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About this file

This file is meant to be a guideline for the lecturer. Many important pieces
of information are not in this file, they are to be delivered in the lecture:
said, shown or drawn on board. The file is made available with the hope
students will easier catch up with lectures they missed.

For study the following resources are better suitable:

Meyer: Lecture notes and readings for an
http://ocw.mit.edu/courses/electrical-engineering-and-

computer-science/6-042j-mathematics-for-computer-science

-fall-2005/readings/”(weeks 1-5, 8-10, 12-13), MIT, 2005.

Diestel: Graph theory http://diestel-graph-theory.com/

(chapters 1-6), Springer, 2010.

See also http://homel.vsb.cz/~kov16/predmety dm.php
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Lecture overview

Chapter Flow in a network

motivation

definition of a network

maximum flow algorithm

network generalization

further applications
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Flow in a network
Motivation Graph theory solves many problems on networks. We are
given a network (computer network, pipelines, . . . ), where edges represent
connections and vertices form crossings or routers.
It is natural to give a bound on capacity of each edge (capacity =
number).

Question

What is the largest possible number of units that can be transfered
through the network (with given constraints) from z (source) to s (sink).
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A network is a graph in which the capacities, the source and sink are given.

Definition

Network is a four-tuple S = (G , z , s,w), where

G is an oriented graph,

vertices z ∈ V (G ), s ∈ V (G ) are the source and sink,

w : E (G )→ R+ is a positive labeling of edges, called edge capacity.

z

v4 v5 v6

v1 v2 v3

s

4

3

2
2

2

2 31
3

2

6 1

1

6

Question

What is the largest possible number of units that can be transfered
through the network G from the source z to the place of consumption s
(sink). Of course obeying the maximal capacity of each edge.
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A more complex problem is a network with

given capacities of vertices

multiple sources and sinks

more products to be transfered in a network

In some cases this complex problem can be translated into to basic
network defined above. We show how.

Notice that even for a maximum flow through a network the full capacities
of all edges do not have to be achieved. This is when we define the flow
correctly (flow/capacity).

z

v4 v5 v6

v1 v2 v3

s
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3/3

2/2

0/2

2/2

1/2 0/30/1
3/3

0/2

4/6 1/1

5/6

1/1



7 / 40

Note

The edge capacity does not really have to be a capacity (can represent
width, automobiles per minute, thickness of a pipe, resistance. . . ) We will
use terminology from liquid flows: amount

”
entering“ and

”
leaving“ a

certain vertex.

By e → v we denote incoming edges to v , by e ← v outgoing edges.

Definition

A flow in network S = (G , z , s,w) is a function f : E (G )→ R+
0 , where

no edge capacity is exceeded: ∀e ∈ E (G ) : 0 ≤ f (e) ≤ w(e),

the conservation-of-flow equation hold:
∀v ∈ V (G ), v 6= z , s :

∑
e→v

f (e) =
∑
e←v

f (e).

The value of a flow f is

‖f ‖ =
∑
e←z

f (e)−
∑
e→z

f (e).
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Example

z

v4 v5 v6

v1 v2 v3

s

2/4

1/3

2/2

0/2

2/2

0/2 0/30/1
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1/1

z

v4 v5 v6

v1 v2 v3

s
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5/6

1/1

Flow and a maximum flow in a network (G , z , s,w).
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Source and sink are exceptional vertices in the network.
The conservation-of-flow equations do not hold for them!

from the source “issues” more than comes in
the sink “drains” more than comes out

The difference for both these vertices is the same.

Lemma

By fz we denote the sum of flows on outgoing edges minus the sum of
flows on the incoming edges to the source z . By fs we denote the sum of
flows on outgoing edges minus the sum of flows on the incoming edges
to s. Then fz = −fs holds.

Proof

0 =
∑
e

(f (e)−f (e)) =
∑
v

∑
e←v

f (e)−
∑
v

∑
e→v

f (e) =
∑

v∈{z,s}

(∑
e←v

f (e)−
∑
e→v

f (e)

)
.

