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Preface

Complex analysis is one of the most interesting of the fundamental topics in
the undergraduate mathematics course. Its importance to applications means that
it can be studied both from a very pure perspective and a very applied perspective.
This text book for students takes into account the varying needs and backgrounds
for students in mathematics, science, and engineering. It covers all topics likely to
feature in this course, including the subjects:

• complex numbers,
• differentiation,
• integration,
• Cauchy’s theorem and its consequences,
• Laurent and Taylor series,
• conformal maps and harmonic functions,
• the residue theorem.
Since the topics of complex analysis are not elementary subjects, there are some

reasonable assumptions about what readers should know. The reader should be fa-
miliar with relevant standard topics taught in the area of real analysis of real func-
tions of one and multiple variables, sequences, and series.

This text is mostly a translation from the Czech original [1].
The authors are grateful to their colleagues for their comments that improved

this text, to John Cawley who helped with the correction of many typos and En-
glish grammar, and also to RNDr. Alžběta Lampartová for her kind help with the
typesetting process.

prof. RNDr. Marek Lampart, Ph.D.
September 29, 2022
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Chapter 1

Complex numbers and Gauss
plane

1.1 Complex numbers

This chapter is devoted to the fundamental structure of complex numbers and their
basic properties.

(i) A complex number z is a number
z = x + iy where x, y ∈ ℝ and i2 = −1,

the numbers x and y are called the real and imaginary parts of the complex
number z respectively, and are denoted by Re z and Im z respectively.1

(ii) It is easy to see that real and imaginary numbers are the special case of com-
plex numbers. Real numbers are those z with Im z = 0, and the imaginary
ones are characterized by the condition Re z = 0.

(iii) The two complex numbers z1 and z2 are equal if and only if their real and
imaginary parts are equal, that is

z1 = z2 ⇔
[

Re z1 = Re z2 ∧ Im z1 = Im z2
]

.

(iv) Let z = x+iy be a complex number, then its absolute value is a non-negative
(real) number

|z| =
√

x2 + y2 =
√

(Re z)2 + (Im z)2

and the number complex adjoint is given by
z = x − iy = Re z − i Im z.

1Notation: by z = x+ iy it is meant (unless otherwise stated) that x = Re z ∈ ℝ and y = Im z ∈
ℝ.
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6 CHAPTER 1. COMPLEX NUMBERS AND GAUSS PLANE

(v) Let z1 = x1 + iy1 and z2 = x2 + iy2 be two complex numbers. Then it is
defined

z1 + z2 = (x1 + x2) + i(y1 + y2),
z1 − z2 = (x1 − x2) + i(y1 − y2),
z1z2 = (x1x2 − y1y2) + i(x1y2 + x2y1).

Moreover, if z2 ≠ 0 = 0 + 0i, it is also defined
z1
z2
= 1

|z2|
2
(z1z2).

(vi) For every complex number z = x + iy it holds that
zz = (x + iy)(x − iy) = x2 − (iy)2 = x2 + y2 = |z|2.

Remark 1.1 The most remarkable difference between real and complex numbers
is the fact that complex numbers are not ordered. The relation z1 < z2 between
complex numbers z1 and z2 is not defined unless they are both real.

Example 1.1 Find Re z0 and Im z0 for

z0 =
2 + 3i
1 − 2i

.

Solution:

z0 =
2 + 3i
1 − 2i

⋅
1 + 2i
1 + 2i

= −4 + 7i
5

= −4
5
+ 7
5
i,

hence
Re z0 = −

4
5

and Im z0 =
7
5
.

1.2 Geometric interpretation and argument of complex num-
bers

Given a complex number z = x + iy, its real and imaginary parts uniquely define
an element (x, y) ∈ ℝ2. The set of all complex numbers is therefore naturally
identified with the plane ℝ2; it is called a Gauss plane and is denoted by ℂ.

Points in the plane ℝ2 can also be represented using polar coordinates, which
is a representation of the complex numbers. Let z ∈ ℂ, z ≠ 0, then there exists
' ∈ ℝ such that

z = |z|(cos' + i sin'). (1.1)
We call (1.1) a polar form of a complex number z.

Since the functions sine and cosine are periodic, the number (angle) ' is not
uniquely determined by (1.1).
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Definition 1.1 The set of all real numbers ' for which (1.1) holds is called an
argument of a complex number z ∈ ℂ⧵{0} and is denoted by Arg z. Accordingly,

Arg z = {' ∈ ℝ ∶ z = |z|(cos' + i sin')}.

Remark 1.2 If z = 0, then |z| = 0, and (1.1) holds for arbitrary ' ∈ ℝ. This is
the reason why an argument of 0 is not defined.

Theorem 1.1 Let z ∈ ℂ ⧵ {0} and ' ∈ Arg z. Then

Arg z = {' + 2k� ∶ k ∈ ℤ}.

Proof Let ' ∈ Arg z. Obviously, sine and cosine are periodic functions, and there-
fore

{' + 2k� ∶ k ∈ ℤ} ⊂ Arg z.

On the other hand, let  ∈ Arg z. We want to find k ∈ ℤ such that  = ' + 2k�.
',  ∈ Arg z⇒

⇒ [z = |z|(cos' + i sin') = |z|(cos + i sin ) ∧ |z| ≠ 0]⇒

⇒ cos' + i sin' = cos + i sin ⇒

⎡

⎢

⎢

⎢

⎢

⎢

⎣

cos' = cos 

∧

sin' = sin 

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⇒

⇒

⎡

⎢

⎢

⎢

⎢

⎢

⎣

cos2 ' = cos cos'

∧

sin2 ' = sin sin'

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⇒ cos2 ' + sin2 ' = cos cos' + sin sin'⇒

⇒ 1 = cos( − ')⇒ [∃k ∈ ℤ ∶  − ' = 2k�]⇒ [∃k ∈ ℤ ∶  = ' + 2k�] .

Definition 1.2 The argument ' ∈ Arg z such that

−� < ' ≤ �

is called a principal value of an argument of a complex number z ∈ ℂ ⧵ {0} and
we denote it arg z.
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Example 1.2 Find Arg z0 and arg z0 for z0 = −
√

3 − i.
Solution: Obviously2,

� + arcsin 1
2
= � + �

6
= 7�
6
∈ Arg z0,

therefore3

Arg z0 =
{7�
6
+ 2k� ∶ k ∈ ℤ

}

, arg z0 = −
5�
6
.

1.3 Infinity

As we enrich real numbers by the special symbols +∞ and −∞, we will also in-
troduce analogous symbols into the Gauss plane ℂ. It is more efficient to add only
one such symbol,∞, infinity.

Now, the following is devoted to the another geometrical interpretation of com-
plex numbers, the so called stereographical projection, which clearly explains the
meaning of∞.

Let us assume a unit sphere is located in such a way that it touches with its
"south pole" the plane of complex numbers at the point 0, and denote the "north
pole" by N . Now, join every complex number z with z∗ ≠ N belonging to the
unit sphere in such a way that z∗ is just an intersection of this sphere with a straight
line joining z with N . In this way, we have generated one-to-one correspondence
between the set of complex numbers (zero corresponds to the "south pole") and
points of the unit sphere (withoutN).

We observe that the size of |z| is inversely proportional to the distance between
z∗ andN . This compels us to add only one special symbol,∞, toℂ and link it with
the properties described by the stereographical projection of pointN .

The set
ℂ ∪ {∞} = ℂ∞

is called an extended (sometimes also closed) Gauss plane.
For each z ∈ ℂ we define:
1. z ±∞ = ∞± z = ∞,
2. z ⋅∞ = ∞ ⋅ z = ∞ for z ≠ 0,
3. z

∞
= 0,

4. z
0 = ∞ for z ≠ 0,

5. ∞
z
= ∞,

6. ∞n = ∞, ∞−n = 0, 0−n = ∞ if n ∈ ℕ,
2Try to draw a picture!
3See Theorem 1.1 and Definition 1.2.
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7. |∞| = ∞, ∞ = ∞. 4

1.4 Neighbourhood of a point

Definition 1.3 By the neighbourhood of a point z0 ∈ ℂ with radius " ∈ ℝ+ we
mean the set

U (z0, ") = {z ∈ ℂ ∶ |z − z0| < "}.

By the neighbourhood of∞ with radius " ∈ ℝ+ we mean the set

U (∞, ") =
{

z ∈ ℂ ∶ |z| > 1
"

}

∪ {∞}.

By the ring neighbourhood of a point z ∈ ℂ∞ with radius " ∈ ℝ+ we mean the
set

P (z, ") = U (z, ") ⧵ {z}.

In case we do not care about the value of ", the neighbourhood U (z) or the ring
neighbourhood P (z) of a point z is used.

Definition 1.4 We call the set M ⊂ ℂ∞ open if and only if for all z ∈ M there
exists a neighbourhood U (z) such that

U (z) ⊂ M.

Example 1.3

1. ∅, ℂ a ℂ∞ are open sets.

2. {z ∈ ℂ ∶ |z − 3| < |z + 2 − i|} and {z ∈ ℂ ∶ Im z < 1} are open sets.

3. {2 +
√

3i}, {z ∈ ℂ ∶ Re z+ 2 Im z = 7}, and {z ∈ ℂ ∶ Im z ≤ 1} are not
open sets.

1.5 Sequence of complex numbers

Definition 1.5 By a sequence in ℂ∞ we mean a function f ∶ ℕ → ℂ∞.

Definition 1.6 Let z ∈ ℂ∞ and (zn) be a sequence in ℂ∞. We say that a sequence
(zn) has a limit z if for all " ∈ ℝ+ there exists n0 ∈ ℕ such that for all n ∈ ℕ, n ≥ n0
it holds that zn ∈ U (z, "). We denote it lim zn = z or zn → z. We call a sequence
(zn) of complex numbers convergent if there exists z ∈ ℂ such that

lim zn = z.
4Notice that the following operations are not defined: ∞±∞, 0 ⋅∞,∞ ⋅ 0, 0

0
, ∞
∞
, Arg∞, arg∞.
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Remark 1.3

1. The definition of a limit in fact means that outside of any neighbourhood of
a point z there is at most finite number of terms of sequence (zn).

2. Let (zn) be a sequence of complex numbers in the Gauss plane and z ∈ ℂ∞.
Denote by (z∗n) an image of this sequence by stereographic projection and z

∗

a point on a unit sphere in ℝ3. Then

zn → z (in ℂ∞) ⇔ z∗n → z∗ (in ℝ3).

Theorem 1.2 Let zn = xn + iyn for all sufficiently large n ∈ ℕ and z = x + iy.
Then

lim zn = z ⇔
[

lim xn = x ∧ lim yn = y
]

.

Example 1.4 Find
lim

(2n − i)i
n

.

Solution:

lim
(2n − i)i

n
= lim

(1
n
+ 2i

)

= lim 1
n
+ i lim 2 = 0 + 2i = 2i.

Remark 1.4 The definition of a limit of a complex sequence is equivalent to the
definition of a limit of a real sequence. Therefore many theorems are analogous. In
what follows, we introduce only several of them.

Theorem 1.3 Any sequence of complex numbers has at most one limit.

Theorem 1.4 A sequence of complex numbers has a limit z ∈ ℂ∞ if and only if
each subsequence also has a limit z.

Theorem 1.5 Let (zn) be a convergent sequence such that for all n ∈ ℕ it holds
that zn ∈ ℂ. Then the sequence (zn) is bounded, which means that there exists
k ∈ ℝ+ such that for all n ∈ ℕ it is |zn| ≤ k.



Chapter 2

Complex functions of a real and a
complex variable

2.1 Complex functions

Definition 2.1 We call a complex function of a complex variable a function from
ℂ∞ to the set of all nonempty subsets of ℂ∞. In other words, by a complex function
f we mean a formula which assigns to each z ∈ Df ⊂ ℂ∞ one or more complex
numbers fromℂ∞. The setDf is called a domain of a function f. A complex num-
ber f (z) is called an f – image of a point z. A function f is called single-valued if
for all z ∈ Df a set f (z) contains only one point. Otherwise, we call a function f
multi-valued, or accordingly double-valued, triple-valued, . . . , infinite-valued.
A function f is called a complex function of a real variable if Df ⊂ ℝ .

Remark 2.1 A domain of a function defined only by a formula is a set of all num-
bers from ℂ∞ for which the formula makes sense. For example, the domain of the
function f defined as f (z) = 1∕z is the set Df = ℂ∞.

Example 2.1

1. f (z) = z2 is a single-valued function, Df = ℂ∞.

2. f (z) = Arg z is an infinite-valued function, Df = ℂ ⧵ {0}.

Remark 2.2 In the following, we use the notation Arg z = arg z + 2k�, k ∈ ℤ,
instead of the correct notation Arg z = {arg z + 2k� ∶ k ∈ ℤ}.

Definition 2.2 Let f be a multi-valued function. A single-valued function ' is
called a unique-branch of a function f if:

(i) D' ⊂ Df,

(ii) ∀z ∈ D' ∶ '(z) ∈ f (z).

11



12 CHAPTER 2. COMPLEX FUNCTIONS

Example 2.2 Functions

'1(z) = arg z,
'2(z) = arg z + 2�

are a case of two different unique-branches of a function f (z) = Arg z.

2.2 Some important complex functions

2.2.1 Exponential functions

Definition 2.3 Let z = x + iy ∈ ℂ. We define an exponential function by 1

ez = ex+iy = ex(cos y + i sin y).

Theorem 2.1 (Properties of exponential functions)

(i) ez is a single-valued function.

(ii) A codomain of ez is a set ℂ ⧵ {0}.

(iii) Function ez is periodic with a period of 2�i.

Proof Propositions (i) and (ii) follow from the definition and properties of the real
functions ex, sin x, cos x. Periodicity (iii) can be proved as follows:

ez+2�i = ex+iy+2�i = ex (cos(y + 2�) + i sin(y + 2�)) =
= ex (cos y + i sin y) = ex+iy = ez.

2.2.2 Trigonometric functions

Definition 2.4 Let z = x + iy ∈ ℂ. We define trigonometric functions as

sin z = eiz − e−iz
2i

,

cos z = eiz + e−iz
2

,

tan z = sin z
cos z

,

cot z = cos z
sin z

.
1We use a notation e for two different functions:

ez ∶ ℂ → ℂ ⧵ {0} and ex ∶ ℝ → ℝ+.

That is alright because for z = x + 0i = x is
ez = ex+0i = ex(cos 0 + i sin 0) = ex.

In other words, complex exponential function is an extension of real exponential function on ℂ. Sim-
ilarly for sin, cos, sinh, cosh, ln, ... .
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Theorem 2.2 (Properties of trigonometric functions)
(i) Each of trigonometric functions is single-valued.

(ii) The functions sin z and cos z are periodic with a period of 2�,
the functions tan z and cot z are periodic with a period of �.

(iii) For all z ∈ ℂ it holds that:

sin(−z) = − sin z,
cos(−z) = cos z,
tan(−z) = − tan z,
cot(−z) = − cot z.

(iv) For any z ∈ ℂ Euler’s formula states that

eiz = cos z + i sin z.

(v)

sin z = 0 ⇔ [∃k ∈ ℤ ∶ z = k�] ,

cos z = 0 ⇔
[

∃k ∈ ℤ ∶ z = �
2
+ k�

]

.

Example 2.3 Let z0 = cos(4 + i). Find Re z0 and Im z0.
Solution:

z0 = cos(4 + i) = ei(4+i) + e−i(4+i)
2

=

=
e−1 (cos 4 + i sin 4) + e (cos(−4) + i sin(−4))

2
=

= e−1 + e
2

cos 4 + ie
−1 − e
2

sin 4.

Therefore
Re z0 = cosh 1 cos 4, Im z0 = − sinh 1 sin 4.

2.2.3 Hyperbolic functions

Definition 2.5 We define hyperbolic functions as

sinh z = ez − e−z
2

,

cosh z = ez + e−z
2

,

tanh z = sinh z
cosh z

,

coth z = cosh z
sinh z

.
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Remark 2.3 Similarly as for real functions, we can define an inverse function as a
complex function. In contrast with real functions, we define inverse functions also
for functions which are not injective. In such cases the inverse function is multi-
valued like, e.g., logarithmic function.

