , xn − yn).

(It is not difficult to show that Rn with the operations defined above represents
the vector space.)

Moreover, define in the sequel:

• x · y := x1y1 + x2y2 + · · ·+ xnyn . . . (euclidean) scalar product,

• ‖x‖ :=
√
x · x =

√
x21 + x22 + · · ·+ x2n . . . (euclidean) norm,

• %(x, y) := ‖x− y‖ =
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2

... (euclidean) metric.

Example 1.

• (2, 3,−1) + (0, 9, 12) = (2, 12, 11).

• −6 · (2,−1) = (−12, 6).

• (1, 1, 1, 2)− (2, 2, 3, 4) = (−1,−1,−2,−2).

• (1, 2) · (3,−6) = −9.

• ‖(2, 3)‖ =
√

13.

• %((1, 1), (−10, 0)) =
√

122.

4

Proposition 2. Metric ρ has the following properties for all x, y, z ∈ Rn:

1. %(x, y) ∈ R, %(x, y) ≥ 0, %(x, y) = 0⇔ x = y, (distinguish property)

2. %(x, y) = %(y, x), (symmetry)

3. %(x, y) ≤ %(x, z) + %(z, y). (triangle inequality)

Remark 3. Concern on the fact that for n = 1 (for n = 2 and 3, respectively)
%(x, y) represents the usual distance of the points x, y on the real axis (on the real
plane and the space respectively).
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Remark 4. Let P is a nonempty set. Every mapping ρ : P × P → R for which
three properties of the proposition above hold can be considered as an appropriate
generalization of the notion of the distance. We will call such a mapping metric
and the set P embedded with this metric as a metric space.

Since Rn is a metric space we are ready to state the notion of the convergence of
the sequence in Rn.

1.2 Convergence of sequences in Rn

Remark 5. Similarly as in the one-dimensional case we will use the symbol (ak)

for sequence in Rn. It means that for every sufficiently large k ∈ N there is the
point ak ∈ Rn assigned to k.

Definition 6. Let b ∈ Rn and the sequence (ak) in Rn is given. Then (ak) is said
to be convergent to b ((ak) has the limit b) if

lim %(ak, b) = 0.

In this case we will write lim ak = b or ak → b. ♥

Recall lim %(ak, b) represents the limit of the sequence of real numbers.

Proposition 7. (” convergence = convergence in components ”)

Let b ∈ Rn and the sequence (ak) in Rn is given. Denote by

ak = (ak1, ak2, . . . , akn), b = (b1, b2, . . . , bn)

coordinates of the points ak, b. Then

lim ak = b

if and only if for every i ∈ {1, 2, . . . , n}:

lim aki = bi.
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Example 8. The sequence
(
k2, 0, 1

k2

)
has not a limit since the related sequence

(k2) of the first coordinates has not the finite limit! 4

Exercise 9. Decide about the convergence of the sequences bellow. Compute the
limits if exist:

• lim
(
1
k
, (−1)k, 3

)
,

• lim
(

k2

3k−4k2 ,
(
1
2

)k),
• lim

(
(1 + 1

k
)k, 2

k3
sin(k2 + 1)

)
,

• lim
(

k
√
k, 4, k2 − k

)
.
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Chapter 2

Real function of n real variables

2.1 Definition, basic notions

Every mapping from Rn into R is said to be the real function of n real variables.
Equivalently a function f is a rule that associates every element x = (x1, x2, . . . , xn) ∈
Df ⊂ Rn with exactly one value f(x) = f(x1, x2, . . . , xn) ∈ Hf ⊂ R. (Df ... the
domain of f , Hf ...the range of f). If f is a real function of n real variables, we
write

f : Rn → R.

Example 10.

• f(x, y) = sin(x+ 2y), Df = R2, Hf = 〈−1, 1〉 .

• f(x, y, z) =
√
x2 + y2 + z2, Df = R3, Hf = R+ ∪ {0}.

• f(x, y) =

 1, for xy > 0,

−1, for xy ≤ 0,
Df = R2, Hf = {1,−1}.

• f(x, y) = 14, Df = {(x, y) ∈ R2 : x2 + y2 ≤ 9}, Hf = {14}.

4
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2.2 Remark and convention.

Now we know that a function is determined by its domain and its rule which
associates each element of the domain with exactly one value. We often determine
a function f : Rn → R only by its rule; in this case the domain is a set of all
elements in Rn for which the rule is meaningful. Let us illustrate this convention
with the following example.

Example 11. Compute the domain of the function f : R2 → R defined by the
formula

f(x, y) := sin(3x+ y − 6) +
√
x+ 1− ln(y2).

(x, y) ∈ Df ⇔
[
x+ 1 ≥ 0 ∧ y2 > 0

]
, hence

Df = {(x, y) ∈ R2 : x ≥ −1 ∧ y 6= 0}.

4

Definition 12. A graph of a function f : Rn → R is defined as the following set:

Graph f :=

= {(x1, x2, . . . , xn, y) ∈ Rn+1 : (x1, x2, . . . , xn) ∈ Df ∧ y = f(x1, x2, . . . , xn)}.

A contour line of a function f with the contour dimension c ∈ R is defined by

vf (c) := {(x1, x2, . . . , xn) ∈ Df : f(x1, x2, . . . , xn) = c}.

♥

2.3 Operations with functions

Definition 13. Let f, g : Rn → R and c ∈ R. Functions

f + g, f − g, f · g, f
g
, c · f : Rn → R
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are defined by the following rules:

• (f + g)(x) := f(x) + g(x),

• (f − g)(x) := f(x)− g(x),

• (f · g)(x) := f(x) · g(x),

•
(
f
g

)
(x) := f(x)

g(x)
,

• (c · f)(x)” = cf(x).

♥

Definition 14. Consider n+ 1 functions

f : Rm → R; g1, g2, . . . , gm : Rn → R.

A function h : Rn → R defined by the rule

h(x1, . . . , xn) := f
(
g1(x1, . . . , xn), g2(x1, . . . , xn), . . . , gm(x1, . . . , xn)

)
is said to be the function composed from the functions f and g1, g2, . . . , gm. ♥

Example 15. Let f(u, v, w) := u2 + 2v2 + 3w2; g1(x, y) := x− y, g2(x, y) := x+

y, g3(x, y) := 2x+ y. Then a function composed from the functions f and g1, g2, g3

is the function

h(x, y) := f
(
g1(x, y), g2(x, y), g3(x, y)

)
= (x− y)2 + 2(x+ y)2 + 3(2x+ y)2 =

= 15x2 + 14xy + 6y2.

4

Exercise 16.

1. Determine and draw in R2 domain of the function f defined by the formula
f(x, y) :=

√
9− x2 − y2 −

√
x2 − y2 − 1.
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2. Sketch (in R3) graph of the function f defined bellow:

(a) f(x, y) := 4− x2 − y2,

(b) f(x, y) := 4− x2,

(c) f(x, y) := 2x+ 3y + 1.

3. Determine and draw in R2 contour lines of the function f defined by

(a) f(x, y) := 1− x2

4
− y2

9
,

(b) f(x, y) := x2 + y2,

(c) f(x, y) := y,

(d) f(x, y) := 2x+ 3y + 1.

8



Chapter 3

Limit and continuity of functions of
several variables

3.1 Limit of the function

Definition 17. Consider a point x0 ∈ Rn and a sequence (xk) in Rn. Assume
that for all sufficiently large k ∈ N

xk ∈ Rn \ {x0}

and
limxk = x0.

Then we will simply write
x0 6= xk → x0.

♥

Definition 18. Let f : Rn → R, x0 ∈ Rn and a ∈ R∗. Suppose that the following
implication

x0 6= xk → x0 ⇒ f(xk)→ a

9



holds1. Then we will write
lim
x→x0

f(x) = a

and say that the function f takes the limit a at the point x0. ♥

Proposition 19. Let f : Rn → R, x0 ∈ Rn and a ∈ R. Then the following
statements are true:

1. If the limit lim
x→x0

f(x) exists then there is a positive δ such that

P (x0, δ) := {x ∈ Rn : 0 < ‖x− x0‖ < δ} ⊂ Df

. . . deleted neighbourhood of x0 with the radius δ;

2.

lim
x→x0

f(x) = a⇔

⇔ (∀ε > 0)(∃δ > 0)(∀x ∈ Rn; 0 < ‖x− x0‖ < δ) : |f(x)− a| < ε;

3.

lim
x→x0

f(x) = +∞⇔

⇔ (∀k ∈ R)(∃δ > 0)(∀x ∈ Rn; 0 < ‖x− x0‖ < δ) : f(x) > k;

4.

lim
x→x0

f(x) = −∞⇔

⇔ (∀l ∈ R)(∃δ > 0)(∀x ∈ Rn; 0 < ‖x− x0‖ < δ) : f(x) < l.

Example 20.

lim
(x,y)→(0,0)

sin(x2 + y2)

x2 + y2
= 1.

4
1More specifically we mean that f(xk)→ a for every sequence (xk) such that x0 6= xk → x0
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Proof. Define a function f : R2 → R by the rule f(x, y) := sin(x2+y2)
x2+y2

. Then we
can immediately confirm the validity of the following implications:

[
(0, 0) 6= (xk, yk)→ (0, 0)

]
⇒ 2

⇒

xk → 0 ∧ xk → 0 ∧ y2k + y2k 6= 0

for all sufficiently large k ∈ N

⇒

⇒

x
2
k → 0 ∧ y2k → 0 ∧ x2k + y2k 6= 0

for all sufficiently large k ∈ N

⇒

⇒
[
0 6= zk := x2k + y2k → 0

]
⇒ 3

[sin zk
zk

= f(xk, yk)→ 1
]

But it is exactly what we have to prove.

Example 21. lim
(x,y)→(0,2)

(
y + 1

x

)
does not exist. 4

Proof. Define a function g : R2 → R and a sequence
(
(xk, yk)

)
in R2 by the

following rules:

g(x, y) := y +
1

x
, (xk, yk) :=

(
(−1)k

k
, 2

)
.

Then we can see that

• (0, 2) 6= (xk, yk)→ (0, 2),

• the sequence
(
g(xk, yk)

)
=
(
2 + (−1)kk

)
has not a limit.

Now, from the definition of the limit we conclude that the investigated limit does
not exist.

2See the theorem about convergence in components.
3We know that limz→0

sin z
z = 1. It means under definition: 0 6= zk → 0⇒ sin zk

zk
→ 1.
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3.2 Continuity of the function

Definition 22. A function f : Rn → R is said to be continuous at the point
x0 ∈ Rn if

lim
x→x0

f(x) = f(x0).

♥

Proposition 23. Let f : Rn → R and x0 ∈ Rn. Then the following statements
are true:

1. If f is continuous at x0 then there is a positive δ such that

U(x0, δ) := {x ∈ Rn : ‖x− x0‖ < δ} ⊂ Df

. . . neighbourhood of x0 with the radius δ;

2. f is continuous at x0 if and only if

xk → x0 ⇒ f(xk)→ f(x0).

Example 24.

1. A function f : R2 → R given by the rule

f(x, y) :=


sin(x2+y2)
x2+y2

, for (x, y) 6= (0, 0),

1, for (x, y) = (0, 0),

is continuous at the point (0, 0).

2. A function g : R2 → R given by the rule

g(x, y) :=

y + 1
x
, for x 6= 0,

1, for x = 0,

is not continuous at the point (0, 2).

12



4

Theorem 25. Assume that functions f, g : Rn → R are continuous at the point
x0 ∈ Rn. Then functions

f + g, f − g, f · g, c · f (c ∈ R)

are continuous at x0. Moreover suppose that g(x0) 6= 0. Then the division f
g
is

continuous at x0 as well. �

Theorem 26. Consider the notation from the part devoted to the composed
function. Let h : Rn → R is defined by

h(x) := f
(
g1(x), g2(x), . . . , gm(x)

)
,

where f : Rm → R, and g1, g2, . . . , gm : Rn → R. Assume that functions
g1, g2, . . . , gm are continuous at x0 and moreover f is continuous at(
g1(x0), g2(x0), . . . , gm(x0)

)
∈ Rm. Then h is also continuous at x0.4 �

Example 27. A function f : R2 → R given by the formula

f(x, y) := sin(x+ 2y)− x3 + ex
2y

is continuous at every point (x, y) ∈ R2. 4

Definition 28. A function f : Rn → R is said to be continuous on the set M ⊂
Rn if 5

M 3 xk → x0 ∈M ⇒ f(xk)→ f(x0).

♥

4The same in another words: Composition of continuous functions is continuous function
again.

5By the notation M 3 xk → x0 ∈ M we mean that x0 ∈ M and xk ∈ M for all sufficiently
large k ∈ N.
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Chapter 4

Derivative and differential of
functions of several variables

4.1 Partial derivatives of the first order

Assume we want to study the behavior of a function f : R2 → R defined on some
neighborhood of the point c = (c1, c2). It is very natural to consider appropriate
cuts of the graph of this function. Hence the role of functions

g1, g2 : R→ R, g1(x) := f(x, c2), g2(y) := f(c1, y)

seems to be crucial.

Suppose that g1 admits finite derivative at c1. Then this derivative is said to be
the partial derivative with respect to x (or with respect to the first variable) of the
function f at the point c. We will use the notation ∂f(c)

∂x
for it.

Similarly if g2 has finite derivative at c2 we will speak about the partial derivative
with respect to y (w. r. t. the second variable) at the point c and denote this
number by the symbol ∂f(c)

∂y
.

Now we are ready to bring a generalization of these notions to the case of functions
of several variables.
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Definition 29. Let f : Rn → R and k ∈ {1, 2, . . . , n}. Assume that the point

c = (c1, c2, . . . , ck, . . . , cn)

is an inner point of the domain Df (i. e. there exists δ > 0 such that U(c, δ) ⊂
Df 1).

Consider a function gk : R→ R defined by the rule

gk(x) := f(c1, c2, . . . , ck−1, x, ck+1, . . . , cn).

If gk has the finite derivative at the point ck then this derivative is said to be the
partial derivative of the function f with respect to the k−th variable at the point
c and we will use the symbol

∂f(c)

∂xk
for it.

(It means ∂f(c)
∂xk

:= g′k(ck) ∈ R.)

Moreover a function ∂f
∂xk

: Rn → R defined by the rule

∂f

∂xk
(x) :=

∂f(x)

∂xk

represents a partial derivative of the function f with respect to the k−th variable.
♥

Example 30.