2.2.4 Logarithmic functions

Definition 2.6 We define a logarithmic function as

Ln z = {w ∈ ℂ ∶ ew = z}.

From properties of exponential functions (see Theorem 2.1) it follows that the do-
main of Ln z is a set ℂ ⧵ {0}.

Let
z = |z|(cos' + i sin'),

where |z| > 0 and ' ∈ ℝ.
Ln z = u + iv.

Then
eu+iv = z,

that is
eu (cos v + i sin v) = |z| (cos' + i sin') .

Therefore 2
u = ln |z| ∧ [∃k ∈ ℤ ∶ v = ' + 2k�] .

We proved that for all z ∈ ℂ ⧵ {0} it holds that
Ln z = ln |z| + i(' + 2k�), k ∈ ℤ,

or equivalently
Ln z = ln |z| + iArg z.

Example 2.4 Let z0 = Ln(−1 + i). Find Re z0 and Im z0.
Solution:

z0 = Ln(−1 + i) = ln
√

2 +
(3�
4
+ 2k�

)

i, k ∈ ℤ.

Therefore Re z0 = ln
√

2 and Im z0 =
(3
4
+ 2k

)

�i, k ∈ ℤ.

Definition 2.7 We define a principal branch of a logarithm as a function on ℂ ⧵
{0} by

ln z = ln |z| + i arg z.
2The symbol ln denotes the natural logarithm, which is the function from ℝ+ to ℝ.
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Example 2.5 Let z0 = ln(−1 − i). Find Re z0 and Im z0.
Solution:

z0 = ln(−1 − i) = ln
√

2 − 3�
4
i.

Therefore
Re z0 = ln

√

2, Im z0 = −
3�
4
.

2.2.5 Power functions

Recall that for any n ∈ ℕ (resp. −n ∈ ℕ) is a function z → zn, defined as

zn = zzz⋯ z
⏟⏟⏟

,

n-times
(resp. zn = 1

z−n
).

Definition 2.8 Let a ∈ ℂ such that ±a ∉ ℕ. A power function is defined by

za = {eas ∶ s ∈ Ln z} = eaLn z.

Example 2.6 Find the real and imaginary parts of 2i.
Solution:

2i = eiLn 2 = ei(ln 2+2k�i) = e−2k�+i ln 2 = e−2k� (cos(ln 2) + i sin(ln 2)) , k ∈ ℤ.

Hence,
Re(2i) = e−2k� cos(ln 2) and Im(2i) = e−2k� sin(ln 2),

where k ∈ ℤ.

2.2.6 n-th roots

Definition 2.9 Let n ∈ ℕ, n ≠ 1. We define a function n-th root as
n
√

z = {w ∈ ℂ ∶ wn = z}.

Exercise 2.1

1. Prove that for all z ∈ ℂ ⧵ {0} and 1 < n ∈ ℕ it holds that

n
√

z = z
1
n

and that a function z → z
1
n is n-valued.

2. Prove that for a = m∕n, where m ∈ ℤ ⧵ {0} and n ∈ ℕ are not divisible
numbers, the function z → za is n-valued.

3. Prove that for a ∈ ℂ ⧵ℚ, the function z → za is infinite-valued.
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Example 2.7 Find the real and imaginary parts of 4
√

i.
Solution:

4
√

i = i
1
4 = e

1
4 Ln i = e

1
4 (

�
2 i+2k�i) = e

�
8 i+k

�
2 i =

= cos
(�
8
+ k�

2

)

+ i sin
(�
8
+ k�

2

)

, k ∈ {0, 1, 2, 3}.

Hence,

Re
(

4
√

i
)

= cos
(�
8
+ k�

2

)

and Im
(

4
√

i
)

= sin
(�
8
+ k�

2

)

where k ∈ {0, 1, 2, 3}.

2.3 Real and imaginary parts of a function

In what follows, any complex function is meant to be a single-valued one.
Definition 2.10 Let f ∶ ℂ → ℂ. Function

u ∶ ℝ2 → ℝ (resp. v ∶ ℝ2 → ℝ)

defined on the set
{(x, y) ∈ ℝ2 ∶ x + iy ∈ Df}

by

u(x, y) = Ref (x + iy) (resp. v(x, y) = Imf (x + iy))

be called the real part of a function f (resp. imaginary part of a function f ).
We denote function f as

f = u + iv,

where u is a real and v an imaginary part of f .

Example 2.8 Find real and imaginary parts of the function

f (z) = z
z
.

Solution: Firstly,

f (z) = f (x + iy) =
x + iy
x − iy

=
x2 − y2

x2 + y2
+ i

2xy
x2 + y2

.

Hence

Re(f ) = u(x, y) =
x2 − y2

x2 + y2
,

Im(f ) = v(x, y) =
2xy

x2 + y2
.
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2.4 Limit of a function of a complex variable

Remark 2.4 By
z0 ≠ zn → z0,

we mean that zn → z0 and that for all sufficiently large n ∈ ℕ it is zn ∈ ℂ∞ ⧵ {z0}.

Definition 2.11 A function f ∶ ℂ∞ → ℂ∞ has at the point z0 ∈ ℂ∞ a limit
a ∈ ℂ∞ if for each sequence (zn) such that z0 ≠ zn → z0 it holds f (zn)→ a.
It is denoted by

lim
z→z0

f (z) = a.

Theorem 2.3 Let f ∶ ℂ∞ → ℂ∞ and z0, a ∈ ℂ∞. Then limz→z0
f (z) = a if and only

if
(∀U (a))

(

∃P (z0)
) (

∀z ∈ P (z0)
)

∶ f (z) ∈ U (a).

Theorem 2.4 Let f = u + iv ∶ ℂ → ℂ, z0 = x0 + iy0, and a = � + i�. Then
lim
z→z0

f (z) = a if and only if

lim
(x,y)→(x0,y0)

u(x, y) = � ∧ lim
(x,y)→(x0,y0)

v(x, y) = �.

Example 2.9 Calculate

lim
z→i

(

z − i
z2 + 1

)

.

Solution:

lim
z→i

(

z − i
z2 + 1

)

= lim
z→i

( 1
z + i

)

= lim
x+iy→i

(

1
x + i(y + 1)

)

=

= lim
x+iy→i

(

x
x2 + (y + 1)2

+ i
−(y + 1)

x2 + (y + 1)2

)

=

= lim
(x,y)→(0,1)

(

x
x2 + (y + 1)2

)

+ i lim
(x,y)→(0,1)

(

−(y + 1)
x2 + (y + 1)2

)

=

= 0 − 1
2
i = −1

2
i.

Example 2.10 Calculate
lim
z→−1

arg z.

Solution: The latter limit doesn’t exist because

1. −1 ≠ zn = cos
(

� + (−1)n

n

)

+ i sin
(

� + (−1)n

n

)

→ −1,

2. arg
(

z2n
)

→ −�,

3. arg
(

z2n+1
)

→ �.
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2.5 Continuity of a function of a complex variable

Definition 2.12 Let f ∶ ℂ∞ → ℂ∞. The function f is continuous at the point
z0 ∈ ℂ∞ if

lim
z→z0

f (z) = f (z0).

We say that a function f is continuous on the setM ⊂ ℂ∞ if for all z0 ∈ M it
holds that

zn → z0

∀n ∈ ℕ ∶ zn ∈M

⎫

⎪

⎬

⎪

⎭

⇒ f (zn)→ f (z0).

We say that a function f is continuous if it is continuous on its domain Df.

Theorem 2.5 Let f ∶ ℂ∞ → ℂ∞ and z0 ∈ ℂ∞. Then the following statements
are equivalent:

(i) f is continuous at the point z0,

(ii) zn → z0 ⇒ f (zn)→ f (z0),

(iii)
(

∀U
(

f (z0)
)) (

∃U (z0)
) (

∀z ∈ U (z0)
)

∶ f (z) ∈ U
(

f (z0)
)

.

Exercise 2.2 Think over the relation between the continuity of a function
f = u + iv ∶ ℂ → ℂ and the continuity of the functions u, v ∶ ℝ2 → ℝ.

Example 2.11

1. The function arg z is not continuous since it is not continuous, e.g, at the
point −1 (see Example 2.9).

2. A function arg z is continuous on the set
ℂ ⧵ (−∞, 0] = {z ∈ ℂ ∶ z ∉ ℝ− ∧ z ≠ 0}.

2.6 Complex functions of a real variable and curves

Let f ∶ ℝ → ℂ∞ be a complex function of a real variable. We can define the limit
and continuity of such a function similarly as for complex functions of a complex
variable.
Definition 2.13 Let f ∶ ℝ → ℂ∞. We say that a function f has a limit a ∈ ℂ∞
at a point t0 ∈ ℝ if

t0 ≠ tn → t0 (inℝ) ⇒ f (tn)→ a.

It is denoted by
lim
t→t0

f (t) = a.
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We say that a function f is continuous at a point t0 ∈ ℝ if

lim
t→t0

f (t) = f (t0).

We say that a function f is continuous on the setM ⊂ ℝ if for all t0 ∈M it holds
that

tn → t0

∀n ∈ ℕ ∶ tn ∈M

⎫

⎪

⎬

⎪

⎭

⇒ f (tn)→ f (t0).

We say that a function f is continuous if it is continuous on its domain Df.

A highly important part of continuous functions are curves.
Definition 2.14 By a curve in ℂ∞ (resp. in ℂ) we mean any continuous complex
function of a real variable


 ∶ I → ℂ∞ (resp. 
 ∶ I → ℂ),

where I = D
 ⊂ ℝ is an interval. The set

⟨
⟩ = 
(I) = {
(t) ∶ t ∈ I} ⊂ ℂ∞

is called an image of a curve 
 . LetM = ⟨
⟩. Then 
 is called a parametrization
of a setM .

Wehave already noticed that there is one-to-one correspondence between points
from ℝ2 and points from ℂ:

(x, y) ↔ x + iy.

Similarly, there is one-to-one correspondence between curves inℝ2 and curves
in ℂ:


 = (
1, 
2)↔ 
 = 
1 + i
2.

That’s why all terms for curves in ℝ2 come up for curves in ℂ, (see [2]). For exam-
ple:

• a simple curve,
• a closed curve,
• a simple closed curve,
• a oppositely oriented curve,
• a smooth arc,
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• a piecewise smooth arc,
• an initial and terminal point of the curve,
• a derivative of a curve at a point,
• a tangent vector to the curve, etc.

Exercise 2.3 Sketch an image of a curve 
 in the Gauss plane if

1. 
(t) = 2 − 3i + 2e−2it, t ∈ [0, 3�∕4],

2.


(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

4eit, t ∈
[

0, �
2

]

,

i
(

4 + �
2
− t

)

, t ∈
[�
2
, 4 + �

2

]

,

t − 4 − �
2
, t ∈

[

4 + �
2
, 8 + �

2

]

.

Definition 2.15 Let M ⊂ ℂ∞. A closure of the set M is defined as a set M of
all z ∈ ℂ∞ for which there exists a sequence (zn) in M such that zn → z.3 Sets
A,B ⊂ ℂ∞ are called disjoint if

A ∩ B = A ∩ B = ∅.

A set M ⊂ ℂ∞ is called connected if it cannot be written as a union of two
nonempty disjoint sets. A set Ω ⊂ ℂ∞ is called a domain if it at the same time
holds that:

(i) Ω is an open set,

(ii) Ω is a connected set.4

Definition 2.16 LetM ⊂ ℂ∞. A set K ⊂ M is called a component of the setM
if it fulfills the following two conditions:

(i) K is a connected set,

(ii) for any connected set K∗ ⊂ M such that K ⊂ K∗ it holds K = K∗. 5

3If we understand a closed set as a complement of an open set, thenM can be equivalently defined
as a smallest closed set containingM .

4It means that for any two points z1, z2 ∈ Ω there exists a curve 
 ∶ [a, b] → Ω such that

(a) = z1, 
(b) = z2.5In other words, we call a component of a set any of its maximal connected subsets.
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Remark 2.5 It’s easy to show6 that any setM ⊂ ℂ∞ is a union of a system of all
its components while this system is disjoint.

Definition 2.17 Let Ω ⊂ ℂ∞ denote a domain. Then its complement in ℂ∞ (i.e.,
the set ℂ∞ ⧵Ω) which has n different components is called an n –times connected
domain. A one-time connected domain is called simply connected.

Exercise 2.4

1. ∅, ℂ, ℂ∞, U (z), where z ∈ ℂ∞, are simple connected domains.

2. P (z), ℂ ⧵ {z}, where z ∈ ℂ, are two-times connected domains.

3. U (1, 2020) ⧵ {2, 4, 5 + i} is a four-times connected domain.

4. U (3, 2) ∪ U (4i, 3) is not a domain (it is not connected).

5. ℂ∞ ⧵ {z ∈ ℂ ∶ arg z ∈ [0, �∕4]} is not a domain (it is not open).

6See, e.g., [5].
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Chapter 3

Derivative of a complex function
of a complex variable

3.1 Derivative of a function

Definition 3.1 Let f ∶ ℂ → ℂ. A derivative of a function f at a point z0 ∈ ℂ
is defined as

f ′(z0) = lim
z→z0

f (z) − f (z0)
z − z0

if the limit exists and is finite. A function f is called holomorphic on a set Ω if
a set Ω ⊂ ℂ is open and for all z ∈ Ω there exists f ′(z). A function f is called
holomorphic at a point z0 ∈ ℂ if f is holomorphic on some neighbourhood of a
point z0 (i.e., it has a derivative at each point of some neighbourhood U (z0)).

Remark 3.1 Notice that the above definition is formally identical to the definition
of a derivative of a real function of a real variable. Theorems and proofs concerning
computing derivatives are also formally identical,1 therefore we do not introduce
them.

Theorem 3.1 If a function f ∶ ℂ → ℂ has a derivative at a point z0 ∈ ℂ, then it
is continuous at z0.

Proof We assume
f ′(z0) = lim

z→z0

f (z) − f (z0)
z − z0

∈ ℂ.

Then there exists a ring neighbourhood P (z0) such that for every z ∈ P (z0) it holds
that

|

|

|

|

f (z) − f (z0)
z − z0

|

|

|

|

< |f ′(z0)| + 1.

1For example, theorems concerning differentiation of a sum, product, quotient, composition of
functions, chain rule, etc.

23
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For any z ∈ P (z0) it also holds that
0 ≤ |f (z) − f (z0)| <

(

|f ′(z0)| + 1
)

|z − z0|.

Now, let (zn) be a sequence such that zn → z0. From above it follows that
|f (zn) − f (z0)| → 0 therefore f (zn)→ f (z0).

We proved the continuity of the function f at the point z0 (see Theorem 2.5).
Theorem 3.2 A function f = u + iv has a derivative at a point z0 = x0 + iy0 if
and only if the following two conditions are fulfilled:

(i) functions u and v are differentiable2 at the point (x0, y0),

(ii) functions u and v fulfill at the point (x0, y0) the so called Cauchy–Riemann
equations

)u
)x
(x0, y0) = )v

)y
(x0, y0),

−)u
)y
(x0, y0) = )v

)x
(x0, y0).

Moreover, if f ′(z0) exists then it holds that

f ′(z0) =
)u
)x
(x0, y0) + i

)v
)x
(x0, y0) =

)v
)y
(x0, y0) − i

)u
)y
(x0, y0).

Remark 3.2 Let us explain why it is possible to formulate f ′ via partial derivatives
of u and v. 3
Notice that if f ′(z0) exists, then

f ′(z0) = lim
z→z0

f (z) − f (z0)
z − z0

= lim
ℎ→0
ℎ∈ℝ

f (x0 + ℎ + iy0) − f (x0 + iy0)
(x0 + ℎ + iy0) − (x0 + iy0)

=

= lim
ℎ→0
ℎ∈ℝ

u(x0 + ℎ, y0) + iv(x0 + ℎ, y0) − u(x0, y0) − iv(x0, y0)
(x0 + ℎ − x0) + i(y0 − y0)

=

= lim
ℎ→0

u(x0 + ℎ, y0) − u(x0, y0)
ℎ

+ i lim
ℎ→0

v(x0 + ℎ, y0) − v(x0, y0)
ℎ

=

= )u
)x
(x0, y0) + i

)v
)x
(x0, y0).