1. If
f(x, y) := sin(2x+ y)

then ∂f
∂x

(π, 0) = g′(π), where g(x) := f(x, 0) = sin(2x). Because g′(x) =

2 cos(2x) we conclude

∂f

∂x
(π, 0) = 2 cos(2π) = 2.

1See the definition of the neighbourhood.
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Similarly ∂f
∂y

(π, 0) = h′(0), where h(y) := f(π, y) = sin(2π+y) = sin y. Since
h′(y) = cos y, we have

∂f

∂y
(π, 0) = cos 0 = 1.

2. Consider a function

f(x, y) =

1, for xy 6= 0,

0, for xy = 0 .

Then
∂f(0, 0)

∂x
= 0 =

∂f(0, 0)

∂y
.2

3. If
f(x, y, z) := sin x cos(y + 2z)

then

∂f(x, y, z)

∂x
= cos x cos(y + 2z),

∂f(x, y, z)

∂y
= − sinx sin(y + 2z),

∂f(x, y, z)

∂z
= −2 sinx sin(y + 2z).

(The definition of the partial derivative w.r.t. the k−th variable bring an
instruction for computing it at the same time. All variables except the k−th
one must be seen as fixed parameters hence we simply compute the derivative
of the function of one (k−th) variable ).

4

Exercise 31. Compute ∂f
∂x

(x, y), ∂f
∂y

(x, y) for the following functions:

2Concern on the fact that f is not continuous at the point (0, 0). Generally continuity of a
function at a point c does not follow from the existence of partial derivatives at this point!
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1. f(x, y) := 2x3y − 4xy2 + 2x;

2. f(x, y) := ln(x+
√
x2 + y2);

3. f(x, y) := xy (let us recall xy := ey lnx)

4.2 Directional derivative

Remark 32. Consider

f : Rn → R,

c = (c1, c2, . . . , cn) ∈ Rn,

ek := (0, . . . , 0, →
k-th component

1, 0, . . . , 0) ∈ Rn.

Then3

∂f(c)

∂xk
= g′k(ck) = lim

t→0

gk(ck + t)− gk(ck)
t

=

= lim
t→0

f(c1, . . . , ck−1, ck + t, ck+1, . . . , cn)− f(c1, . . . , cn)

t
=

= lim
t→0

f(c+ t · ek)− f(c)

t
.

If we replace in the limit above the "direction" ek by an arbitrarily chosen vector
u (such that ||u|| = 1) we obtain the derivative of the function f at the point c in
the direction u.

Definition 33. Consider some function f : Rn → R and assume that c ∈ Rn

is an inner point of a domain of f. Moreover fix some vector u ∈ Rn, ‖u‖ = 1.

Suppose the limit

lim
t→0

f(c+ t · u)− f(c)

t
,

exists and belongs to R. Then this limit is said to be a derivative of the function

3We use the notation from the definition of the partial derivative.
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f at the point c in the direction u and it is denoted by the symbol

df(c)

du
.

♥

Remark 34. From our investigation above we can observe that partial derivative
under k−th variable represents a special case of the directional derivative, i. e.

∂f(c)

∂xk
=

df(c)

dek
.

Remark 35. Computations of directional derivatives based on the limit from
definition are brutal frequently. We promise to the reader that we will bring the
more effective way for computing them in the future.

4.3 Partial derivatives of higher orders

Definition 36. Consider a function f : Rn → R and fix the couple of numbers
i, j ∈ {1, 2, . . . , n}. Let ∂f

∂xi
exists on some neighborhood of a point c ∈ Rn.

Suppose that the function ∂f
∂xi

admits a partial derivative with respect to the j
variable at the point c. Then this derivative will be denoted by the symbol

∂2f(c)

∂xi∂xj

and we will call it a partial derivative of the second order of the function f with
respect to the i−th and j−th variable. (In the case i = j we will briefly write
∂2f(c)

∂x2i
.)4

Generally a partial derivative of the k−order of f at c w.r.t. to variables xi1 , xi2 , . . . , xik

4It seems to be clear how we can define functions ∂2f
∂xi∂xj

and ∂2f
∂x2

i
. Hence it is omitted in this

text.
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is given by the following rule:

∂kf(c)

∂xi1∂xi2 . . . ∂xik
:=

∂
(

∂k−1f
∂xi1 ...∂xik−1

)
(c)

∂xik
, (i1, . . . , ik ∈ {1, 2, . . . , n}).

♥

Example 37.

1. Let
f(x, y) := sin(2x+ 3y).

Then

∂f

∂x
(x, y) = 2 cos(2x+ 3y),

∂f

∂y
(x, y) = 3 cos(2x+ 3y),

∂2f

∂x2
(x, y) = −4 sin(2x+ 3y),

∂2f

∂y2
(x, y) = −9 sin(2x+ 3y),

∂2f

∂x∂y
(x, y) = −6 sin(2x+ 3y) =

∂2f

∂y∂x
(x, y) .

2. Consider a function

f(x, y) :=

1, for x = 0,

0, for x 6= 0.

Then ∂f
∂y

(x, y) = 0 (in R2) hence ∂2f
∂y∂x

(0, 0) = 0.

But from the other side ∂f
∂x

(0, 0) does not exist and as a consequence ∂2f
∂x∂y

(0, 0)

does not exist.

4

Theorem 38 (About commutability of partial derivatives).
Let a function f : Rn → R admits partial derivatives ∂f

∂xi
, ∂f
∂xj
, ∂2f
∂xi∂xj

(i, j ∈
{1, 2, . . . , n}) in some neighborhood of a point c ∈ Rn. Moreover assume that
a function ∂2f

∂xi∂xj
is continuous at the point c. Then ∂2f(c)

∂xj∂xi
exists and

∂2f(c)

∂xj∂xi
=
∂2f(c)

∂xi∂xj
.
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Corollary 39. Assume that M ⊂ Rn is open (it means that every point of M has
some neighborhood which is subset ofM ) and a function f admits continuous all
partial derivatives up to the k−th order. Then these derivatives are independent

with respect to the sequence of variables. They depend just on the count of

making derivatives w. r. t. the given variable.

Exercise 40. Compute all partial derivatives of the second order of given func-
tions:

1. f(x, y) := cos(2x+ 3y) sin(−3x);

2. f(x, y) := arctg(2x− y);

3. f(x, y, z) := x2 + 2y3 + xyz2.

4.4 Differential

Definition 41. Assume f : Rn → R has continuous all partial derivatives of the
first order at a point c ∈ Rn. Then we say that f is (continuously) differentiable
at the point c. Linear function dfc : Rn → R defined by the formula

dfc(h1, . . . , hn) :=
∂f(c)

∂x1
h1 +

∂f(c)

∂x2
h2 + · · ·+ ∂f(c)

∂xn
hn

is said to be differential of f at c and vector

grad f(c) :=

(
∂f(c)

∂x1
,
∂f(c)

∂x2
, . . . ,

∂f(c)

∂xn

)
is gradient of f at c. ♥

Concern on the fact that if f is differentiable at c then

dfc(h) = grad f(c) · h , for every h ∈ Rn .
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Example 42.

1.
f(x, y) := ln

√
2x2 − y2, c = (3,−

√
2);

dfc(h1, h2) =
6

16
h1 +

√
2

16
h2.