2Recall a sufficient condition of differentiability:

Let ' ∶ ℝ2 → ℝ. If the functions )'
)x

and
)'
)y

are continuous at the point (x0, y0),

then a function ' has a derivative at the point (x0, y0).

3Think carefully over the meaning of formulas of the type lim
ℎ→0
ℎ∈ℝ

….
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Similarly,

f ′(z0) = lim
z→z0

f (z) − f (z0)
z − z0

= lim
s→0
s∈ℝ

f (x0 + i(y0 + s)) − f (x0 + iy0)
(x0 + i(y0 + s)) − (x0 + iy0)

=

= lim
s→0
s∈ℝ

u(x0, y0 + s) + iv(x0, y0 + s) − u(x0, y0) − iv(x0, y0)
(x0 − x0) + i(y0 + s − y0)

=

= lim
s→0

v(x0, y0 + s) − v(x0, y0)
s

+ 1
i
lim
s→0

u(x0, y0 + s) − u(x0, y0)
s

=

= )v
)y
(x0, y0) − i

)u
)y
(x0, y0).

Example 3.1 Find points at which the function

f (z) = ez

has a derivative. Find f ′(z).
Solution: For each x + iy ∈ ℂ is:

f (x + iy) = ex+iy = ex cos y
⏟⏟⏟
u(x,y)

+i ex sin y
⏟⏟⏟
v(x,y)

,

)u
)x
(x, y) = ex cos y = )v

)y
(x, y),

−)u
)y
(x, y) = ex sin y = )v

)x
(x, y).

Functions u and v have a derivative at any point (x, y) ∈ ℝ2. Therefore for each
z = x + iy ∈ ℂ it holds that

f ′(z) = f ′(x + iy) = )u
)x
(x, y) + i )v

)x
(x, y) =

= ex cos y + iex sin y = ex+iy = f (x + iy) = f (z).

3.2 Harmonic functions, harmonic conjugate functions

Definition 3.2 Let M ⊂ ℝ2 be an open set. We call a function ' ∶ ℝ2 → ℝ
harmonic on the setM if for any (x, y) ∈M it holds that

(i) function ' has continuous first and second partial derivatives at the point
(x, y) (i.e., ' is of the class C2 onM),

(ii) Δ'(x, y) =
)2'
)x2

(x, y) +
)2'
)y2

(x, y) = 0.
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Example 3.2

1. Function '(x, y) = x + y + ex cos y is harmonic on ℝ2.

2. Function '(x, y) = Im (ln(x + iy)) is not harmonic on ℝ2 ⧵ {(0, 0)}.4

Remark 3.3 In the following we use the formulation: "function ' is harmonic on
the set Ω ⊂ ℂ" instead of the correct form "function ' is harmonic on the set
{(x, y) ∈ ℝ2 ∶ x + iy ∈ Ω}".

Now, assume that a function f = u + iv has at any point of a domain Ω ⊂ ℂ a
second derivative5 and that functions u and v are of the class C2 on the set {(x, y) ∈
ℝ2 ∶ x + iy ∈ Ω}. From Theorem 3.2 it follows that for any point x + iy ∈ Ω we
have

f ′(x + iy) = )u
)x
(x, y) + i )v

)x
(x, y) = )v

)y
(x, y) − i )u

)y
(x, y),

f ′′(x + iy) = )2u
)x2

(x, y) + i )
2v
)x2

(x, y) = −)
2u
)y2

(x, y) − i)
2v
)y2

(x, y).

If we compare real and imaginary parts in the latter equality, we find out that
for all x + iy ∈ Ω ∶

Δu(x, y) = 0 = Δv(x, y).

In other words, functions u and v are harmonic on Ω.
The following theorem generalizes this contemplation.

Theorem 3.3 Let f = u+iv be holomorphic on the domainΩ ⊂ ℂ. Then functions
u and v are harmonic on Ω.

Definition 3.3 We call functions u, v ∶ ℝ2 → ℝ harmonic conjugate on the do-
main Ω ⊂ ℂ if at the same time it holds that

(i) functions u and v are harmonic on Ω,

(ii) functions u and v satisfy Cauchy–Riemann equations on Ω.

Remark 3.4 Notice that harmonic conjugate functions are real and imaginary parts
of holomorphic functions.

4Why?
5Let n ∈ ℕ. The (n+1)–th derivative of a function f at a point z0 ∈ ℂ is defined by induction:

f (n+1)(z0) =
(

f (n)
)′ (z0),

i.e.,
f (n+1)(z0) = lim

z→z0

f (n)(z) − f (n)(z0)
z − z0

if the limit on the right exists and is finite.
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Example 3.3 Find holomorphic function f = u + iv if

u(x, y) = x2 − y2 + 2xy.

Solution:We search for a function v ∶ ℝ2 → ℝ joined with a function u by satisfying
Cauchy–Riemann equations:

)u
)x
(x, y) = 2x + 2y = )v

)y
(x, y) ⇒ v(x, y) = 2xy + y2 + '(x),

where ' ∶ ℝ → ℝ. Now, instituting in the second Cauchy–Riemann equations we
get

−)u
)y
(x, y) = 2y − 2x = )v

)x
(x, y) = 2y + '′(x).

Therefore

'(x) = −x2 + c, where c ∈ ℝ,
v(x, y) = 2xy + y2 − x2 + c.

One can easily make sure that 6 the function

f (x + iy) = x2 − y2 + 2xy + i(2xy + y2 − x2 + c)

is holomorphic on ℂ for any c ∈ ℝ.

Theorem 3.4 Let u (resp. v) be a harmonic function on the simply connected do-
main
Ω ⊂ ℂ. Then there exists a function f ∶ ℂ → ℂ uniquely determined up to strictly
imaginary (resp. strictly real) constant such that:

(i) f is holomorphic on Ω,

(ii) for all x + iy ∈ Ω ∶ u(x, y) = Ref (x + iy) (resp. v(x, y) = Imf (x + iy)).

Exercise 3.1

1. Find all on the domain ℂ ⧵ {0} holomorphic functions f = u + iv, where

v(x, y) =
y

x2 + y2
.

2. Prove that a function
v(x, y) = ln(x2 + y2)

is harmonic on the domain ℂ ⧵ {0} and that there does not exist a function
u ∶ ℝ2 → ℝ such that f = u + iv is holomorphic on ℂ ⧵ {0}.

6It is necessary to check the conditions from Theorem 3.2.
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3.3 Remark about geometric meaning of derivatives

Assume that a function f ∶ ℂ → ℂ is holomorphic at the point z0 ∈ ℂ and that
0 ≠ f ′(z0) = |f ′(z0)| ei arg f

′(z0).

It follows from the definition of a derivative that

lim
z→z0

|

|

|

|

f (z) − f (z0)
z − z0

|

|

|

|

= |f ′(z0)| ∈ ℝ+.

Therefore, for every z is close to the point z0 the number |f (z) − f (z0)| close
to the number |f ′(z0)| ⋅ |z − z0|. In other words, for a sufficiently small � > 0
an f–image of a circle {z ∈ ℂ ∶ |z − z0| = �} differs a little from the circle
{w ∈ ℂ ∶ |w − f (z0)| = |f ′(z0)| ⋅ �}.

Now, let us demonstrate a geometrical interpretation of arg f ′(z0). Let 
 be
any smooth arc in ℂ such that 
(t0) = z0. Then the number arg 
 ′(t0) gives an
angle between tangent vector 
 ′(t0) and a positive part of a real axis.7 Now, let
Γ(t) = f (
(t)) be a curve on a sufficiently small neighbourhood of a point t0. Then,
explore a perturbation of a tangent vector Γ′(t0) from a positive part of a real axis,
i.e., the argument Γ′(t0). Since Γ′(t0) = f ′

(


(t0)
)


 ′(t0) = f ′(z0)
 ′(t0), it holds
arg f ′(z0) + arg 
 ′(t0) ∈ Arg Γ′(t0).

In other words, the number arg f ′(z0) gives an angle by which it is necessary to
rotate the directional vector of the tangent to the smooth arc 
 at the point 
(t0) = z0
so that we get a directional vector of the tangent to the curve Γ = f◦
 at the point
Γ(t0) = f (z0) while the curve 
 was arbitrarily picked.

These observations give us the following definition.
Definition 3.4 Let f ∶ ℂ → ℂ be a function holomorphic at a point z0 and
f ′(z0) ≠ 0. The number |f ′(z0)| is called the extensibility coefficient of the func-
tion f at the point z0.8 The number arg f ′(z0) is called the rotational angle of
the function f at the point z0.

7Draw a picture!
8Moreover, if |f ′(z0)| < 1, (resp. |f ′(z0)| > 1) then a function f is called a contraction, (resp.

a dilatation) of the function f at the point z0.
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Conformal function

4.1 Basic properties

Definition 4.1 A function f ∶ ℂ∞ → ℂ∞ is called conformal in an open set
G ⊂ ℂ∞ if

(i) a function f is continuous and injective in G,

(ii) a derivative f ′ exists at any point of the set G up to finitely many ones.

Exercise 4.1 Find out in which domains are the functions

ez, ln z, sin z, z2, z4

conformal.

Definition 4.2 Open sets G1, G2 ⊂ ℂ∞ are called conformally equivalent if
there exists a function f ∶ ℂ∞ → ℂ∞ such that

(i) a function f is conformal in G1,

(ii) f (G1) = G2.

Properties of conformal functions

(i) If a function f is conformal on G, then 0 ≠ f ′(z) ∈ ℂ for all z ∈ G up to
at most two points: the point∞ (in case it belongs to G) and a point (in case
that such a point in G exists) whose f -image is∞.1

(ii) An inverse function to the conformal function is also conformal.
(iii) An image of a domain under conformal function is also a domain.

1Notice that conformal function preserves angles between curves pathing through z0 (z0 ∈
G, z0 ≠ ∞ ≠ f (z0)) – see geometrical interpretation of arg f ′(z0) on page 28. This property of
a function f is called conformallity at the point z0.

29
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(iv) All simply connected domains in ℂ∞ can be classified into four groups:
group 1. contains only empty-set,
group 2. contains only ℂ∞,
group 3. contains all domains of the form ℂ∞ ⧵ {z0}, where z0 ∈ ℂ∞,
group 4. contains all remaining simply connected domains.2
Then, any two simply connected domains Ω1 and Ω2 are conformally equiv-
alent if and only if they belong to the same group.

4.2 Linear fractional functions

Definition 4.3 A function f ∶ ℂ∞ → ℂ∞ is called a linear fractional function if
there are numbers a, b, c, d ∈ ℂ such that ad − bc ≠ 0 and

f (z) =

⎧

⎪

⎨

⎪

⎩

az + b
cz + d

if z ∈ ℂ,

a
c

if z = ∞.

Properties of linear fractional functions

(i) Linear fractional function is the only conformal function from ℂ∞ on ℂ∞.
(ii) Inverse function to the linear fractional function is a linear fractional function.
(iii) An image of a generalized circle under linear fractional function is a general-

ized circle. (Generalized circle is defined as a circle in ℂ or a line including
the point∞.)

(iv) Let each of the sets {z1, z2, z3}, {w1, w2, w3} contains three different num-
bers fromℂ∞. Then there exists exactly one linear fractional function f such
that f (z1) = w1, f (z2) = w2 and f (z3) = w3.

(v) A special case of linear fractional function is a linear function given by
f (z) = az + b, where a, b ∈ ℂ, a ≠ 0. 3

Example 4.1 Find an image of a circle

K = {z ∈ ℂ ∶ |z − 1| = 1}

under the function

f (z) = 1
z
.

2I.e., all non-empty simply connected domains, whose complement contains at most two points.
3Notice that one can get any linear function as a composition of three functions:

rotation (z → ei arg az), homothety (z → |a|z), and shift (z → z + b).
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Solution: For 0, 2, 1 + i ∈ K it holds that f (0) = ∞, f (2) = 1
2
, f (1 + i) = 1

2
− 1
2
i,

hence an image of the circle K is a line: 4

f (K) =
{

z ∈ ℂ ∶ Re z = 1
2

}

∪ {∞} .

4See property (iii) of linear fractional functions.
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Chapter 5

Complex functions integral,
Cauchy’s integral theorem and
formulas

5.1 Integral of complex functions of a complex and real
variable

Theorem 5.1 (Jordan’s) Denote by 
 a simple closed curve in ℂ. Then

ℂ∞ ⧵ ⟨
⟩ = Ω1 ∪ Ω2,

whereΩ1 andΩ2 are disjoint,1 non-empty, simply connected domains with common
boundary ⟨
⟩.

Definition 5.1 Consider the situation from aforementioned theorem. That domain
of Ω1, Ω2, which does not contain ∞, is called an interior of the curve 
 and is
denoted by int 
. The domain containing∞ is called an exterior of the curve 
 and
is denoted by ext 
 .

Definition 5.2 Let f = u + iv ∶ ℝ → ℂ be a function continuous on the interval
[a, b] where a, b ∈ ℝ and a < b.2 Then we define

∫

b

a
f (t) dt = ∫

b

a
u(t) + iv(t) dt = ∫

b

a
u(t) dt + i∫

b

a
v(t) dt.

Definition 5.3 Let 
 ∶ [a, b]→ ℂ be a piece-wise smooth curve and let

f = u + iv ∶ ℂ → ℂ
1I.e., Ω1 ∩ Ω2 = ∅.2It means that functions u(t) = Ref (t), v(t) = Imf (t) ∶ ℝ → ℝ are continuous on [a, b].
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be a continuous function on ⟨
⟩. Then 3

∫

f (z) dz = ∫(
)

u(x, y) dx − v(x, y) dy + i∫(
)
v(x, y) dx + u(x, y) dy,

where integrals on the right are curve integrals of the second kind4 (
 is meant to
be a curve in ℝ2).

Theorem 5.2 Let 
 ∶ [a, b] → ℂ be a smooth arc and let f ∶ ℂ → ℂ be a
continuous function on ⟨
⟩. Then

∫

f (z) dz = ∫

b

a
f (
(t))
 ′(t) dt.

Proof Let f = u + iv and 
 = 
1 + i
2. Then

∫

f (z) dz = ∫(
)

u(x, y) dx − v(x, y) dy + i∫(
)
v(x, y) dx + u(x, y) dy =

= ∫

b

a
u(
1(t), 
2(t))
 ′1(t) − v(
1(t), 
2(t))


′
2(t) dt +

+ i∫

b

a
v(
1(t), 
2(t))
 ′1(t) + u(
1(t), 
2(t))


′
2(t) dt =

= ∫

b

a

(

u(
1(t), 
2(t)) + iv(
1(t), 
2(t))
)


 ′1(t) +

+ i
(

u(
1(t), 
2(t)) + iv(
1(t), 
2(t))
)


 ′2(t) dt =

= ∫

b

a
f
(


1(t) + i
2(t)
) (


 ′1(t) + i

′
2(t)

)

dt

= ∫

b

a
f (
(t))
 ′(t) dt.

Example 5.1 Calculate

∫

1
z
dz

3For easier recall:
f (z) dz = (u + iv)( dx + i dy) = u dx − v dy + i(v dx + u dy).

4See [2].
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where 
(t) = 5eit, t ∈ [0, 2�].
Solution: Using Definition 5.3:

∫

1
z
dz = ∫(
)

x
x2 + y2

dx +
y

x2 + y2
dy + i∫(
)

−y
x2 + y2

dx + x
x2 + y2

dy =

= ∫

2�

0

−25 sin t cos t
25

+ 25 sin t cos t
25

dt + i∫

2�

0

25 sin2 t
25

+ 25 cos
2 t

25
dt =

= 0 + i∫

2�

0
1 dt = 2�i.

Using Theorem 5.2:

∫

1
z
dz = ∫

2�

0

1
5eit

5ieit dt = ∫

2�

0
i dt = 2�i .

5.2 Cauchy’s integral theorem

Theorem 5.3 (Cauchy’s integral) Let f be a holomorphic function on simply con-
nected domain Ω ⊂ ℂ. Then for each closed piece-wise smooth curve 
 in Ω (i.e.,
⟨
⟩ ⊂ Ω) it holds that

∫

f (z) dz = 0.