2.
f(x, y, z) := xyz, c = (1,−2, 1);

dfc(h1, h2, h3) = −2h1.

4

Exercise 43. Compute dfc:

1.
f(x, y) := ln(x2 + y2), c = (1, 3);

2.
f(x, y, z, u) := sin(x+ y) cos(z − u), c = (0, 0, 0, 0).

Theorem 44. Let f : Rn → R be a differentiable function at a point c ∈ Rn.
Then

1.
lim

h→(0,0,...,0)

f(c+ h)− f(c)− dfc(h)

‖h‖
= 0;

2. f is continuous at c

3. If u ∈ Rn and ‖u‖ = 1 then df(c)
du exists and

df(c)

du
= gradf(c) · u;

4. Suppose grad f(c) = (0, 0, . . . , 0). Then df(c)
du = 0 for all u ∈ Rn such that

‖u‖ = 1.
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If grad f(c) 6= (0, 0, . . . , 0) then the value of df(c)
du is maximal for u :=

grad f(c)

‖grad f(c)‖
= u1 and minimal when u := − grad f(c)

‖grad f(c)‖
= u2 . Moreover

df(c)

du
= ‖grad f(c)‖, df(c)

du2
= −‖gradf(c)‖.

�

Example 45.

1.
f(x, y, z) := xyz, c = (5, 1, 2), u =

(
4

5
, 0,−3

5

)
;

df(c)

du
= (2, 10, 5) ·

(
4

5
, 0,−3

5

)
= 2 · 4

5
+ 10 · 0 + 5 ·

(
−3

5

)
= −7

5
.

2.

f(x, y) := arctan
y

x
, c =

(
1

2
,

√
3

2

)
, u =

(√
3

2
,
1

2

)
;

df(c)

du
=

(
−
√

3

2
,
1

2

)
·

(√
3

2
,
1

2

)
= −3

4
+

1

4
= −1

2
.

4

Exercise 46. Compute df(c)
du for the following functions and points:

1.
f(x, y) := ln(x2y), c = (1, 4), u = (1, 0);

2.

f(x, y) := ln
√

2x2 − y2, c = (3,−
√

2), u =

(√
3

2
,
1

2

)
.
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4.5 Differentials of higher orders

Definition 47. Fix a point c ∈ Rn and consider a function f : Rn → R with
continuous partial derivatives of the k−th order at c. Then the function

dkfc : Rn → R

defined by the formula

dkfc(h1, h2, . . . , hn) :=
n∑

i1,...,ik=1

∂kf(c)

∂xi1∂xi2 . . . ∂xik
hi1hi2 · · ·hik

is said to be the differential of the k−th order of the function f at the point c. ♥

Example 48. Let f(x, y) := sin(2x+ y), c = (0, π). Then

1. d1fc(h1, h2) = dfc(h1, h2) = −2h1 − h2,

2. d2fc(h1, h2) = 0,

3. d3fc(h1, h2) = 8h31 + 12h21h2 + 6h1h
2
2 + h32.

4

Remark 49. Observations and notes for computing higher-order differ-
entials

Suppose that s function f : R2 → R has at a point c ∈ R2 continuous all partial
derivatives of the second order. Then (mixed partial derivatives of the second
order are the same at c) we can write

d2fc(h1, h2) =
∂2f(c)

∂x2
h21 +

∂2f(c)

∂x∂y
h1h2 +

∂2f(c)

∂y∂x
h2h1 +

∂2f(c)

∂y2
h22 =

=
∂2f(c)

∂x2
h21 + 2

∂2f(c)

∂x∂y
h1h2 +

∂2f(c)

∂y2
h22 = ”

(
∂

∂x
h1 +

∂

∂y
h2

)2

f(c)” .

For the general case we can conclude the similar observation. Assume that f :

Rn → R has at c ∈ Rn continuous all partial derivatives up to the k−th order.
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Then the following formal “equality” can be used for computing of the considered
differential:

dkfc(h1, h2, . . . , hn) = ”

(
∂

∂x1
h1 +

∂

∂x2
h2 + · · ·+ ∂

∂xn
hn

)k
f(c) ”.

Let us show how this observation can be used practically.

Example 50. Compute d3fc if f(x, y) := y lnx, c = (1, 3).

d3fc(h1, h2) = ”

(
∂

∂x
h1 +

∂

∂y
h2

)3

f(c) ” =

= ”

(
∂3

∂x3
h31 + 3

∂3

∂x2∂y
h21h2 + 3

∂3

∂x∂y2
h1h

2
2 +

∂3

∂y3
h2

)3

f(c) ” =

=
∂3f(c)

∂x3
h31 + 3

∂3f(c)

∂x2∂y
h21h2 + 3

∂3f(c)

∂x∂y2
h1h

2
2 +

∂3f(c)

∂y3
h32 =

= 6h31 − 3h21h2.

4

Exercise 51. Compute dkfc if

1. f(x, y) := ln(1 + x) ln(1 + y), c = (0, 0), k = 2;

2. f(x, y) := xy, c = (1, 1), k = 3;

3. f(x, y, z) := xyz, c = (−1, 0, 1), k = 3.

4.6 Derivatives of the composite functions

First of all, let us state the definition of the derivative of the composite function
in general form. We will also discuss some useful special cases subsequently.
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Theorem 52. Suppose that functions g1 : Rn → R, g2 : Rn → R, . . . , gm : Rn →
R have variables x1, x2, . . . , xn and are differentiable at c = (c1, c2, . . . , cn) ∈ Rn.
Let d = (d1, d2, . . . , dm) = (g1(c), g2(c), . . . , gm(c)) and assume that the function
f : Rm → R with variables y1, y2, . . . , ym is differentiable at d. Then the composite
function h : Rn → R,

h(x1, x2, . . . , xn) = f(g1(x1, x2, . . . , xn), g2(x1, x2, . . . , xn), . . . , gm(x1, x2, . . . , xn))

is differentiable at the point c and

∂h(c)

∂xl
=
∂f(d)

∂y1
· ∂g1(c)
∂xl

+
∂f(d)

∂y2
· ∂g2(c)
∂xl

+ · · ·+ ∂f(d)

∂ym
· ∂gm(c)

∂xl
, (4.6.1)

for every l ∈ {1, 2, . . . , n}. �

We can write the formula above in briefer form

∂h(c)

∂xl
=

m∑
j=1

∂f(d)

∂yj
· ∂gj(c)
∂xl

, for every l ∈ {1, 2, . . . , n} .

Example 53. For the choice f(y1, y2) := y21+y22, g1(x1, x2) := x1·cosx2, g2(x1, x2) :=

x1 · sinx2 we have h(x1, x2) = x21 · cos2 x2 + x21 · sin2 x2 = x21. Using notation

d = (d1, d2) = (g1(c), g2(c)) = (g1(c1, c2), g2(c1, c2)) = (c1 · cos c2, c1 · sin c2)

we obtain
∂f(d)

∂y1
= 2 · d1,

∂f(d)

∂y2
= 2 · d2,

∂g1(c)

∂x1
= cos c2,

∂g2(c)

∂x1
= sin c2,

∂g1(c)

∂x2
= −c1 · sin c2,

∂g2(c)

∂x2
= c1 · cos c2

and compute

∂h(c)

∂x1
= 2 · d1 · cos c2 + 2 · d2 · sin c2 = 2 · c1 · cos2 c2 + 2 · c1 · sin2 c2 = 2c1,

∂h(c)

∂x2
= −2 · d1 · sin c2 + 2 · d2 · cos c2 = 0.
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The reader would be so kind and compute both derivatives of h directly. 4

Remark 54. Using notation y = (y1, y2, . . . , ym), x = (x1, x2, . . . , xn) (and as-
suming smoothness) we can write the following modification of the formula above
(4.6.1):

∂h(x1, . . . , xn)

∂xl
=

m∑
j=1

∂f(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn))

∂yj
· ∂gj(x1, . . . , xn)

∂xl
,

for every l ∈ {1, 2, . . . , n} .