Proof We denote f = u + iv and define vector fields
f1(x, y) = (u(x, y),−v(x, y)) ,
f2(x, y) = (v(x, y), u(x, y)) .

Then f1 and f2 are of the class C2 on simply connected domain
Ω∗ = {(x, y) ∈ ℝ2 ∶ x + iy ∈ Ω}

(see Theorem 3.3). Futhermore, in Ω∗ it holds
)u
)y

=
)(−v)
)x

and )v
)y

= )u
)x

(see Theorem 3.2). Hence f1 and f2 are potentially on Ω∗ (see [1]). Therefore

∫

f (z) dz = ∫(
)

f1(x, y)ds + i∫(
)
f2(x, y)ds = 0 + i0 = 0.



36 CHAPTER 5. COMPLEX FUNCTIONS INTEGRAL

Theorem 5.4 (Cauchy’s generalized) Let Ω = int 
, where 
 is a simple closed
piece-wise smooth curve in ℂ. Then for any function f ∶ ℂ → ℂ holomorphic on
Ω and continuous on Ω = Ω ∪ ⟨
⟩ it holds that5

∫

f (z) dz = 0.

Remark 5.1 Let

, 
1, 
2, … , 
n

be simple closed piece-wise smooth positively oriented curves in ℂ such that for
any i, j ∈ {1, 2,… , n} it holds

⟨
i⟩ ⊂ ext 
j for i ≠ j,
⟨
i⟩ ⊂ int 
.

Then a set
Ω = int 
 ∩ ext 
1 ∩ ext 
2 ∩⋯ ∩ ext 
n

is an (n + 1)-times connected domain.6

Theorem 5.5 (Cauchy’s integral theorem for n - times connected domains) Let
Ω be an (n + 1)-times connected domain described above and let f ∶ ℂ → ℂ be a
holomorphic function in Ω and continuous on

Ω = Ω ∪ ⟨
⟩ ∪ ⟨
1⟩ ∪ ⟨
2⟩ ∪⋯ ∪ ⟨
n⟩.

Then

∫

f (z) dz =

n
∑

i=1
∫
i

f (z) dz.

5.3 Cauchy’s integral formula

Theorem 5.6 Let 
 be a simple closed piece-wise smooth positively oriented curve
in ℂ and let a function f ∶ ℂ → ℂ be holomorphic on Ω = int 
 and continuous
on Ω = Ω ∪ ⟨
⟩. Then for any z0 ∈ Ω it holds that

f (z0) = 1
2�i ∫


f (z)
z − z0

dz. (5.1)

Moreover, if n ∈ ℕ, then for any z0 ∈ Ω exists f (n)(z0) such that

f (n)(z0) =
n!
2�i ∫


f (z)
(z − z0)n+1

dz. (5.2)
5Notice the connection with Green’s theorem, see [1].
6Draw a picture!
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Proof We will prove only assertion (5.1).
Let z0 ∈ Ω be an arbitrary point. For any r > 0 we define a curve


r(t) = z0 + reit, t ∈ [0, 2�].

From Theorem 5.5 it follows

∫

f (z)
z − z0

dz = lim
r→0+∫
r

f (z)
z − z0

dz = lim
r→0+

[

∫
r

f (z) − f (z0)
z − z0

dz + ∫
r

f (z0)
z − z0

dz
]

.

Now, from the assumption

f ′(z0) = lim
z→z0

f (z) − f (z0)
z − z0

∈ ℂ

it follows that there exists � > 0 and k > 0 such that for all z ∈ ℂ, 0 < |z−z0| < �
it holds that

|

|

|

|

f (z) − f (z0)
z − z0

|

|

|

|

≤ k.

Therefore, for all sufficiently small r > 0 we receive7
|

|

|

|

|

∫
r

f (z) − f (z0)
z − z0

dz
|

|

|

|

|

≤ k2�r,

and thus
lim
r→0+∫
r

f (z) − f (z0)
z − z0

dz = 0.

Moreover,

lim
r→0+∫
r

f (z0)
z − z0

dz = lim
r→0+

(

f (z0)∫

2�

0

1
reit

rieit dt

)

= lim
r→0+

(f (z0)2�i) = f (z0)2�i,

therefore
∫


f (z)
z − z0

dz = f (z0)2�i.

7We apply this estimation of the curve integral: Let 
 ∶ [a, b] → ℂ be a smooth arc and let
f ∶ ℂ → ℂ be a continuous function on ⟨
⟩. Then

|

|

|

|

|

∫

f (z) dz

|

|

|

|

|

≤ sup
z∈⟨
⟩

|f (z)| ⋅ ∫

b

a
|
 ′(t)| dt

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
length of curve 


.
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Remark 5.2

(i) It follows from Theorem 5.6 that a derivative of a holomorphic function is
also a holomorphic function. In other words, if a function f is holomorphic
on an open set Ω and n ∈ ℕ, then a function f (n) is holomorphic on Ω.

(ii) Let us consider Theorem 5.6. Then values of a function f on Ω are uniquely
determined by values of a function f on ⟨
⟩.

(iii) We can obtain formula (5.2) if we formally differentiate n-times both sides of
formula (5.1) with respect to z0.

Example 5.2 Find

∫

ez

z(1 − z)3
dz

where 
(t) = 3
2
eit, t ∈ [0, 2�].

Solution:
It follows from Theorem 5.5 that:

∫

ez

z(1 − z)3
dz = ∫
1

ez

z(1 − z)3
dz + ∫
2

ez

z(1 − z)3
dz,

where


1(t) = 1
4
eit, t ∈ [0, 2�],


2(t) = 1 + 1
4
eit, t ∈ [0, 2�].

Now, applying Theorem 5.6

∫
1
ez

z(1 − z)3
dz = ∫
1

ez

(1−z)3

z − 0
dz = 2�i

[

ez

(1 − z)3

]

z=0
= 2�i,

∫
2
ez

z(1 − z)3
dz = ∫
2

− ez

z

(z − 1)3
dz = 2�i

2!

[

(

−e
z

z

)′′]

z=1
= �i(−e),

hence

∫

ez

z(1 − z)3
dz = �i(2 − e).

5.4 Primitive functions and path independent integral

Definition 5.4 A function F ∶ ℂ → ℂ is called a primitive function to a function
f ∶ ℂ → ℂ in a domain Ω ⊂ ℂ if for any z ∈ Ω it holds that

F ′(z) = f (z).
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Theorem 5.7 Let F be a primitive function to a function f in a domain Ω. Then
every primitive function to f in Ω is in the form F + k where k ∈ ℂ.

Proof We have to prove that:
(i) for every k ∈ ℂ a function F + k is primitive to f in Ω,
(ii) if Φ is a primitive function to f in Ω, then there exists k ∈ ℂ such that

Φ = F + k.
Ad i) (F + k)′ = F ′ + 0 = f in Ω.
Ad ii) Let us define a function G = u + iv ∶ ℂ → ℂ by a formula

G(z) = Φ(z) − F (z).

Then for all z ∈ Ω it holds thatG′(z) = 0, therefore 8 for all x+ iy ∈ Ω one obtains
0 = G′(x + iy) = )u

)x
(x, y) + i )v

)x
(x, y).

Therefore, for all x + iy ∈ Ω it holds that
)u
)x
(x, y) = )v

)y
(x, y) = 0 = )v

)x
(x, y) = −)u

)y
(x, y) = 0.

Hence it follows that the functions u and v are constant on the set {(x, y) ∈ ℝ2 ∶
x + iy ∈ Ω} and so does the function G = u + iv = Φ − F in Ω.
Definition 5.5 An integral of a function f ∶ ℂ → ℂ is called path independent
in a domainΩ ⊂ ℂ if for any two piece-wise smooth curves 
1 and 
2 are such that

(i) ⟨
1⟩ ∪ ⟨
2⟩ ⊂ Ω,

(ii) an initial point of 
1 equals an initial point of 
2,

(iii) a terminal point of 
1 equals a terminal point of 
2

and it holds that

∫
1
f (z) dz = ∫
2

f (z) dz = ∫

z2

z1
f (z) dz

where z1 (resp. z2) denotes initial (resp. terminal) point of curves 
1, 
2.

Theorem 5.8 Let f ∶ ℂ → ℂ be a holomorphic function on the simply connected
domain Ω ⊂ ℂ. Then an integral to a function f is path independent in Ω.

Proof The assertion follows straightforwardly from Theorem 5.3.
8See Theorem 3.2.
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Theorem 5.9 (Morera’s) Let f ∶ ℂ → ℂ be a continuous function on a domain
Ω ⊂ ℂ. Assume that for any simple closed piece-wise connected curve 
 in Ω it
holds that

∫

f (z) dz = 0.

Then f is holomorphic in Ω.

Theorem 5.10 Assume that an integral of a continuous function f ∶ ℂ → ℂ is
path independent in a domain Ω ⊂ ℂ. Then there exists a primitive function to f
in Ω. Moreover, for any point z0 ∈ Ω a primitive function F to f in Ω is given by 9

F (z) = ∫

z

z0
f (�) d�.

Proof Let z0 ∈ Ω and F (z) = ∫ z
z0
f (�) d�. We want to prove that for any z ∈ Ω it

holds that

lim
ℎ→0

|

|

|

|

F (z + ℎ) − F (z)
ℎ

− f (z)
|

|

|

|

= 0.

Let z ∈ Ω denote an arbitrary point. Let P (0) be such that for all ℎ ∈ P (0) it is
z + ℎ ∈ Ω

and define for all ℎ ∈ P (0) a curve 
 given by

ℎ(t) = z + tℎ, t ∈ [0, 1].

Then for all ℎ ∈ P (0) it holds that:

0 ≤
|

|

|

|

F (z + ℎ) − F (z)
ℎ

− f (z)
|

|

|

|

= 1
|ℎ|

|

|

|

|

|

∫

z+ℎ

z
f (�) d� − f (z)ℎ

|

|

|

|

|

=

= 1
|ℎ|

|

|

|

|

|

∫
ℎ
f (�) d� − f (z)∫
ℎ

1 d�
|

|

|

|

|

= 1
|ℎ|

|

|

|

|

|

∫
ℎ
f (�) − f (z) d�

|

|

|

|

|

≤

≤ 1
|ℎ|

sup
�∈⟨
ℎ⟩

|f (�) − f (z)| |ℎ| = sup
�∈⟨
ℎ⟩

|f (�) − f (z)| → 0 for ℎ→ 0,

since f is continuous in z.

Example 5.3 A function

f (z) = 1
z

9Formula ∫ z
z0
f (�) d� denotes an integral ∫
 f (�) d� where 
 is any piece-wise smooth curve in Ω

whose initial point is 
 = z0 and terminal point is 
 = z.
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is holomorphic on a simply connected domainΩ = ℂ⧵{z ∈ ℝ ∶ z ≤ 0}, therefore
a function (we integrate along curves in Ω)

F (z) = ∫

z

1
f (�) d� = ∫

|z|

1

1
x
dx + ∫

z

|z|

1
�
d� = [ln x]|z|1 + i∫

arg z

0
dt = ln z

is a primitive function to the function f in Ω.10

Remark 5.3 Let F denote a primitive function to a function f on simply connected
domain Ω and let z1, z2 ∈ Ω. Let us look at ∫

z2
z1
f (z) dz. 11

Let z0 ∈ Ω be an arbitrary point. Then there exists a constant k ∈ ℂ such that
for all z ∈ Ω it holds that

F (z) = ∫

z

z0
f (�) d� + k

(see Theorems 5.7, 5.8 and 5.10.)

∫

z2

z1
f (z) dz = ∫

z0

z1
f (z) dz + ∫

z2

z0
f (z) dz =

= −
(

∫

z1

z0
f (z) dz + k

)

+
(

∫

z2

z0
f (z) dz + k

)

=

= F (z2) − F (z1) = [F (z)]
z2
z1 .

One can generalize this as follows:
Theorem 5.11 Let f ∶ ℂ → ℂ be a function such that there exists a primitive
function to f in a domain Ω ⊂ ℂ. Then an integral of the function f is path
independent in Ω. Moreover, if F is a primitive function to the function f in Ω and
if 
 is a piece-wise connected curve in Ω defined on [i, j], then

∫

f (z) dz = F (
(j)) − F (
(i)).

Exercise 5.1

1. Let 
(t) = eit, t ∈ [0, 2�]. Then ∫

1
z2
dz = 0 since

(

−1
z

)′
= 1
z2

in the
domain ℂ ⧵ {0}.

2. ∫ 1+i0 sin z cos z dz = ∫ 1+i0
1
2
sin(2z) dz = 1

4
[− cos(2z)]1+i0 = 1

4
(1 − cos(2 + 2i)) .

3. ∫ 2�i0 zez dz = [zez]2�i0 − ∫ 2�i0 ez dz = 2�i− [ez]2�i0 = 2�i (the integration by
parts was used).

10Think over it carefully!
11Once again we integrate along piece-wise connected curves in Ω.
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Chapter 6

Number series, sequences and
function series

6.1 Number series

Definition 6.1 A series of complex numbers is given by

z1 + z2 +⋯ + zn +⋯ =
∞
∑

n=1
zn, (6.1)

where zn ∈ ℂ for all n ∈ ℕ.
A number zn is called an n-th term of a series (6.1). A sequence (sn) defined

by

sn = z1 + z2 +⋯ + zn =
n
∑

k=1
zk

is called a sequence of partial sum of a series (6.1). A series (6.1) called conver-
gent if there exists a finite limit lim sn ∈ ℂ. Then the number

s = lim sn

is called a sum of the series (6.1) and 1

s =
∞
∑

n=1
zn.

A series which is not convergent is called divergent.

Theorem 6.1 Let
∞
∑

n=1
zn be a series. Then2

1Notice that in the following the notation
∞
∑

n=1
zn is used for a series and also for its sum, which is

a number.
2See [3].
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(i) convergence neccesary condition

∞
∑

n=1
zn is convergent ⇒ lim zn = 0.

(ii) relation between convergent series and convergent real and imaginary parts

∞
∑

n=1
(xn + iyn) is convergent ⇔ series

∞
∑

n=1
xn and

∞
∑

n=1
yn are convergent.

Moreover, if a series
∞
∑

n=1
(xn + iyn) is convergent, then its sum is given as

∞
∑

n=1
(xn + iyn) =

∞
∑

n=1
xn + i

∞
∑

n=1
yn.

(iii) Bolzano–Cauchy’s condition

∞
∑

n=1
zn is convergent ⇔

(

∀" ∈ ℝ+
) (

∃n0 ∈ ℕ
) (

∀n, m ∈ ℕ; n, m > n0
)

∶

|sn − sm| < "
(

sn =
n
∑

k=1
zk

)

.

(iv) absolute convergence test

∞
∑

n=1
|zn| is convergent ⇒

∞
∑

n=1
zn is convergent .

(A series
∞
∑

n=1
zn is called absolutely convergent if a series

∞
∑

n=1
|zn| is conver-

gent. A series which is convergent but not absolutely convergent is called a
conditionally convergent series.)

(v) comparison test

∀n ∈ ℕ ∶ |zn| ≤ an
∞
∑

n=1
an is convergent

⎫

⎪

⎪

⎬

⎪

⎪

⎭

⇒
∞
∑

n=1
zn is absolutely convergent.
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(vi) d’Alembert’s ratio test

lim
|

|

|

|

zn+1
zn

|

|

|

|

< 1 ⇒
∞
∑

n=1
zn is absolutely convergent,

lim
|

|

|

|

zn+1
zn

|

|

|

|

> 1 ⇒
∞
∑

n=1
zn is divergent.

(vii) Cauchy’s criterion, also known as the n-th root test

lim n
√

|zn| < 1 ⇒
∞
∑

n=1
zn is absolutely convergent,

lim n
√

|zn| > 1 ⇒
∞
∑

n=1
zn is divergent.

(viii) integral test
Let f ∶ ℝ → ℝ be a non-negative, monotone, decreasing, and continuous
function defined on [1,+∞) and let |zn| = f (n) for all n ∈ ℕ. Then

∞
∑

n=1
|zn| < +∞ ⇔ ∫

+∞

1
f (x) dx < +∞ .

(ix) Leibniz criterion

∀n ∈ ℕ ∶ 0 ≤ zn+1 ≤ zn

lim zn = 0

⎫

⎪

⎬

⎪

⎭

⇒
∞
∑

n=1
(−1)n+1zn is convergent.