The more comprehensive equivalent:

∂h(x)

∂xl
=

m∑
j=1

∂f(g1(x), . . . , gm(x))

∂yj
· ∂gj(x)

∂xl
,

for every l ∈ {1, 2, . . . , n} .

Now, let us have a look at aforementioned special cases:

Example 55. Let functions g1 : R→ R, g2 : R→ R have the common variable x
and be differentiable at c. Consider the function f : R2 → R with the first variable
denoted by y1 and the second one denoted by y2, differentiable at d = (g1(c), g2(c)),
and let the composite function h : R→ R be defined by the rule

h(x) := f(g1(x), g2(x)).

Then
h′(c) =

∂f(d)

∂y1
· g′1(c) +

∂f(d)

∂y2
· g′2(c).

For the choice f(y1, y2) := y21 · y2, g1(x) := sinx, g2(x) := ex we have h(x) =

sin2 x · ex. Using notation d = (d1, d2) = (g1(c), g2(c)) we obtain

∂f(d)

∂y1
= 2 · d1 · d2,

∂f(d)

∂y2
= d21, g

′
1(c) = cos c, g′2(c) = ec

26



and conclude from the formula above

h′(c) = 2 · d1 · d2 · cos c+ d21 · ec = 2 · sin c · cos c · ec + sin2 c · ec.

4

Example 56. Let f : R2 → R (given by some rule f(y1, y2)) be differentiable in
every point of the plane. We want to study behaviour of f when a point moves on
the axis of the first and the third quadrant (y1 = y2). So we can choose g1(x) := x,
g2(x) := x. Thus h(x) = f(x, x). Hence

h′(x) =
∂f(x, x)

∂y1
· 1 +

∂f(x, x)

∂y2
· 1 =

∂f(x, x)

∂y1
+
∂f(x, x)

∂y2
.

Furthermore, assume that f has continuous all partial derivatives of the second
order in R2 . Then we can use the formula for derivatives of the composed function
once again and write

h′′(x) =
∂2f(x, x)

∂y21
+
∂2f(x, x)

∂y1∂y2
+

+
∂2f(x, x)

∂y2∂y1
+
∂2f(x, x)

∂y22
=

=
∂2f(x, x)

∂y21
+ 2 · ∂

2f(x, x)

∂y1∂y2
+
∂2f(x, x)

∂y22
.

4

Example 57. Let f : R2 → R (given by some rule f(y1, y2)) is differentiable in
every point in R2. We want to study behaviour of f when a point moves on the
unit circle, so g1(x) := cosx, g2(x) := sinx seems to be natural choice. We have
h(x) = f(cosx, sinx). Hence

h′(x) = −∂f(cosx, sinx)

∂y1
· sinx+

∂f(cosx, sinx)

∂y2
· cosx.

Furthermore, assume that f has continuous all partial derivatives of the second
order in R2 . Then we can use the formula for derivatives of the composite function

27



once again and write

h′′(x) =
∂2f(cosx, sinx)

∂y21
· sin2 x+

∂2f(cosx, sinx)

∂y22
· cos2 x+

− 2 · ∂
2f(cosx, sinx)

∂y1∂y2
· sinx · cosx+

− ∂f(cosx, sinx)

∂y1
· cosx− ∂f(cosx, sinx)

∂y2
· sinx.

4

Example 58. Suppose that functions g1 : R2 → R, g2 : R2 → R, g3 : R2 → R
are differentiable at c = (c1, c2). Assume that the function f : R3 → R with
variables denoted by y1, y2 and y3 respectively is differentiable at the point d =

(d1, d2, d3) = (g1(c), g2(c), g3(c)). Consider the composite function h : R2 → R,
h(x1, x2) := f(g1(x1, x2), g2(x1, x2), g3(x1, x2)). Then

∂h(c)

∂x1
=
∂f(d)

∂y1
· ∂g1(c)
∂x1

+
∂f(d)

∂y2
· ∂g2(c)
∂x1

+
∂f(d)

∂y3
· ∂g3(c)
∂x1

,

∂h(c)

∂x2
=
∂f(d)

∂y1
· ∂g1(c)
∂x2

+
∂f(d)

∂y2
· ∂g2(c)
∂x2

+
∂f(d)

∂y3
· ∂g3(c)
∂x2

.

4

Example 59. Now, let us assume, that f : R3 → R is differentiable everywhere in
R3. If we want to study behaviour of f when a point moves on a unit ball surface,
we can choose g1(x1, x2) := cos x1 cosx2, g2(x1, x2) := sin x1 cosx2, g3(x1, x2) :=

sinx2. Using the formula from the previous example we obtain

∂h(x1, x2)

∂x1
=
∂f(cosx1 cosx2, sinx1 cosx2, sinx2)

∂y1
· (− sinx1 cosx2) +

+
∂f(cosx1 cosx2, sinx1 cosx2, sinx2)

∂y2
· cosx1 cosx2,

similarly for ∂h(x1,x2)
∂x2

. 4
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Exercise 60. Assuming smoothness of f write the related formula for derivatives
of the related composite functions h at given points:

1. h(x1, x2, x3) := f(x41 · x2, x2 − 3x3, sin(x1 + x3)), (c1, c2, c3) = (1, 2,−1);

2. h(r, t) := f(r · cos t, r · sin t), (c1, c2) = (0, π);

3. h(u, v) := f(u3 − v2, 2u− 3), (c1, c2) = (1, 2);

4. h(x) := f(sinx, sin2 x, sin3 x), c = x ∈ R.
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Chapter 5

Taylor theorem

Theorem 61 (Taylor).
Fix m ∈ N, c ∈ Rn, f : Rn → R and suppose there exists δ > 0 such that

f ∈ Cm+1(U(c, δ)).

Choose a vector h = (h1, h2, . . . , hn) ∈ Rn such that c+ h ∈ U(c, δ). Then we can
write

f(c+ h) = Tm(c+ h) +Rm+1(h),

where
Tm(c+ h) = f(c) +

1

1!
dfc(h) +

1

2!
d2fc(h) + · · ·+ 1

m!
dmfc(h)

and
Rm+1(h) =

1

(m+ 1)!
dm+1fc+ξ·h(h) for some ξ ∈ (0, 1).

Moreover,

lim
h→(0,...,0)

Rm+1(h)

‖h‖m
= 0.

�
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Remark 62. The formulas above can be explicitly written in the forms

T
m

(c+ h) = f(c) +
1

1!

n∑
i=1

∂f(c)

∂xi
hi +

1

2!

n∑
i,j=1

∂2f(c)

∂xi∂xj
hihj+

+
1

3!

n∑
i,j,k=1

∂3f(c)

∂xi∂xj∂xk
hihjhk + · · ·+ 1

m!

n∑
i1,...,im=1

∂mf(c)

∂xi1 . . . ∂xim
hi1 · · ·him ,

Rm+1(h) =
1

(m+ 1)!

n∑
i1,...,im+1=1

∂m+1f(c+ ξ · h)

∂xi1 . . . ∂xim+1

hi1 · · ·him+1 .