(x) convergence of a geometric series theorem

A series
∞
∑

n=1
qn−1, where q ∈ ℂ, is convergent if and only if |q| < 1. In that

case it holds that
∞
∑

n=1
qn−1 = 1

1 − q
.

Example 6.1

1. A series
∞
∑

n=1

n
3n
(1 + i)n

is absolutely convergent since
|

|

|

|

|

|

|

|

n + 1
3n+1

(1 + i)n+1

n
3n
(1 + i)n

|

|

|

|

|

|

|

|

=
|

|

|

|

1
3
n + 1
n

(1 + i)
|

|

|

|

→

√

2
3

< 1.
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2. A series
∞
∑

n=1

ei
�
n

√

n

is divergent because for all n ∈ ℕ we have e
i �n
√

n
= 1

√

n
cos �

n
+ i 1

√

n
sin �

n

and at the same time a series
∞
∑

n=1

1
√

n
cos �

n
is divergent. 3

6.2 Sequence of functions, pointwise and uniform conver-
gence

Definition 6.2 We say that a sequence of functions (fn) converges pointwise on
the set Ω ⊂ ℂ∞ to the function f if for all z ∈ Ω

lim fn(z) = f (z).

In other words, if

(∀z ∈ Ω)
(

∀" ∈ ℝ+
) (

∃n0 ∈ ℕ
) (

∀n ∈ ℕ, n ≥ n0
)

∶ fn(z) ∈ U (f (z), ").

It is denoted by fn → f on Ω.

The natural number n0 mentioned above depends on the choice z ∈ Ω and
" ∈ ℝ+. If it is possible to choose n0 independently on z ∈ Ω and functions fn and
f are finite then one observes uniform convergence on Ω.

Definition 6.3 Assume that fn and f are finite functions defined on a set Ω ⊂ ℂ∞
for all n ∈ ℕ. We say that a sequence of functions (fn) converges uniformly on
the set Ω to the function f if

lim
[

sup
z∈Ω

|fn(z) − f (z)|
]

= 0.

In other words,
(

∀" ∈ ℝ+
) (

∃n0 ∈ ℕ
) (

∀n ∈ ℕ, n ≥ n0
)

(∀z ∈ Ω) ∶ fn(z) ∈ U (f (z), ").

It is denoted by fn →→ f on Ω.

Theorem 6.2 Let fn →→ f on Ω and let fn be a continuous function on Ω for all
n ∈ ℕ. Then a function f is continuous on Ω.

3Think over it carefully!
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Definition 6.4 Assume that functions fn and f are finite and defined on a set Ω ⊂
ℂ∞ for all n ∈ ℕ. We say that a function series

f1(z) + f2(z) +⋯ + fn(z) +… =
∞
∑

n=1
fn(z) (6.2)

converges pointwise (resp. converges uniformly) on a set Ω to the sum f if a
sequence (sn) of partial sum of function series (6.2) converges 4 pointwise (resp.
uniformly) on Ω to the function f .

Theorem 6.3 (Weierstrass) Assume that for all n ∈ ℕ a function fn is holomor-

phic on Ω ⊂ ℂ and that a function series
∞
∑

n=1
fn(z) converges locally uniformly on

Ω, i.e.,

(∀z ∈ Ω) (∃U (z) ⊂ Ω) ∶
∞
∑

n=1
fn(z) converges uniformly on U (z).

Then a function f defined by

f (z) =
∞
∑

n=1
fn(z)

is holomorphic in the domain Ω and for all p ∈ ℕ and z ∈ Ω it holds that

f (p)(z) =
∞
∑

n=1
f (p)n (z).

Moreover, if 
 is a piece-wise smooth curve in Ω, then5

∫

f (z)dz =

∞
∑

n=1
∫

fn(z)dz.

4sn(z) =
n
∑

k=1
fk(z).

5Symbolically written:
(

∑

…
)′
=
∑

(… )′ , ∫

(

∑

…
)

=
∑

(

∫ …
)

.
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Chapter 7

Power and Taylor series

7.1 Power series

Definition 7.1 A power series with a centre z0 ∈ ℂ is defined as a functional
series

a0 + a1(z − z0) + a2(z − z0)2 +⋯ =
∞
∑

n=0
an(z − z0)n (7.1)

where an ∈ ℂ for every n ∈ ℕ ∪ {0}.

Let us focus on a convergence of the series (7.1). In other words, let us explore
for which z ∈ ℂ that series is convergent. Obviously, series (7.1) is convergent for
z = z0, i.e., in its centre, and the sum is a0 at this point. Now, assume that the
series (7.1) is convergent at the point z1 ≠ z0 and that z ∈ ℂ is such a point that
|z − z0| < |z1 − z0|. Then for all n ∈ ℕ it holds that

|

|

an(z − z0)n|| = |

|

an(z1 − z0)n||
|

|

|

|

z − z0
z1 − z0

|

|

|

|

n
. (7.2)

Now let us apply Theorem 6.1. From the assumption that the series
∞
∑

n=0
an(z1−z0)n

is convergent, it follows that
lim

(

an(z1 − z0)n
)

= 0.

Therefore there exists k ∈ ℝ+ such that |
|

an(z1 − z0)n|| ≤ k for all n ∈ ℕ.
Moreover, since |

|

(z − z0)(z1 − z0)|| < 1 it follows that a geometric series
∞
∑

n=0
k
|

|

|

|

z − z0
z1 − z0

|

|

|

|

n

is convergent, and hence from (7.2) one can see that
∞
∑

n=0
an(z − z0)n is absolutely

convergent. This can be generalized as follows.

49
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Theorem 7.1 (Abel’s) Let
∞
∑

n=0
an(z − z0)n be a series convergent at a point

z1 ≠ z0. Then this series is absolutely convergent and locally uniformly convergent
in U

(

z0, |z1 − z0|
)

.

Corollary 1 If a power series
∞
∑

n=0
an(z− z0)n is divergent at a point z2 ∈ ℂ, then it

is divergent at each point of the set

{z ∈ ℂ ∶ |z − z0| > |z2 − z0|}.

Theorem 7.2 For any power series (7.1) with a centre z0 there exists exactly one
number R ∈ [0,+∞) ∪ {+∞}, which is called a radius of convergence of the
power series (7.1) , such that

(i) if |z − z0| < R, then series (7.1) is absolutely convergent,

(ii) if |z − z0| > R, then series (7.1) is divergent.

Proof Let us define

R = sup

{

|z − z0| ∶ z ∈ ℂ ∧
∞
∑

n=0
an(z − z0)n is convergent

}

.

Now, one can easily prove the above assertions using Theorem 7.1.

Definition 7.2 Assume that a radius of convergenceR of a power series (7.1) satis-
fies 0 < R < +∞. A set U (z0, R) is called a disk of the convergence of the power
series (7.1). For R = +∞ a disk of the convergence of the power series (7.1) is a
set U (z0,+∞) = ℂ.

Remark 7.1 Assume that a radius of convergence R of a power series
∞
∑

n=0
an(z −

z0)n satisfies 0 < R < +∞. Notice that in that case one can say nothing about the
convergence of the power series at the points of the circle

{z ∈ ℂ ∶ |z − z0| = R}.

One can demonstrate this situation with the power series1

∞
∑

n=1
zn,

∞
∑

n=1

zn

n
,

∞
∑

n=1

zn

n2
.

1Power series of the form
∞
∑

n=0
an(z − z0)n where z0 = 0 and a0 = 0 are considered.
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Since

|

|

|

|

zn+1

zn
|

|

|

|

→ |z|,

|

|

|

|

|

|

|

zn+1

n+1
zn
n

|

|

|

|

|

|

|

→ |z|,

|

|

|

|

|

|

|

zn+1

(n+1)2

zn
n2

|

|

|

|

|

|

|

→ |z|,

then (use d’Alembert’s ratio test) the radius of convergence of each of these power
series equals 1. Moreover,

(i) the series
∞
∑

n=1
zn is divergent at every point of the circle {z ∈ ℂ ∶ |z| = 1}

since any z ∈ ℂ, |z| = 1 does not fulfill the necessary convergence condition

for
∞
∑

n=1
zn, i.e., the condition lim zn = 0,

(ii) the series
∞
∑

n=1

zn

n
is uniformly convergent for z = −1 (use the Leibnitz crite-

rion) and is divergent for z = 1 (use the integral test),

(iii) the series
∞
∑

n=1

zn

n2
is absolutely convergent for all z ∈ ℂ, |z| = 1 (use the

integral test).

Theorem 7.3 Assume that

lim
|

|

|

|

an+1
an

|

|

|

|

= L, resp. lim n
√

|an| = K.

Then for a radius of convergence R of a power series
∞
∑

n=0
an(z − z0)n it holds

R =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1
L
if L ∈ ℝ+,

0 if L = +∞,

+∞ if L = 0,

resp. R =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1
K
if K ∈ ℝ+,

0 if K = +∞,

+∞ if K = 0.

Proof Notice that for z ≠ z0 we have

lim
|

|

|

|

|

an+1(z − z0)n+1

an(z − z0)n
|

|

|

|

|

= L|z − z0|, resp. lim n
√

|

|

an(z − z0)n|| = K|z − z0|.

Then it is enough to use d’Alembert’s ratio test, resp. Cauchy’s criterion.
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Example 7.1 Find a domain of convergence of a power series 2

∞
∑

n=0

n
2n
zn.

Solution:

lim n

√

n
2n
= lim

n
√

n
2

= 1
2
,

hence R = 2. The series is absolutely convergent for every z ∈ U (0, 2) and is
divergent for every z ∈ ℂ, |z| > 2.

For |z| = 2 it holds

lim
|

|

|

|

n
2n
zn
|

|

|

|

= lim n = ∞ ≠ 0,

therefore the series
∞
∑

n=0

n
2n
zn is divergent (the necessary convergence condition is

not fulfilled).

Example 7.2 Find a radius of convergence of a power series
∞
∑

n=0

(2n)!
(n!)2

zn.

Solution:
(2(n + 1))!
((n + 1)!)2

(2n)!
(n!)2

=
(2n + 2)(2n + 1)
(n + 1)(n + 1)

→ 4,

hence R = 1∕4.

Theorem 7.4 Assume that a power series
∞
∑

n=0
an(z − z0)n has a radius of conver-

gence R > 0. Then a function f defined by

f (z) =
∞
∑

n=0
an(z − z0)n

is holomorphic in the domain U (z0, R). Moreover, for all p ∈ ℕ and z ∈ U (z0, R)
the following equality holds

f (p)(z) =
∞
∑

n=p
n (n − 1) ⋯ (n − p + 1) an (z − z0)n−p

2It means, find a set of all z ∈ ℂ for which the series converges.
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and the power series
∞
∑

n=p
n (n− 1) ⋯ (n− p+ 1) an (z− z0)n−p has the same radius

of convergence R.

Proof The above theorem follows immediately fromWeierstrass (see Theorem 6.3)
and Abel’s theorems (see Theorem 7.1).
Example 7.3 Find a sum of a power series

∞
∑

n=1
(−1)n−1 z

n

n

in a disk of convergence.
Solution: Since

1
n + 1
1
n

→ 1,

a domain U (0, 1) is a disk of convergence of the above power series. Let us define
a function f by

f (z) =
∞
∑

n=1
(−1)n−1 z

n

n
.

Then for all z ∈ ℂ, |z| < 1 it holds that

f ′(z) =
∞
∑

n=1
(−1)n−1 zn−1 =

∞
∑

n=1
(−z)n−1 = 1

1 − (−z)
= 1
1 + z

.

Therefore there exists c ∈ ℂ such that for any z ∈ U (0, 1) we have

f (z) = ln(1 + z) + c.

Obviously,
0 = f (0) = ln 1 + c = c

then for all z ∈ U (0, 1) holds

f (z) =
∞
∑

n=1
(−1)n−1 z

n

n
= ln(1 + z).

Theorem 7.5 (Abel’s) Assume that a power series
∞
∑

n=0
an(z − z0)n has a radius of

convergence R ∈ (0,+∞) and that this power series is convergent at a point

z1 = z0 + Rei', where ' ∈ ℝ.



54 CHAPTER 7. POWER AND TAYLOR SERIES

Then a function f defined by

f (z) =
∞
∑

n=0
an(z − z0)n

is continuous on an interval [z0, z1], i.e., on a set
{

z0 + rei' ∶ r ∈ [0, R]
}

=
{

z0 + (z1 − z0) t ∶ t ∈ [0, 1]
}

.

Specially:

f (z1) = f
(

z0 + Rei'
)

= lim
r→R−

f
(

z0 + rei'
)

= lim
t→1−

f
(

z0 + (z1 − z0) t
)

.

Example 7.4 Find a sum of a series

∞
∑

n=1
(−1)n−1 1

n
.

Solution: First of all, let us notice that the above series is convergent.3 Now, let f
be a function defined by

f (z) =
∞
∑

n=1
(−1)n−1 z

n

n
.

From Theorem 7.5 and the above example it follows that

∞
∑

n=1
(−1)n−1 1

n
= f (1) = lim

z→1−
f (z) = lim

z→1−
(ln(1 + z)) = ln 2.

7.2 Taylor series

As mentioned above, a sum of a power series (in a disk of convergence) is a holo-
morphic function. The following theorem outlines that every holomorphic function
is (at least locally) a sum of a certain power series.

Theorem 7.6 (Taylor’s expansion of holomorphic function) Let f be a holomor-
phic function on U (z0, R) where z0 ∈ ℂ and R ∈ (0,+∞) ∪ {+∞}. Then there

exists exactly one power series
∞
∑

n=0
an(z−z0)n such that for all z ∈ U (z0, R) it holds

that

f (z) =
∞
∑

n=0
an(z − z0)n.

3Use the Leibniz criterion.
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Moreover, if % denotes a real number such that 0 < % < R, then the coefficients of
the above Taylor series satisfy

an =
f (n)(z0)
n!

= 1
2�i ∫


f (z)
(z − z0)n+1

dz,

where

(t) = z0 + % eit, t ∈ [0, 2�].

Remark 7.2 If f denotes a holomorphic function in ℂ, then a radius of conver-
gence of its Taylor series (with a centre at any point z0 ∈ ℂ) equals +∞. Examples
of such functions and their Taylor series with a centre at 0 are

ez =
∞
∑

n=0

zn

n!
, sin z =

∞
∑

n=0
(−1)n z2n+1

(2n + 1)!
, cos z =

∞
∑

n=0
(−1)n z2n

(2n)!
.

Example 7.5 Find a Taylor series of a function f with a centre z0 if

a) f (z) = 1
3 − z

, z0 = 0,

b) f (z) = 1
3 − z

, z0 = −1 + 3i,

c) f (z) = ln z, z0 = 2.

Solution: Ad a) Notice that a function f is holomorphic on U (0, 3). Using the
theorem about convergence of a geometric series is a crucial tool to find its Taylor
series: 4

∀z ∈ U (0, 3) ∶ f (z) = 1
3 − z

= 1
3

1
1 − z

3

= 1
3

∞
∑

n=0

(z
3

)n
=

∞
∑

n=0

zn

3n+1
.

Ad b) Let us apply the same process as above. For all

z ∈ U (−1 + 3i, |3 − (−1 + 3i)| ) = U (−1 + 3i, 5)

it holds that

f (z) = 1
3 − z

= 1
4 − 3i − (z − (−1 + 3i))

= 1
4 − 3i

1
1 − z+1−3i

4−3i

=
∞
∑

n=0

(z + 1 − 3i)n

(4 − 3i)n+1
.

Ad c) Obviously, the function f is holomorphic on U (2, 2). Then all z ∈ U (2, 2)
satisfy

f ′(z) = 1
z
= 1
2

1
1 + z−2

2

= 1
2

∞
∑

n=0
(−1)n

(z − 2
2

)n
=

∞
∑

n=0

(−1)n

2n+1
(z − 2)n.

4See Theorem 6.1.
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Therefore there exists c ∈ ℂ such that for all z ∈ U (2, 2) it holds that

f (z) =
∞
∑

n=0

(−1)n

2n+1
(z − 2)n+1

n + 1
+ c.

Since
f (2) = ln 2 = c,

then for all z ∈ U (2, 2) it holds that

f (z) = ln 2 +
∞
∑

n=1

(−1)n−1

2n n
(z − 2)n.

Theorem 7.7 (Liouville’s) Let f be a holomorphic and bounded (i.e., there exists
M ∈ ℝ+ such that for every z ∈ ℂ it holds |f (z)| ≤ M) function on ℂ. Then f is
constant on ℂ.

Proof It is known from Theorem 7.6 that for all z ∈ ℂ we have

f (z) =
∞
∑

n=0
anz

n,

where for all n ∈ ℕ ∪ {0} and all % ∈ (0,+∞) it holds that

an = 1
2�i ∫


f (z)
zn+1

dz = 1
2�i ∫

2�

0

f (% eit)
(% eit)n+1

% ieit dt,


(t) = % eit, t ∈ [0, 2�].

Using above given, for all n ∈ ℕ ∪ {0} and all % ∈ (0,+∞) it holds

|an| =
1
2�

|

|

|

|

|

∫

2�

0

f (% eit)
(% eit)n

i dt
|

|

|

|

|

≤ 1
2� ∫

2�

0

M
%n
dt = M

%n
.

Now, since one could choose a constant % ∈ ℝ+ arbitrarily small, then it follows
from theestimation |an| ≤ M∕%n that for any n ∈ ℕ it holds an = 0. Therefore for
every z ∈ ℂ is f (z) = a0 and the function f is constant.
Theorem 7.8 (Fundamental theorem of algebra) Every positive degree polyno-
mial has at least one root in ℂ. In other words, let f ∶ ℂ → ℂ denote a function
defined by

f (z) = anzn + an−1zn−1 +⋯ + a1z + a0,

where
n ∈ ℕ, a0, a1,… , an ∈ ℂ, an ≠ 0.

Then there exists z ∈ ℂ such that f (z) = 0.
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Proof Let assume that for all z ∈ ℂ it holds
f (z) ≠ 0

and let F denote a function given by

F (z) = 1
f (z)

.

Then obviously
1. F is holomorphic on ℂ, i.e., for all z ∈ ℂ it holds

F ′(z) = −
f ′(z)
f 2(z)

,

2. F is bounded on ℂ, i.e.,

lim
z→∞

F (z) = lim
z→∞

1
zn (an + an−1

1
z
+⋯ + a0

1
zn
)
= 1
∞ (an)

= 1
∞
= 0.

Therefore the functionF onℂ is constant (see Theorem 7.7). This is a contradiction
with a definition of F .
Definition 7.3 Let f denote a holomorphic function at a point z0 ∈ ℂ and let
p ∈ ℕ. The point z0 is called a p – times root (or p – times zero point) of a
function f if

f (z0) = f ′(z0) = f ′′(z0) =⋯ = f (p−1)(z0) = 0 ≠ f (p)(z0).

Theorem 7.9 Let f denote a holomorphic function at a point z0 ∈ ℂ and let
f (z0) = 0. Then there exists U (z0) such that only exactly one of the following
properties holds

(i) f is a zero function on U (z0),

(ii) f (z) ≠ 0 for all z ∈ U (z0) ⧵ {z0}.

Proof Obviously, a function f equals to a sum of its Taylor series (with a centre at
z0) on some neighbourhood of z0. In case that this series does not equal zero (i.e.,
f is not a zero function on any neighbourhood of z0), then there exists p ∈ ℕ such
that z0 is a p – times root of the function f. In other words, on some neigbourhood
of the point z0 it holds that

f (z) =
∞
∑

n=p

f (n)(z0)
n!

(z− z0)n = (z− z0)p
∞
∑

n=p

f (n)(z0)
n!

(z− z0)n−p = (z− z0)p '(z),
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where a function
'(z) =

∞
∑

n=p

f (n)(z0)
n!

(z − z0)n−p

is holomorphic (and continuous) and non-zero at z0. 5 Therefore, there existsU (z0)
such that the function ' is non-zero in U (z0) and then for all z ∈ U (z0) ⧵ {z0} we
have

f (z) = (z − z0)p '(z) ≠ 0.

Let us introduce an important corollary of Theorem 7.9.
Theorem 7.10 Let f and g denote holomorphic functions in a domain Ω ⊂ ℂ and
let 
 denote a simple curve in Ω for which f = g on ⟨
⟩. Then f = g on Ω.

Exercise 7.1 Using Theorem 7.10 prove that for all z ∈ ℂ it holds that:

1. sin2 z + cos2 z = 1,

2. sin(2z) = 2 sin z cos z,

3. cos2 z = 1 + cos(2z)
2

, sin2 z = 1 − cos(2z)
2

,

4. Re z > 0 ⇒ ln (z2) = 2 ln z.

5'(z0) =
f (p)(z0)
p!

≠ 0



Chapter 8

Laurent series and classification
of singularities

8.1 Laurent series

Definition 8.1 A Laurent series with a centre at a point z0 ∈ ℂ is defined by
∞
∑

n=−∞
an(z − z0)n, (8.1)

where an ∈ ℂ for all n ∈ {… ,−3,−2,−1, 0, 1, 2, 3,…}. A power series
∞
∑

n=0
an(z − z0)n

is called a regular part of a Laurent series (8.1), a function series
∞
∑

n=1
a−n(z − z0)−n =

∞
∑

n=1
a−n

1
(z − z0)n

is called a principal part of a Laurent series (8.1). We say that a Laurent se-
ries (8.1) is convergent on a setΩ ⊂ ℂ if their regular and principal part converge
on Ω. Then a function f defined by f (z) = f1(z) + f2(z) on Ω, where f1( resp.
f2) is a sum of the regular (resp. principal) part of Laurent series (8.1), is called a
sum of Laurent series (8.1).

Now, let us focus on convergence of Laurent series (8.1). First of all, let us
investigate a convergence of its principal part. If

� = 1
z − z0

then
∞
∑

n=1
a−n

1
(z − z0)n

=
∞
∑

n=1
a−n�

n,

59
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where on the right hand side there is a power series with a centre at 0 (in �). Let us
denote by � its radius of convergence. Then it holds that 1

(i) if |�| < �, then the series
∞
∑

n=1
a−n�n is absolutely convergent,

(ii) if |�| > �, then the series
∞
∑

n=1
a−n�n is divergent.

If we define a number r as

r =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1
�
if 0 < � < +∞,

0 if � = +∞,

+∞ if � = 0,

then from the above it follows that
(i) if |z − z0| > r, then the series

∞
∑

n=1
a−n

1
(z − z0)n

is absolutely convergent,

(ii) if |z − z0| < r, then the series
∞
∑

n=1
a−n

1
(z − z0)n

is divergent.
Now, let us denote by R a radius of convergence of the power series

∞
∑

n=0
an(z − z0)n,

i.e., the regular part of Laurent series (8.1). Then exactly one possibility may be
fulfilled

r < R, r = R, or r > R.

1. If r < R, then Laurent series (8.1) is absolutely convergent (and locally uni-
formly) on an annulus

P (z0, r, R) = {z ∈ ℂ ∶ r < |z − z0| < R}

and is divergent at every point of the set
{z ∈ ℂ ∶ |z − z0| < r or |z − z0| > R}.

Moreover, one can demonstrate that a sum f of Laurent series (8.1) is a holo-
morphic function on P (z0, r, R) and that for all p ∈ ℕ and z ∈ P (z0, r, R) it
holds that

f (p)(z) =
∞
∑

n=−∞
an
dp

(

(z − z0)n
)

dzp
.

1See Theorem 7.2.
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2. In the case that r = R Laurent series (8.1) is divergent in every point of the
set

{z ∈ ℂ ∶ |z − z0| ≠ r = R}.

3. Finally, if r > R, then there does not exist any z ∈ ℂ for which Laurent series
(8.1) is convergent.

Similarly as in Section 7.1 it has been shown that a sum of Laurent series (under
the assumption r < R) is a holomorphic function on annulus P (z0, r, R). Vice
versa, the following theorem states that every holomorphic function on annulus
P (z0, r, R) is a sum of some Laurent series.
Theorem 8.1 (holomorphic function expansion in Laurent series) Let f be a holo-
morphic function on P (z0, r, R), where z0 ∈ ℂ and 0 ≤ r < R ≤ +∞. Then there

exists exactly one Laurent series
∞
∑

n=−∞
an(z−z0)n such that for every z ∈ P (z0, r, R)

it holds that

f (z) =
∞
∑

n=−∞
an(z − z0)n.

Moreover, if % denotes some real number such that r < % < R, then the coefficients
of the above mentioned Laurent series (which is called a Laurent expansion of a
function f ) are given by

an =
1
2�i ∫


f (z)
(z − z0)n+1

dz,

where


(t) = z0 + % eit, t ∈ [0, 2�]
n ∈ {… ,−3,−2,−1, 0, 1, 2, 3,…}.

Example 8.1 Find a Laurent expansion of a function

f (z) = 1
(z − 1)(z − 2)

on every annulus with a centre at z0 = 0 on which f is holomorphic.
Solution: Obviously, one has to find Laurent series of f on the annuli

P (0, 0, 1), P (0, 1, 2), P (0, 2,+∞).

First of all, notice that for all z ∈ ℂ ⧵ {1, 2} it holds

f (z) = 1
z − 2

− 1
z − 1

.

Now, let us deal individually with each annulus.
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1. From the implications

|z| < 2 ⇒
1

z − 2
= −1

2
1

1 − z
2

= −1
2

∞
∑

n=0

(z
2

)n
=

∞
∑

n=0
− 1
2n+1

zn,

|z| < 1 ⇒ − 1
z − 1

= 1
1 − z

=
∞
∑

n=0
zn,

one obtains z ∈ P (0, 0, 1) = {z ∈ ℂ ∶ 0 < |z| < 1}

f (z) =
∞
∑

n=0

(

1 − 1
2n+1

)

zn.

Notice that we have found a Taylor series.

2. As we already know from the above part, for every z ∈ ℂ such that
1 < |z| < 2 it holds that

1
z − 2

=
∞
∑

n=0
− 1
2n+1

zn.

Additionally, it holds that

|z| > 1 ⇒ − 1
z − 1

= −1
z

1
1 − 1

z

= −1
z

∞
∑

n=0

(1
z

)n
=

∞
∑

n=0
− 1
zn+1

therefore for every z ∈ P (0, 1, 2) = {z ∈ ℂ ∶ 1 < |z| < 2} we get

f (z) =
∞
∑

n=0
− 1
2n+1

zn +
∞
∑

n=1
− 1
zn
.

3. From the implication in the above part one obtains

|z| > 2 ⇒
1

z − 2
= 1
z

1
1 − 2

z

= 1
z

∞
∑

n=0

(2
z

)n
=

∞
∑

n=0

2n

zn+1
.

Therefore for all z ∈ P (0, 2,+∞) = {z ∈ ℂ ∶ 2 < |z|} it holds that

f (z) =
∞
∑

n=1

(

2n−1 − 1
) 1
zn
.

Exercise 8.1 Find a Laurent expansion of a function

f (z) = 1
(z − 1)(z − 2)

on each annulus with a centre at z0 = 1 on which f is holomorphic.
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8.2 Isolated singularities and their classification

Definition 8.2 A point z0 ∈ ℂ is called an isolated singularity of a function f if

(i) function f is not holomorphic at z0,

(ii) there exists a ring neighbourhood P (z0) on which f is holomorphic.

If z0 is an isolated singularity of a function f , then there exists a number R ∈ ℝ+
such that f is holomorphic on P (z0, R) = P (z0, 0, R) and therefore2 for all z ∈
P (z0, R) it holds that

f (z) =
∞
∑

n=−∞
an (z − z0)n.

Depending on a number of non-zero coefficients of a principal part of this Lau-
rent series one can determine three cases:

(i) every coefficient of a principal part equals zero (i.e., a−n = 0 for all n ∈ ℕ),

(ii) there exists at least one and at most finitely many non-zero coefficients of a
principal part (i.e., there exists n ∈ ℕ such that a−n ≠ 0 and for all k ∈
ℕ, k > n is a−k = 0),

(iii) there exist infinitely many non-zero coefficients of a principal part.

In the first case (i) we call a point z0 a removable singularity of a function f ,
in the second case (ii) a point z0 is called a pole of order n of a function f,3 and
in the third case (iii) a point z0 is called an essential singularity of a function f .

Theorem 8.2 Let z0 ∈ ℂ be an isolated singularity of a function f . Then

(i) z0 is a removable singularity of a function f if and only if

lim
z→z0

f (z) ∈ ℂ,

(ii) z0 is a pole of a fuction f (resp. pole of order n of a function f ) if and only
if

lim
z→z0

f (z) = ∞

(

resp. if lim
z→z0

[

(z − z0)n f (z)
]

∈ ℂ ⧵ {0}
)

,

(iii) z0 is an essential singularity of a function f if and only if lim
z→z0

f (z) does not
exist.

2See Theorem 8.1.
3Pole of order 1 is also called a simple pole.
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Theorem 8.3 (great Picard’s) Assume that z0 ∈ ℂ is an essential singularity of
a function f . Then f takes on any ring neighborhood of z0 all possible complex
values with at most a single exception. In other words, for all P (z0) there exists
z ∈ ℂ such that

ℂ ⧵ {z} ⊂ f
(

P (z0)
)

.

8.3 Laurent series with a centre∞, classification of a point
∞

Definition 8.3 A Laurent series with a centre∞ is given by
∞
∑

n=−∞

an
zn
, (8.2)

where an ∈ ℂ for every n ∈ {… ,−3,−2,−1, 0, 1, 2, 3,…}.
A power series

∞
∑

n=1
a−nz

n

is called a principal part of Laurent series (8.2), a function series
∞
∑

n=0

an
zn

is called a regular part of Laurent series (8.2). 4

Similarly as in Laurent series with a centre at z0 ∈ ℂ one can introduce a term of
convergence of a Laurent series with a centre∞ and its sum. One can analogously
introduces an annulus of convergence, it this case of the form

P (∞, r, R) =
{

z ∈ ℂ ∶ 1
R
< |z| < 1

r

}

.

Again, it holds that if Laurent series (8.2) is convergent on annulus P (∞, r, R) ≠ ∅,
then a sum of the series on P (∞, r, R) is a holomorphic function. It also holds as
an analogy of Theorem 8.1.
Theorem 8.4 Let f be a holomorphic function on P (∞, r, R) ≠ ∅. Then there

exists exactly one Laurent series
∞
∑

n=−∞

an
zn

such that for every z ∈ P (∞, r, R) it

holds that

f (z) =
∞
∑

n=−∞

an
zn
.

4Notice that formally there is no difference between Laurent series with the centre 0 and Laurent
series with the centre∞. If one needs to distinguish between these two cases it is necessary to mark
out the centre of the series or to establish its principal resp. regular part.
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Moreover, if % is some real number such that

1
R
< % < 1

r
,

it holds for coefficients that the above mentioned Laurent series

an =
1
2�i ∫


f (z)
z−n+1

dz = 1
2�i ∫


f (z)zn−1dz,

where


(t) = % eit, t ∈ [0, 2�],
n ∈ {… ,−3,−2,−1, 0, 1, 2, 3,…}.

Definition 8.4 We call ∞ an isolated singularity of a function f if there exists
P (∞) on which f is holomorphic.

If ∞ is an isolated singularity of a function f, then it is possible to expand f
on some P (∞) in a Laurent series with a centre∞, i.e., for all z ∈ P (∞)

f (z) =
∞
∑

n=−∞

an
zn
.

Similarly as for finite isolated singularities, one can classify a point ∞ according
to the number of non-zero coefficients of a principal part of this Laurent series. An
analogy of Theorem 8.2 remains true.
Theorem 8.5 Let∞ be an isolated singularity of a function f . Then it holds that

(i) ∞ is a removable singularity of a function f if and only if

lim
z→∞

f (z) ∈ ℂ,

(ii) ∞ is a pole of a function f (resp. a pole of order n of a function f ) if and
only if

lim
z→∞

f (z) = ∞
(

resp. if lim
z→∞

f (z)
zn

∈ ℂ ⧵ {0}
)

,

(iii) ∞ is an essential singularity of a function f if and only if lim
z→∞

f (z) does not
exist.
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Chapter 9

Residue and the residue theorem

9.1 Residue of a function and it’s calculation

Definition 9.1 Let z0 ∈ ℂ (resp. ∞) be an isolated singularity of a function f

and let
∞
∑

n=−∞
an (z− z0)n (resp.