Example 63. Choose f(x, y) := cosx cos y, c = (π, 0), m = 2. Then we can
compute that for every h = (h1, h2) ∈ R2

f(c+ h) = f(π + h1, h2) = f(π, 0) +
∂f(π, 0)

∂x
h1 +

∂f(π, 0)

∂y
h2+

+
1

2

(
∂2f(π, 0)

∂x2
h21 + 2

∂2f(π, 0)

∂x∂y
h1h2 +

∂2f(π, 0)

∂y2
h22

)
+R3(h) =

= −1 +
1

2
h21 + h22 +R3(h).

It means that for every “sufficiently close” point (x, y) to (π, 0) we can write an
approximation

f(x, y)
.
= −1 +

1

2
(x− π)2 +

1

2
y2 = T2(x, y).

4

Definition 64. Let a function f : R2 → R be differentiable at a point c =

(c1, c2) ∈ R2. Then a plane

τ := {(x, y, z) ∈ R3 : z = f(c) +
∂f(c)

∂x
(x− c1) +

∂f(c)

∂y
(y − c2)}

is said to be the tangent plane of the graph of f at the point (c1, c2, f(c1, c2)).

(Observe that τ : z = f(c) + dfc(x− c1, y − c2) = T1(x, y).) ♥
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Example 65. Deduce from the example above that a plane

ϑ := {(x, y, z) ∈ R3 : z = −1}

represents the tangent plane of the graph of the function f(x, y) := cosx cos y at
the point (π, 0,−1). 4

Exercise 66. Find equations of tangent planes for given functions and points.

1. f(x, y) := x2 + y2, c = (c1, c2) = (1, 1);

2. f(x, y) := x3 − y2 + 2x− 3, c = (c1, c2) = (1, 2).
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Chapter 6

Implicitly defined function

Consider a function f : R2 → R and the set

M =
{

(x, y) ∈ R2 : f(x, y) = 0
}
.

M represents the contour line of f and we will concern our attention on the
following problem. Is it possible to describe M (or its part, at least) as a graph
of some function g : R → R, y = g(x) ? Let us remark, we will use (not so
much correct) notation “y = g(x)” in this part of the text. This notation helps us
intuitively to understanding of the problem from the another point of view:
Is it possible to express from the “equation” f(x, y) = 0 y “as a function” of x?
Examples bellow show to us that generally the structure of M can be completely
different.

Example 67.

1. f(x, y) := x2 + y2 + 1; M = ∅.

2. f(x, y) := x2 + y2; M = {(0, 0)} .

3. f(x, y) := 6x+ 2y − 3; M is line
{

(x, y) ∈ R2 : y = 3−6x
2

}
(we can write g(x) := 3−6x

2
).

4. f(x, y) :=
√
x2 + 4xy + 4y2−x−2y;M is the half-plane

{
(x, y) ∈ R2 : y ≥ −x

2

}
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(there is infinitively many different possibilities for chosing a function y =

g(x) such that its graph “lies” in M).

5. f(x, y) :=
√
x2 + 4xy + 4y2−x−2y;M is the half-plane

{
(x, y) ∈ R2 : y ≥ −x

2

}
(there is infinitively many different possibilities for chosing a function y =

g(x) such that its graph “lies” in M).

6. f(x, y) := x2 + y2 − 1; M is the circle {(x, y) ∈ R2 : x2 + y2 = 1}
(and there is infinitively many different possibilities for chosing a function y =

g(x) such that its graph “lies” in M again. However observe “the difference”
between examples (4) and (5) ...).

4

The examples above advice to us to concern not only on the existence of “ade-
quated” function g but also on its uniqueness (locally, at least ). We will inves-
tigate the continuity and the differentiability of g also. Let us come back to the
Example (5) and choose (a, b) ∈ M (i. e. a2 + b2 = 1) in such a way that b 6= 0.
Moreover take δ > 0 such that (a− δ, a+ δ) ⊂ (−1, 1). Then it is easy to see that
there exists uniquely one continuous (and differentiable) function y = g(x) defined
in (a− δ, a+ δ) and such that

f(x, g(x)) = 0, for all x ∈ (a− δ, a+ δ)

(i. e. Graphg ⊂M) and
g(a) = b.

(Obviously g(x) =
√

1− x2, for b > 0 and g(x) = −
√

1− x2, for b < 0. )

Problems stay in neighbourhoods of the points (−1, 0),(−1, 0), the points with
vertical “tangent lines”. In this situation any proper function y = g(x) does not
exists 1.

Observation. Assuming that M has in some point (a, b) ∈ M “vertical tangent
line” we conclude ∂f(a,b)

∂y
= 0. 2

1Situation changes when we try to find the function x = g(y)
2The reader should analyze this observation in detail. It is concerned with “geometrical
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Theorem 68 (about implicitly defined function).
Suppose that the set Ω ⊂ R2 is open and (a, b) ∈ Ω. Assume that for some k ∈ N
the function f : R2 → R satisfies the following conditions:

f ∈ Ck(Ω), f(a, b) = 0,
∂f(a, b)

∂y
6= 0.

Then there exist real numbers δ > 0 and η > 0 and a function g : R → R such
that:

(i) g ∈ Ck(a− δ, a+ δ),

(ii) g(x) ∈ (b− η, b+ η), for all x ∈ (a− δ, a+ δ),

(iii) For all x ∈ (a− δ, a+ δ) and every y ∈ (b− η, b+ η):

f(x, y) = 0 ⇐⇒ y = g(x),

(iv) For every x ∈ (a− δ, a+ δ):

g′(x) = −
∂f
∂x

(x, g(x))
∂f
∂y

(x, g(x))
.

(We say that the function g is done implicitly by the equation f(x, y) = 0 and the
condition g(a) = b.) �

Example 69. Let f(x, y) := x − y + 4 sin y, (a, b) = (0, 0). It is easy to verify
that

f ∈ f ∈ C∞(R2), f(0, 0) = 0,
∂f(0, 0)

∂y
6= 0.

Since all assuptions of the theorem above are satisfied we know that there exists
a function g which is done implicitly by the equation x − y + 4 sin y = 0 and the
condition g(0) = 0. We do not know an explicit formula for g. However we can

interpretation“ that gradient is perpendicular to the contourline.
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use the property (iv) from the Theorem 68 and compute the value g′(0):

g′(0) = −
∂f
∂x

(0, g(0))
∂f
∂y

(0, g(0))
= −

∂f
∂x

(0, 0)
∂f
∂y

(0, 0)
= −1

3
.

Let us show different way how to compute requiered derivatives now. Theorem
68 say to us that there exists δ > 0 such that g ∈ C∞(a − δ, a + δ) and for every
x ∈ (a− δ, a+ δ):

h(x) := f(x, g(x)) = x− g(x) + 4 sin(g(x)) = 0.

From this equality we conclude immediately that for every k ∈ N

h(x) = h′(x) = h′′(x) = · · · = h(k)(x) = 0

holds for all x ∈ (a − δ, a + δ). Hence we can make derivatives step by step and
substitute x = 0. In such a way we can compute the value of every derivative of g
at the point 0.3 Let us practice it now:

h′(x) = 1− g′(x) + 4 cos(g(x))g′(x) = 0,

therefore

1− g′(0) + 4 cos(g(0))g′(0) = 1− g′(0) + 4g′(0) = 0 ⇒ g′(0) = −1

3
.

h′′(x) = −g′′(x)− 4 sin(g(x))(g′(x))2 + 4 cos(g(x))g′′(x) = 0,

so
−g′′(0)− 4 sin(g(0))(g′(0))2 + 4 cos(g(0))g′′(0) = 0 ⇒ g′′(0) = 0.

4

3The knowledge of derivatives allows to us make Taylor polynomial and we are able approxi-
mate g for x near to 0. Thus we can find approximation of solutions of the equation f(x, y) = 0
on some neighbourhood of the point (0, 0).
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Exercise 70. A function y = g(x) is done implicitly by the equation

y − x− ln y = 0

and the condition g(e− 1) = e. Compute g′(e− 1), g′′(e− 1).
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Chapter 7

Extrema of functions of several
variables

7.1 Local extrema

Definition 71. Assume the existence of δ > 0 such that for a function f : Rn → R
and a point c ∈ Rn the following implication holds:

x ∈ P (c, δ) = {x ∈ Rn : 0 < ‖x− c‖ < δ} ⇒ f(x) ≤ f(c).

Then we say that f has a local maximum at c. When the more strong implication

x ∈ P (c, δ) = {x ∈ Rn : 0 < ‖x− c‖ < δ} ⇒ f(x) < f(c)

arise we say that f has a strict local maximum at c. Similarly for the inequality
f(x) ≥ f(c) or f(x) > f(c), respectively we talk about local minimum or strict
local minimum, respectively. ♥

Remark 72. Suppose that f : Rn → R has at c ∈ Rn a local extremum (i. e. a
local maximum or a local minimum). Then there exists δ > 0 such that

U(c, δ) = {x ∈ Rn : ‖x− c‖ < δ} ⊂ Df.
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Example 73.

1. The function f(x, y) := x2+y2 has a strict local minimum at the point (0, 0).
Observe grad f (0, 0) = (0, 0).

2. The function f(x, y) :=
√
x2 + y2 has a strict local minimum at the point

(0, 0). Let us note that f is not differentiable at (0, 0)(Partial derivatives
does not exist at (0, 0) , actually).

3. The function f(x, y) := x3 has not a local extremum at the point (0, 0)

although grad f (0, 0) = (0, 0).

4

Theorem 74 (necessary condition of the existence of a local extremum). Suppose
that f : Rn → R has a local extremum at a point c ∈ Rn and df(c)

du exists (for
some u ∈ Rn, ‖u‖ = 1). Then

df(c)

du
= 0.

�

Corollary. If f is differentiable at c additionally then

grad f (c) = (0, 0, . . . , 0) .

(At this case c is said to be a stationary point of f)

Remark 75. Let us recall sufficient conditions for local extrema of a function
f : R→ R at its stationary point c (i. e. f ′(c) = 0).

If f ′′(c) > 0 then f has a strict local minimum at c. When f ′′(c) < 0 then it has a
strict local maximum at c. For functions of several variables the multidimensional
analogy of this conditions holds. The sign of f ′(c) will be replacing by require-
ments about (positive or negative) definiteness of the quadratic form d2fc.
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Reminder

Consider a quadratic form ϕ : Rn → R, ϕ(h) :=
n∑

i,j=1

aijhihj (aij = aji ∈ R, for

all i, j ∈ {1, 2, . . . , n}).

It is said to be positive definite if for every h ∈ Rn \ {(0, 0, . . . , 0)}

ϕ(h) > 0.

When
ϕ(h) < 0

for all h ∈ Rn \ {(0, 0, . . . , 0)} then we call it the negative definite quadratic form.

Finally if there are vectors k, l ∈ Rn such that

ϕ(k) < 0 < ϕ(l),

the quadratic form ϕ is indefinite.

Theorem 76 (sufficient conditions of the existence of a local extremum).
Assume that c ∈ Rn is a stationary point of the function f : Rn → R and f has
continuous all second partial derivatives at c. Then the following implications are
true.

1. If the quadratic form d2fc is positively definite then f has at c a strict local
minimum.

2. If the quadratic form d2fc is negatively definite then f has at c a strict local
maximum.

3. If the quadratic form d2fc is indefinite then f has not any local extremum
at c.

�

It is time to recall a practical tool for recognizing of the type of definiteness of
quadratic forms, now.
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Theorem 77 (Sylvester criterion).
Consider a quadratic form

ϕ : Rn → R, ϕ(h) :=
n∑

i,j=1

aijhihj (aij = aji).

Denote in the sequel main sub-determinants of the related matrix:

∆1 = a11, ∆2 =

∣∣∣∣∣ a11, a12

a21, a22

∣∣∣∣∣ , . . . , ∆n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11, a12, . . . , a1n

a21, a22, . . . , a2n

. . .

an1, an2, . . . , ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Then we can form the following statements.

1. ϕ is positive definite if and only if

∆1 > 0, ∆2 > 0, . . . , ∆n > 0.

2. ϕ is negative definite if and only if

∆1 < 0, ∆2 > 0, . . . , (−1)n∆n > 0.

3. Whenever ∆n 6= 0 and ϕ is not positive definite neither negative definite
then ϕ is the indefinite quadratic form.

�

Example 78. Find all local extrema of the function

f(x, y) := x3 + y3 − 18xy + 2007.

Evidently, f ∈ C∞(R2) hence f admits local extrema only at stationary points.
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So we should to solve the following system of equations:

∂f

∂x
(x, y) = 3x2 − 18y = 0,

∂f

∂y
(x, y) = 3y2 − 18x = 0.

Solution of this system consists of two points:

c1 := (0, 0), c2 := (6, 6).

We need to decide about behavior of our function at these points. We start with
computing of the matrix of the quadratic form d2f(x,y) at a general point (x, y) ∈
R2:

d2f(x,y) :

(
∂2f(x,y)
∂x2

, ∂2f(x,y)
∂x∂y

∂2f(x,y)
∂y∂x

, ∂2f(c)
∂y2

)
=

(
6x, −18

−18, 6y

)
.

We are ready to state a matrices related to the second differentials at c1, c2, now:

d2fc1 :

(
0, −18

−18, 0

)
; d2fc2 :

(
36, −18

−18, 36

)
.

Using Sylvester criterion we see immediately that d2fc1 is the indefinite quadratic
form (∆1 = 0, ∆2 = −182 6= 0) and d2fc2 represents the positive definite quadratic
form (∆1 = 36 > 0, ∆2 = 362 − 182 > 0). Finally, we conclude that f has not a
local extremum at c1 = (0, 0) and it has a strict local minimum at c2 = (6, 6). 4

Example 79. Find all local extrema of the function

f(x, y) := (x2 + y2)8.