∞
∑

n=−∞
an∕zn) be a Laurent series of the function f

on some ring neighbourhood of a point z0 (resp. ∞). A number a−1 (resp. −a1)
is called a residue of a function f at the point z0 (resp. ∞), it is denoted by
res f (z0) (resp. res f (∞)). 1

One could naturally ask why we call a number a−1 (resp. −a1) a residue of
a function. To answer this question it is enough to realize that from the above
definition it follows that 2

res f (z0) = 1
2�i ∫


f (z)dz = 1
2�i ∫


( ∞
∑

n=−∞
an (z − z0)n

)

dz

resp. res f (∞) = − 1
2�i ∫


f (z)dz = − 1
2�i ∫


( ∞
∑

n=−∞

an
zn

)

dz.

Theorem 9.1 It holds

(i) if a point z0 ∈ ℂ is a removable singularity of a function f, then3 res f (z0) = 0,

(ii) if f is a holomorphic function at a point z0 ∈ ℂ and if a function g has a
simple pole at z0, then

res
z=z0

(f (z)g(z)) = f (z0) resz=z0
g(z),

1Notation res
z=z0

f (z) (resp. res
z=∞

f (z)) will be used sometimes.
2See Theorem 8.1 (resp. Theorem 8.4).
3Warning! Let us assume a function f (z) = 1∕z. Then∞ is a removable singularity of a function

f but despite this it holds that res f (∞) = −1 ≠ 0.
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(iii) if f and g are holomorphic functions at a point z0 ∈ ℂ and if the point z0 is
a simple root of a function g,4 then

res
z=z0

(

f (z)
g(z)

)

=
f (z0)
g′(z0)

,

(iv) if z0 ∈ ℂ (resp. ∞) is a pole of k-order of a function f, then

res
z=z0

f (z) = 1
(k − 1)!

lim
z→z0

(

d k−1

dz k−1
(

f (z)(z − z0)k
)

)

,

resp.

res
z=∞

f (z) =
(−1)k

(k + 1)!
lim
z→∞

(

zk+2 d
k+1

dz k+1
f (z)

)

,

(v) if f is a holomorphic function onℂ⧵{z1, z2,… , zn}where z1, z2,… , zn ∈ ℂ
are different isolated singularities of a function f, then

res f (∞) +
n
∑

i=1
res f (zi) = 0.

Exercise 9.1 Prove Theorem 9.1.

Example 9.1 Find

1. res
z=0

(

z2 sin 1
z

)

,

2. res
z= �

4

z3 sin z
cos(2z)

,

3. res
z=2�i

1
(ez − 1)2

.

Solution:
Ad 1. For all z ∈ ℂ ⧵ {0} it holds that

z2 sin 1
z
= z2

∞
∑

n=0
(−1)n 1

(2n + 1)!
1

z2n+1
=

∞
∑

n=0

(−1)n

(2n + 1)!
1

z2n−1
,

therefore
res
z=0

(

z2 sin 1
z

)

= − 1
3!
= −1

6
.

Ad 2. Obviously, �∕4 is a simple root of a function

g(z) = cos(2z),
4I.e., g(z0) = 0 ≠ g′(z0).
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therefore 5

res
z= �

4

z3 sin z
cos(2z)

=
[

z3 sin z
−2 sin(2z)

]

z= �
4

= −

√

2�3

256
.

Ad 3. In this case, a investigated function has a pole of the second order at 2�i.
Therefore 6

res
z=2�i

1
(ez − 1)2

= 1
1!

lim
z→2�i

[

(z − 2�i)2

(ez − 1)2

]′

=⋯ = −1.

9.2 The residue theorem

Theorem 9.2 (Residue) Assume that Ω ⊂ ℂ denotes a simply connected domain
and 
 is a simple closed piece-wise smooth positively oriented curve in Ω. Let f
be a holomorphic function on Ω ⧵ {z1, z2,… , zn} where z1, z2,… , zn ∈ int 
 are
different isolated singularities of a function f . Hence it holds that

∫

f (z)dz = 2�i

n
∑

i=1
res f (zi) .

Proof The proof is a simple corollary of the definition of residue and Theorems 5.5
and 8.1.
Example 9.2 Find

∫

z2 sin 1

z + 1
dz,

where

(t) = 2eit, t ∈ [0, 2�].

Solution: It follows from Theorem 9.2 that

∫

z2 sin 1

z + 1
dz = 2�i res

z=−1
z2 sin 1

z + 1
.

Since it holds that for every z ∈ ℂ ⧵ {−1}

z2 sin 1
z + 1

=
(

(z + 1)2 − 2(z + 1) + 1
)

∞
∑

n=0

(−1)n

(2n + 1)!
1

(z + 1)2n+1

is 7

∫

z2 sin 1

z + 1
dz = 2�i res

z=−1
z2 sin 1

z + 1
= 2�i

(

1
(−1)1

3!
+ 0 + 1

(−1)0

1!

)

= 5
3
�i.

5See Theorem 9.1 – part(iii).
6See Theorem 9.1 – part(iv).
7Think over it carefully!
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9.3 Calculation integrals of real variable function with the
aid of the residue theorem

a) Integrals of the form ∫ 2�0 R(sin x, cos x) dx,
where R ∶ ℝ2 → ℝ denotes a rational function of two variables and a function
x → R(sin x, cos x)) is continuous on [0, 2�].

Let us use the substitution
eix = z.

Then one obtains

sin x =
z − 1

z

2i
, cos x =

z + 1
z

2
, dz = eix i dx, that is dx = 1

iz
dz,

and therefore,

∫

2�

0
R(sin x, cos x) dx = ∫


R

(

z − 1
z

2i
,
z + 1

z

2

)

1
iz
dz, (9.1)

where

(x) = eix, x ∈ [0, 2�].

Then equality (9.1) we derived by formal substitution directly follows fromThe-
orem 5.2. One can compute the integral on the right hand side of the above equality
using Theorem 9.2.

Example 9.3

∫

2�

0

dx
5
4 − cos x

dx = ∫

1

5
4 −

z+ 1
z
2

1
iz
dz =

= −2
i ∫


dz
(z − 2)(z − 1

2
)
= −2

i
2�i res

z= 1
2

(

1
(z − 2)(z − 1

2
)

)

=

= −4� 1
1
2
− 2

= 8
3
�


(x) = eix, x ∈ [0, 2�]

b) Integrals of the form ∫ +∞−∞ P (x)∕Q(x) dx, where P ,Q ∶ ℝ → ℝ are polyno-
mials satisfying

(i) Q does not have any real root,
(ii) the degree of the polynomial Q is at least 2 greater than the degree of the

polynomial P .
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From the above mentioned assumptions it coincides that

lim
k→+∞∫�k

P (z)
Q(z)

dz = lim
k→+∞∫

k

−k

P (x)
Q(x)

dx = ∫

+∞

−∞

P (x)
Q(x)

dx,

where
�k(t) = t, t ∈ [−k, k]

and that
lim
k→+∞∫�k

P (z)
Q(z)

dz = 0,

where
�k(t) = keit, t ∈ [0, �].

Therefore it holds that

∫

+∞

−∞

P (x)
Q(x)

dx = lim
k→+∞∫
k

P (z)
Q(z)

dz,

where8


k(t) =

⎧

⎪

⎨

⎪

⎩

�k(t + k), je-li t ∈ [−2k, 0),
�k(t), if t ∈ [0, �].

Now, letU (0, r) ⊂ ℂ denote a disk big enough to include all roots of the integral
Q (one certainly exists!). Then it holds that for every real number k > r

∫
k

P (z)
Q(z)

dz = ∫
r

P (z)
Q(z)

dz,

and therefore,

∫

+∞

−∞

P (x)
Q(x)

dx = lim
k→+∞∫
k

P (z)
Q(z)

dz = ∫
r

P (z)
Q(z)

dz.

Now let us apply Theorem 9.2

∫

+∞

−∞

P (x)
Q(x)

dx = ∫
r

P (z)
Q(z)

dz = 2�i
∑

zk∈ℂ∶
Q(zk)=0,
Im zk>0

res
z=zk

(

P (z)
Q(z)

)

.

Example 9.4 Calculate

∫

+∞

−∞

1
(x2 + 2x + 2)2

dx.

8Draw geometrical images of curves �k, �k, 
k.
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Solution:

∫

+∞

−∞

1
(x2 + 2x + 2)2

dx = ∫

+∞

−∞

dx
((x − (−1 + i)) (x − (−1 − i)))2

dx =

= 2�i res
z=−1+i

1
((z − (−1 + i)) (z − (−1 − i)))2

=

= 2�i lim
z→−1+i

(

1
(z − (−1 − i))2

)′

=

= 2�i
[

−2 1
(z − (−1 − i))3

]

z=−1+i
= �
2
.



Chapter 10

Exercise

Exercise 10.1 Find the real and imaginary parts of a complex number

1. z = (1 + i)(3 − 2i),

2. z = 2 − 3i
3 + 4i

,

3. z = 1 + i
1 − i

,

4. z = 2i − 2 − 4i
2

.

Exercise 10.2 Find a polar form of a complex number

1. z = −1 +
√

3i,

2. z = i,

3. z = −8,

4. z = −1 −
√

3i,

5. z = 2 + i
3 − 2i

,

6. z = 3 − i
2 + i

.

Exercise 10.3 Prove Moivre’s theorem:

(∀n ∈ ℕ) (∀' ∈ ℝ) ∶
(

cos' + i sin'
)n = cos(n') + i sin(n')

using mathematical induction.

Exercise 10.4 Let ' ∈ ℝ. Express sin(4') and cos(4') using sin' a cos'.
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Exercise 10.5 Find Re z and Im z for z =

(

1 − i

1 +
√

3i

)24

.

Exercise 10.6 Find Arg z and arg z for

1. z =
(
√

3 + i
)126

,

2. z = (1 + i)137 ,

3. z = −1 − 5i.

Exercise 10.7 Illustrate in the Gauss plane a set

1. {z ∈ ℂ∞ ∶ Re z ≤ 1},

2. {z ∈ ℂ∞ ∶ Re(z2) = 2},

3. {z ∈ ℂ∞ ∶ Im 1∕z = 1∕4},

4. {z ∈ ℂ∞ ∶ | Im z| < 1},

5. {z ∈ ℂ∞ ∶ |z| = Re z + 1},

6. {z ∈ ℂ∞ ∶ |z − 2| = |1 − 2z|},

7. {z ∈ ℂ∞ ∶ |(z − 2)∕(z − 3)| = 1},

8. {z ∈ ℂ∞ ∶ |1 + z| < |1 − z|},

9. {z ∈ ℂ∞ ∶ |z + 1| = 2|z − 1|},

10. {z ∈ ℂ∞ ∶ 2 < |z + 2 − 3i| < 4},

11. {z ∈ ℂ∞ ∶ �∕4 ≤ arg (z + 2i) ≤ �∕2},

12. {z ∈ ℂ∞ ∶ |z| + Re z ≤ 1 ∧ �∕2 ≤ arg z ≤ �∕4}.

Exercise 10.8 Let z1, z2 ∈ ℂ ⧵ {0}. Prove the following implications:

1.
'1 ∈ Arg z1

'2 ∈ Arg z2

⎫

⎪

⎬

⎪

⎭

⇒ '1 + '2 ∈ Arg (z1z2),

2.
'1 ∈ Arg z1

'2 ∈ Arg z2

⎫

⎪

⎬

⎪

⎭

⇒ '1 − '2 ∈ Arg
(

z1
z2

)

.
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Exercise 10.9 Calculate (if it exists) a limit for

1. lim (3 − 4i)n,

2. lim
(

(−1)n + i
n

)

,

3. lim

(

1 + i
√

2

)n

,

4. lim

(

1 −
√

3i
2

)6n

.

Exercise 10.10 Let (zn) be a sequence of complex numbers. Prove the following
propositions:

1. zn → 0 ⇔ 1
zn

→ ∞,

2.
|zn| → r ∈ ℝ

arg zn → ' ∈ ℝ

⎫

⎪

⎬

⎪

⎭

⇒ zn → r
(

cos' + i sin'
)

,

and prove that in a second case an opposite implication does not hold.

Exercise 10.11 Find all z ∈ ℂ∞ for which it holds that

1. z3 = 1,

2. z2 = i,

3. z2 = 24i − 7,

4.
(z − 1
z + 1

)2
= 2i,

5. z4 = −1,

6. z3 = i − 1,

7. z5 = 1,

8. z2 = −11 + 60i,

9. z2 = 3 + 4i.

Exercise 10.12 Find a setM =
{

1
z
∶ z ∈ Ω

}

if

1. Ω = {z ∈ ℂ ∶ arg z = �}, � ∈ (−�, �],
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2. Ω = {z ∈ ℂ ∶ |z − 1| = 1},

3. Ω = {z ∈ ℂ ∶ Re z = Im z},

4. Ω = {x + iy ∈ ℂ ∶ x = 1},

5. Ω = {x + iy ∈ ℂ ∶ y = 0}.

Exercise 10.13 Find a setM = {f (z) ∶ z ∈ Ω} if

1. Ω =
{

z ∈ ℂ ∶ |arg z| ≤ �
6

}

, f (z) = z2,

2. Ω =
{

z ∈ ℂ ∶ | Im z| < �
2

}

, f (z) = ez,

3. Ω = {z ∈ ℂ ∶ 0 < Re z < � ∧ Im z > 0}, f (z) = eiz,

4. Ω = {z ∈ ℂ ∶ Im z = 1∕2}, f (z) = z2.

Exercise 10.14 Calculate

1. sin(2 − 3i),

2. cos i,

3. cosh i,

4. Ln (−5 + 3i) a ln(−5 + 3i),

5. Ln (−4 −
√

3i) a ln(−4 −
√

3i),

6. Ln (ie2).

Exercise 10.15 Find all z ∈ ℂ for which it holds that

1. sin z = 3,

2. cos z =
√

3
2

,

3. sin z + cos z = 2,

4. sin z − cos z = 3,

5. z2 + 2z + 9 + 6i = 0.

Exercise 10.16 Calculate

1. 2i,

2. (−2)
√

2,
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3.

(

1 − i
√

2

)1+i

,

4. i
3
4 ,

5. (−1)
√

3,

6. (−
√

3i + 1)−3.

Exercise 10.17 Find the real and imaginary parts of a function f ∶ ℂ → ℂ
defined by

1. f (z) = sin z,

2. f (z) = z2 cos z,

3. f (z) = z3 + 5z − 1,

4. f (z) = |z| z,

5. f (z) = z2 z,

6. f (z) = 1
z
.

Exercise 10.18 Find out if the function f (z) = z3 is injective on a set Ω in case
that

1. Ω = {z ∈ ℂ ∶ Re z > 0},

2. Ω =
{

z ∈ ℂ ∶ arg z ∈ ⟨0, �
4
)
}

.

Exercise 10.19 Find a limit (if it exists):

1. lim
z→0

Re z
z
,

2. lim
z→0

Im(z2)
zz

,

3. lim
z→0

z Im z
|z|

,

4. lim
z→0

z2

|z|2
,

5. lim
z→0

z3

|z|2
,

6. lim
z→i

z2 + z(2 − i) − 2i
z2 + 1

,
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7. lim
z→0

Re z
1 + |z|

.

Exercise 10.20 Draw a set ⟨'⟩ = {'(t) ∶ t ∈ D'} if

1. '(t) = 1 − it, D' = [0, 2],

2. '(t) = t − it2, D' = [−1, 2],

3. '(t) = 1 + e−it, D' = [0, 2�],

4. '(t) = e2it − 1, D' = [0, 2�],

5. '(t) =

{

ei�t, t ∈ [0, 1],
t − 2, t ∈ [1, 3],

6. '(t) =

{

eit, t ∈ [−�∕2, �],
3t∕� − 4, t ∈ [�, 2�].