It is easy to see that f ∈ C∞(R2) and the point c := (0, 0) represents the unique
stationary point of f . State a matrix of the quadratic form:

d2fc :

(
0, 0

0, 0

)
.
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We can see that it is not possible to use the theorems above for decision about
extremum. But we are able to decide about extremum directly. Since for every
(x, y) ∈ R2 \ {(0, 0)}

f(x, y) > f(0, 0) = 0,

our function f has a strict local minimum at the point c = (0, 0). 4

Exercise 80. Find all local extrema of given functions:

1. f(x, y) := (x+ 1)2 + y2;

2. f(x, y) := 2x3 − xy2 + 5x2 + y2;

3. f(x, y) := 8x3 + y3 − 12xy − 41;

4. f(x, y) := (x− 2y + 1)4;

5. f(x, y) := (x− 2y + 1)3;

6. f(x, y, z) := x2 + y2 + z2 + 2x+ 4y − 6z +
√

3;

7. f(x, y, z) := x2 + (2y − 1)2 + (z + 2)2.

7.2 Global extrema

Definition 81. Consider a function f : Rn → R and a set M ⊂ Df ⊂ Rn.

Suppose the existence of a point c ∈M such that

f(c) = max{f(x) : x ∈M} =: max
x∈M

f(x).

Then we will say that f acquires its (global) maximum on the set M at c.

If
f(c) = min{f(x) : x ∈M} =: min

x∈M
f(x),

for c ∈M we will say that f has its (global) minimum on the set M at c. ♥
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Example 82.

1. The function
f(x, y) := x2 + y2 + 1

has the minimum on R2 at the point (0, 0). Maximum with respect to R2

does not exist.

2. The function
f(x, y) := x+ y

acquires on the set
M = 〈0, 1〉 × 〈0, 1〉

its maximum at the point (1, 1) and minimum at the point (0, 0).
(Concern on the fact that global extrema of f do not exist on the set N =

(0, 1)× (0, 1).)

4

Definition 83. A set M ⊂ Rn is said to be closed if the set Rn \M is open1. We
say that a set M ⊂ Rn is bounded if there exists δ > 0 such that ‖x‖ < δ for every
x ∈M2. Closed and bounded subsets of Rn are called compact. ♥

Example 84.

1. The sets

∅, {(x, y) ∈ R2 : |x|+ |y| ≤ 1}, {(x, y) ∈ R2 : |x|+ |y| = 1}

are compact.

2. The sets

R2, {(x, y) ∈ R2 : |x|+ |y| < 1}, {(x, y) ∈ R2 : |x| = 1}

are not compact.
1See at Corollary 39 for the definition of an open set.
2In other words M is bounded if there exists δ > 0 such that M ⊂ U((0, 0, . . . , 0), δ).

44



4

Theorem 85 (Weierstrass). LetM ⊂ Rn is a nonempty and compact set. Assume
that f : Rn → R is continuous on M . Then the numbers

min
x∈M

f(x), max
x∈M

f(x)

exist. �

Example 86. Find global extrema of f on M 3if

f(x, y) := x3 + y3 − 3xy; M = 〈0, 2〉 × 〈−1, 2〉 .

Evidently, f ∈ C∞(R2) and ∅ 6= M is the compact set. From Weierstrass theorem
we immediately deduce the existence of extrema

min
(x,y)∈M

f(x, y) and max
(x,y)∈M

f(x, y).

We will continue by computing all “suspicious” points and evaluating function
values of f at these points. Finally we will solve the problem simply by comparing
these values4.

(a) Suspicious points inside M . If f has an extremum on M at some point

c ∈ intM := (0, 2)× (−1, 2),

then f has at the same point c local extremum also. Since f ∈ C∞(R2), we can
state necessary conditions

∂f(c)

∂x
=
∂f(c)

∂y
= 0.

Solving the adequate system of equations

∂f(x, y)

∂x
= 3x2 − 3y = 0,

∂f(x, y)

∂y
= 3y2 − 3x = 0,

3Understand it as a task to find all points such that f takes its maximum on M and its
minimum on M , respectively.

4Concern on the fact that the information about the existence of extrema is necessary for this
approach.
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we obtain points (0, 0) /∈ intM , (1, 1) ∈ intM . Therefore we have only one suspi-
cious point inside M :

c1 = (1, 1).

(b) Suspicious points on the boundary of M . We will divide the boundary of our
square into four parts.

(b1) Assume that f has its extremum on M at the point

c ∈ ∂M1 := 〈0, 2〉 × {−1}.

Then f(c) is the extremum of the set {f(x,−1) : x ∈ 〈0, 2〉} at the same time. It
follows that one of the three cases will arise.

c = c2 = (0,−1),

c = c3 = (2,−1),

c = (x,−1), where x ∈ (0, 2) represents a local extremum (and hence stationary
point also) of the function

h1(x) := f(x,−1) = x3 − 1 + 3x.

But h′1(x) = 3x2 + 3 > 0 so we have not another suspicious points other then c2, c3
on ∂M1.

An analogical approach can be applied on the rest parts of the boundary of M .

(b2) Candidates on extrema on

∂M2 := 〈0, 2〉 × {2}

are points c4 = (0, 2), c5 = (2, 2) and points c = (x, 2), where x ∈ (0, 2) is a sta-
tionary point of the function

h2(x) := f(x, 2) = x3 + 8− 6x.
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Computing that

h′2(x) = 3x2 − 6 = 0⇔
[
x = −

√
2 /∈ (0, 2) ∨ x =

√
2 ∈ (0, 2)

]
,

we obtain another suspicious point c6 = (
√

2, 2).

(b3) On the segment
∂M3 := {0} × 〈−1, 2〉

are suspicious points c3 c4 and points c = (0, y), where y ∈ (−1, 2) is a stationary
point of the function

h3(y) := f(0, y) = y3.

Hence we must add the another candidate c7 = (0, 0).

(b4) The last part of the boundary is

∂M4 := {2} × 〈−1, 2〉 .

Suspicious points are c3, c5 and point c = (2, y) where y ∈ (−1, 2) is a stationary
point of the function

h4(y) := f(2, y) = 8 + y3 − 6y.

The last candidate is therefore the point c8 = (2,
√

2).

(c) Finally we are ready to compare function values at critical points i. e. the
numbers

f(c1) = f(1, 1) = −1, f(c5) = f(2, 2) = 4,

f(c2) = f(0,−1) = −1, f(c6) = f(
√

2, 2)
.
= 2, 3,

f(c3) = f(2,−1) = 13, f(c7) = f(0, 0) = 0,

f(c4) = f(0, 2) = 8, f(c8) = f(2,
√

2)
.
= 2, 3.

Since the greatest value is 13 we conclude that f has its maximum on M at
the point c3 = (2,−1). Similarly, f has its minimum on M at the points c1 =

(1, 1), c2 = (0,−1). 4
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Exercise 87. Find global extrema of a function f on the set M if

1. f(x, y) := x2y, M = {(x, y) ∈ R2 : x2 + y2 ≤ 1};

2. f(x, y) := x2 + y3 − 2x, M = 〈0, 2〉 × 〈−1, 1〉 ;

3. f(x, y) := x2 + 2xy − 4x+ 8y, M = 〈0, 1〉 × 〈0, 2〉 ;

4. f(x, y) := x2 − y2, M = {(x, y) ∈ R2 : x2 + y2 ≤ 1};

5. f(x, y) := x2 − 2xy + y2 + 13, M = R2;

6. f(x, y, z) := (x− 1)2 + (y − 5)5 + z4, M = {(x, y, z) ∈ R3 : y ≥ 5}.
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