Exercise 10.21 Find a curve ' ∶ ℝ → ℂ such that ⟨'⟩ = Ω) if

1. Ω = {z ∈ ℂ ∶ |z − 2 + 3i| = 2},

2. Ω is a line with endpoints a, b ∈ ℂ, a ≠ b,

3. Ω = {z ∈ ℂ ∶ Re z = 2 Im z},

4. Ω = {z ∈ ℂ ∶ Re
(

1
z

)

= 2}.

Exercise 10.22 Draw a set Ω and find out if it is a domain and an open set, where

1. Ω = {z ∈ ℂ ∶ |z − i| < 1 ∨ |z + i| < 1},

2. Ω = {z ∈ ℂ ∶ |z − 1| < 1 ∧ |z − 2| < 2},

3. Ω = {z ∈ ℂ ∶ |z − 1| < |z + 1|},

4. Ω = {z ∈ ℂ ∶ |z + 1| > 2|z|},

5. Ω = {z ∈ ℂ ∶ 1 < |z| < 2},

6. Ω =
{

z ∈ ℂ ∶ |z| < 1 ∧ arg z ∈ (−�, �] ⧵ {0}
}

,

7. Ω = {z ∈ ℂ ∶ |2z| < |1 + z2|}.

Exercise 10.23 Find all points at which a function f has a derivative and is holo-
morphic if

1. f (z) = Re z,

2. f (z) = |z2|,



79

3. f (z) = zez,

4. f (z) = z|z|,

5. f (z) = Re z
z
,

6. f (z) = z2z,

7. f (z) = z2 + 2z − 1.

Exercise 10.24 Find out if a function Φ is harmonic in a domain Ω, where

1. Φ(x, y) = x2 − y2 + 2020, Ω = ℂ,

2. Φ(x, y) = x
x2+y2

+ x2 − y2 + x − y, Ω = ℂ ⧵ {0}.

Exercise 10.25 Find (if it exists) a holomorphic function f = u + iv on Ω if

1. u(x, y) = x3 − 3xy2 − 2y, Ω = ℂ,

2. u(x, y) = x
x2 + y2

, Ω = ℂ ⧵ {0},

3. u(x, y) = 3x2 − y2 + 3x + y, Ω = ℂ,

4. u(x, y) = x2 − y2 + 5x + y −
y

x2 + y2
, Ω = ℂ ⧵ {0}.

Exercise 10.26 Let u(x, y) = x3 − 3xy2 − 2y+ 2. Find (if it exists) a holomorphic
function f = u + iv on ℂ for which it holds that

1. f (0) = i,

2. f (1) = 3 − i.

Exercise 10.27 Find (if it exists) a holomorphic function f = u + iv on Ω if

1. v(x, y) = −3xy2 + x3 + 5, Ω = ℂ,

2. v(x, y) = arctan
y
x
, Ω = {z ∈ ℂ ∶ Re z > 0}.

Exercise 10.28 Let v(x, y) = 1+arctan y
x
. Find (if it exists) a holomorphic function

f = u + iv in a domain {z ∈ ℂ ∶ Re z > 0} for which it holds that

1. f (3) = ln 3 + 6 + i,

2. f (e) = 1 − i.



80 CHAPTER 10. EXERCISE

Exercise 10.29 Prove that a function

v(x, y) = ln(x2 + y2)

is harmonic in two-times connected domain ℂ ⧵ {0} and that there does not exist a
function u ∶ ℝ2 → ℝ such that a function f = u + iv is holomorphic on ℂ ⧵ {0}.

Exercise 10.30 Find a rotation angle and an explosion coefficient of a function f
at a point z0 if

1. f (z) = ez, z0 = −1 −
�
2
i,

2. f (z) = z3, z0 = −3 + 4i,

3. f (z) = z + i
z − i

, z0 = 2i.

Exercise 10.31 Find all points of the Gauss plane in which a function f is a con-
traction

1. f (z) = 2
z
,

2. f (z) = ln(z + 4).

Exercise 10.32 Draw sets Ω and f (Ω) = {f (z) ∶ z ∈ Ω} if 1

1. Ω = U (1, 2), f (z) = 1 − 2iz,

2. Ω = {z ∈ ℂ ∶ Re z < 1}, f (z) = (1 + i)z + 1,

3. Ω = U (1, 2), f (z) = 1
z
,

4. Ω = U (1, 2), f (z) = 2iz
z + 3

,

5. Ω = U (1, 2), f (z) = z − 1
2z − 6

,

6. Ω = {z ∈ ℂ ∶ Re z < 1}, f (z) = 1
z
,

7. Ω = {z ∈ ℂ ∶ Re z < 1}, f (z) = z
z − 1 + i

,

1Use (and also prove) the following statement:

f is conformal in a domain Ω ⊂ ℂ∞,

A, B ⊂ Ω

⎫

⎪

⎬

⎪

⎭

⇒ f (A ∩ B) = f (A) ∩ f (B).
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8. Ω = {z ∈ ℂ ∶ Re z < 1}, f (z) = z
z − 2

,

9. Ω = {z ∈ ℂ ∶ Re z < 0 ∧ Im z < 0}, f (z) = 1
z
,

10. Ω = {z ∈ ℂ ∶ Re z > 0 ∧ Im z > 0}, f (z) = z − 1
z + 1

,

11. Ω = {z ∈ ℂ ∶ −1 < Re z < 0 ∧ Im z < 0}, f (z) = z − i
z + i

,

12. Ω = {z ∈ ℂ ∶ |z| < 1 ∧ Re z < 0 ∧ Im z > 0}, f (z) = z
z − i

.

Exercise 10.33 Find a linear fractional function f such that

1. f (−1) = 0, f (i) = 2i, f (1 + i) = 1 − i,

2. f (i) = ∞, f (6) = 0, f (∞) = 3,

3. f (0) = i, f (i) = 0, f (−1) = −i.

Exercise 10.34 Find a linear function mapping the square with vertices 0, 1 −
i, 2, 1 + i on the square with vertices 1 + i, −1 + i, −1 − i, 1 − i.

Exercise 10.35 Let
Ω = {z ∈ ℂ ∶ Re z > Im z}.

Find a linear fractional function f such that f (Ω) = U (0, 1).

Exercise 10.36 Find a conformal function which maps the domain

{z ∈ ℂ ∶ |z| < 1 ∧ Re z > 0}

on the domain
{z ∈ ℂ ∶ Im z > 0}.

Exercise 10.37 Let

Ω = {z ∈ ℂ ∶ Re z > 0 ∧ Im z < 0}.

Find a linear fractional function f such that

f (Ω) = {z ∈ ℂ ∶ |z| < 1 ∧ Re z < 0}.

Exercise 10.38 Find a conformal function which maps the domain

{z ∈ ℂ ∶ Re z > Im z > 0}

on the domain U (0, 1).
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Exercise 10.39 Find images of lines parallel to a real, resp. imaginary axis under
a function f (z) = 1

z
.

Exercise 10.40 Find images of the sets

M� = {z ∈ ℂ ∶ arg z = �}, Nr = {z ∈ ℂ ∶ |z| = r},

where � ∈ (−�, �], r ∈ ℝ+ under the function f (z) = ln z.

Exercise 10.41 Find

∫

|z| dz

if


(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

3eit, t ∈
[

0, �
2

]

,

i
(

3 + �
2
− t

)

, t ∈
[�
2
, �
2
+ 3

]

,

t − �
2
− 3, t ∈

[�
2
+ 3, �

2
+ 6

]

.

Exercise 10.42 Calculate

∫

z3 dz

if


(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

eit, t ∈
[

−�
2
, �
]

,

3
�
t − 4, t ∈ [�, 2�] ,

−2 + i
�

t + 6 + 2i, t ∈ [2�, 3�] .

Exercise 10.43 Calculate

∫

|z|z dz,

where 
 denotes a simple piece-wise smooth positively oriented curve such that ⟨
⟩
is a border of a set

{z ∈ ℂ ∶ |z| < 2 ∧ Im z > 0}.

Exercise 10.44 Using Cauchy’s integral formulas calculate the following integrals
2

1.

∫k
z2 + i
z

dz, where k = {z ∈ ℂ ∶ |z − 2i| = 1},

2Notice that by a formula ∫k f (z) dz, where k ⊂ ℂ, one means ∫
 f (z) dz, where 
 is a simple
closed piece-wise smooth positively oriented curve such that ⟨
⟩ = k.
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2.

∫k
sin z
z + i

dz, where k = {z ∈ ℂ ∶ |z + i| = 1},

3.

∫k
sin z

z2 − 7z + 10
dz, where k = {z ∈ ℂ ∶ |z| = 3},

4.

∫k
sin z

(z − 2i)3
dz, where k = {z ∈ ℂ ∶ |z| = 3},

5.

∫k
cos z
z2 − �2

dz, where k = {z ∈ ℂ ∶ |z| = 4},

6.

∫k
e
1
z

(z2 − 4)2
dz, where k = {z ∈ ℂ ∶ |z − 2| = 1},

7.

∫

ez cos(�z)
z2 + 2z

dz, where 
(t) = 3
2
eit, t ∈ [0, 2�],

8.

∫

dz

(z2 − 1)3
, where 
(t) = −2 + e−4�it

2
, t ∈ [0, 4],

9.

∫

dz

(1 − z)(z + 2)(z − i)2
,

where 
 denotes a simple closed piece-wise smooth positively oriented curve
such that −2 ∈ int 
, i ∈ int 
, 1 ∈ ext 
 .

Exercise 10.45 Find

1. ∫ 1+i0 ez dz,

2. ∫ 1+i0 z3 dz,

3. ∫ i
0 z

2 sin z dz,

4. ∫ i
0 z sin z dz.

Exercise 10.46 Find out if a series is convergent:

1.
∞
∑

n=1

in

n2n
,
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2.
∞
∑

n=1

n
3n
(1 + i)n,

3.
∞
∑

n=1

(−i)n

3n − 17
.

Exercise 10.47 Find a domain of convergence of a series 3

1.
∞
∑

n=1

1
n2

(z + 1
z − 1

)n
,

2.
∞
∑

n=1

(

zn

n!
+ n2

zn

)

.

Exercise 10.48 Find a radius of convergence of a power series

1.
∞
∑

n=1
d zn

n2011
,

2.
∞
∑

n=1
nn(z − 1)n,

3.
∞
∑

n=1

3n(z − 1)n
√

(3n − 2)2n
,

4.
∞
∑

n=0

(z + 1 + i)n

3n(n − i)
,

5.
∞
∑

n=1

nn

n!
zn,

6.
∞
∑

n=0

(

cos(in)
)

zn,

7.
∞
∑

n=0
(n2 − n − 2)zn,

8.
∞
∑

n=0

zn

(n + 8)!
.

Exercise 10.49 Find the sum of a power series in a disk of convergence

1.
∞
∑

n=1
nzn,

2.
∞
∑

n=1

zn

n
,

3It means, find all z ∈ ℂ for which the series is convergent.
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3.
∞
∑

n=0

z2n+1

2n + 1
,

4.
∞
∑

n=1
(−1)n+1 zn

n + 1
,

5.
∞
∑

n=0
(n2 − n − 2)zn.

Exercise 10.50 Find the sum of a series

1.
∞
∑

n=1

1
n2n

,

2.
∞
∑

n=1

(−1)n

n2n
.

Exercise 10.51 Find a Taylor series of a function f with a centre z0 and find its
radius of convergence if

1. f (z) = z + 1
z2 + 4z − 5

, z0 = −1,

2. f (z) = z
z2 + i

, z0 = 0,

3. f (z) = ln 1 + z
1 − z

, z0 = 0,

4. f (z) = e3z−2, z0 = 1,

5. f (z) = sin(3z2 + 2), z0 = 0,

6. f (z) = 1
(z − 1)3

, z0 = 3,

7. f (z) = sin2 z, z0 = 0.

Exercise 10.52 Find a domain of convergence of a Laurent series4

1.
∞
∑

n=−∞
2−|n|zn,

2.
∞
∑

n=−∞

(z − i)n

n2 + 1
.

Exercise 10.53 Find a Laurent series of a function f on an annulus

1. f (z) = cos z
z2

, 0 < |z| < 1,

4That is, find all z ∈ ℂ for which the series is convergent.
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2. f (z) = 1
z2 + 1

, |z| > 1,

3. f (z) = z2 + 1
z(z − i)

, 12 < |z − i| < 1,

4. f (z) = 1
2z − 5

, |z| > 5
2
,

5. f (z) = 1
z(z − 2)

, 1 < |z − 2| < 2,

6. f (z) = z
(z2 + 1)2

, 0 < |z − i| < 2,

7. f (z) = z − sin z
z4

, 0 < |z| <∞,

8. f (z) = z + 2
z2 − 4z + 3

, 2 < |z − 1| <∞,

9. f (z) = 1
z(z − 3)2

, 1 < |z − 1| < 2.

Exercise 10.54 Find a Laurent series of a function f on all maximal annuli with a
centre at z0 on which f is a holomorphic fucntion if

1. f (z) = z2 − z + 3
z3 − 3z + 2

, z0 = 0,

2. f (z) = z + 1
z2

, z0 = 1 + i.

Exercise 10.55 Determine the type of each isolated singularity of a function f if

1. f (z) = z5 + 4z3 − 2 + 2
z
+ 3
z2

,

2. f (z) = z2 − 4
z − 2

,

3. f (z) = 1
z − z3

,

4. f (z) = z4

z4 + 1
,

5. f (z) = ez

z2 + 4
,

6. f (z) = z2 + 4
ez

,

7. f (z) = 1 − ez
2 + ez

,
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8. f (z) = e
1
z2 ,

9. f (z) = 1
(z − 3)2(2 − cos z)

,

10. f (z) = z
sin z

,

11. f (z) = z2 sin z
z+1

,

12. f (z) = 1 − cos z
sin2 z

.

Exercise 10.56 Prove L’Hôpital’s rule:
Let f and g be holomorphic non-constant functions on some ring neighbourhood
of a point z0 ∈ ℂ and let lim

z→z0
f (z) = lim

z→z0
g(z) = 0. Then it holds that

lim
z→z0

f (z)
g(z)

= lim
z→z0

f ′(z)
g′(z)

.

Exercise 10.57 Find a residue of a function f at all its isolated singularities if

1. f (z) = 1
z + z3

,

2. f (z) = z2

(1 + z)3
,

3. f (z) = 1
(z2 + 1)3

,

4. f (z) = z3 + 1
z − 2

,

5. f (z) = 1
z6(z2 + 1)2

,

6. f (z) = tan z,

7. f (z) = 1
sin z

,

8. f (z) = cot3 z,

9. f (z) = sin z sin 1
z
,

10. f (z) = sin(�z)
(z − 1)3

.

Exercise 10.58 Using the residue theorem calculate an integral
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1.

∫

cos z
z3

dz, where 
(t) = 3eit, t ∈ [0, 2�],

2.

∫

1

z + 2
cos 1

z
dz, where 
(t) = 18eit, t ∈ [0, 2�],

3.

∫k
z3

z4 − 1
dz, where k = {z ∈ ℂ ∶ |z| = 2},

4.

∫k
z3

z + 1
e
1
z dz, where k = {z ∈ ℂ ∶ |z| = 2},

5.

∫

z sin z + 1

z − 1
dz, where 
(t) = 2e−it, t ∈ [0, 6�],

6.

∫

e�z

2z2 − i
dz,

where 
 is a simple closed piece-wise smooth positively oriented curve such
that

int 
 =
{

z ∈ ℂ ∶ |z| < 1 ∧ 0 < arg z < �
2

}

,

7.

∫k
dz

z5(z10 − 2)
, where k = {z ∈ ℂ ∶ |z| = 2}.

Exercise 10.59 Using the residue theorem calculate an integral 5

1.

∫

�

−�

dx
5 + 3 cos x

,

2.

∫

∞

−∞

x2 dx
x4 + 6x2 + 25

,

3.

∫

∞

0

x4 + 1
x6 + 1

dx,

4.

∫

∞

0

x2

(x2 + 1)3
dx,

5Introduced integrals are meant to be integrals of a real variable.
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5.

∫

�

−�

cos x
3 + 2 sin x

dx,

6.

∫

2�

0

cos2(2x)
5 − 4 cos x

dx,

7.

∫

∞

−∞

dx
1 + x6

,

8.

∫

∞

−∞

dx
x2 + x + 1

.
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