Double sums cancel out for all vertices in the network except z and s.(∑
e←z

f (e)−
∑
e→z

f (e)

)
= −

(∑
e←s

f (e)−
∑
e→s

f (e)

)
. �

Note

“Sink” has several meanings.
(Punkva river in the Moravian Carst)
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Maximum flow algorithm
Our goal is to find the maximum possible flow from source z to sink s in a
network (G ) with capacities w .
A greedy algorithm does not give the maximum flow! (see figure)

z

v1 v2

v3 v4

v5 v6

v7 v8

s
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z

v1 v2

v3 v4

v5 v6

v7 v8

s
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2/2
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2/2
2/2

2/2

2/2

0/1

0/1

0/1

0/1

0/1

0/1

A greedy algorithm yields a total flow of value 2.

The flow cannot be increased by simply adding some path with non-zero
flow, but this is not the maximum flow. There exists a flow of value 5.
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Definition

A cut in a network S = (G , z , s,w) is such a subset of edges C ⊆ E (G ),
that in G − C (G with edges of C deleted) no oriented path from z to s
remains.
Capacity of the cut C is the sum of capacities of edges in C , i.e.
‖C‖ =

∑
e∈C w(e).

Theorem

Value of the maximum flow equals the capacity of the minimum cut.

Proof later. . .

z

v1 v2

v3 v4

v5 v6

v7 v8

s

2/2

2/2

1/2

2/2
1/2

2/2
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1/1

1/1

1/1

1/1
cut

Flow of value 5 and cut with capacity 5.
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Beware, one has to know what is a cut!

z

v1

v2

v3

s

4/9

5/5

1/1

3/3

2/8

4/7

5/5
0/2

U

C

cut

A cut contains only edges leading out of set U.
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The theorem characterizes nicely the maximum flow:
The flow of value x is maximum, if there is a cut of capacity x.

Definition

Let S be a network and let f be a flow in this network. An unsaturated
path in S is an unoriented path e1, e2, . . . , em in G from vertex u to vertex
v (usually from z to s), where

f (ei ) < w(ei ) for ei oriented “along” the path from u to v ,

f (ei ) > 0 for ei oriented the opposite way.

The value w(ei )− f (ei ) for edges ei oriented from u to v and the value
f (ei ) for edges ei in the opposite way is called the slack of the edge ei .

An unsaturated path has positive slacks δ on all edges.

z v1 v2 s
4/7 2/5 1/6

slack +3 slack +2 slack +5
G

Path with slack 2.



15 / 40

Example

Find several unsaturated paths in the given network.

z
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Example of three unsaturated paths.
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Algorithm Ford–Fulkerson’s algorithm

input: network S = (G,z,s,w);

initial flow is zero on every edge;

do {

searching through G find the set U of all vertices

reachable from z on unsaturated paths in G;

if (s in U) {

P = unsaturated path (found above) in S from z to s;

increase the flow f by the slack of P;

} while (s in U);

output: print the maximum flow f;

output: print the min. cut as all edges from U to V(G)-U.
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Proof We give a direct proof.

Obviously holds ‖f ‖ ≤ ‖C‖.
If at the end of the algorithm we have a flow f and in network S there is a
cut of the same capacity ‖C‖ = ‖f ‖, obviously we have the maximum
possible flow in the network S . At the same time we prove Theorem on
maximum flow.
It is enough to show that at the end of the algorithm the equality
‖f ‖ = ‖C‖ holds, where C is the cut between U and the remaining
vertices in G .

Suppose we have a flow f in S and no unsaturated path from z to s exists.
Thus the set U from the algorithm does not contain s (it is not reachable
via unsaturated paths).

Since from U lead no unsaturated paths (nor edges), has every edge
e ← U (outgoing from U) full capacity f (e) = w(e) and each edge e → U
(incoming to U) flow f (e) = 0. The value of the flow f from z to s is

‖f ‖ =
∑
e←U

f (e)−
∑
e→U

f (e) =
∑
e←U

f (e)− 0 =
∑
e∈C

w(e) = ‖C‖ .

This completes the proof. �



18 / 40

The algorithm finds the maximum flow with value ‖f ‖. Moreover, after the
algorithm stops, one can easily find the minimum cut with value ‖C‖.
First we give the following observation:

Corollary

If all capacities in the network S have nonnegative integer values, has the
maximum flow also integer value.

The maximum flow always fully saturates the edges of some edge cut, thus
the value of such flow equals the sum of capacities of this edge cut.
Especially, if all weighs are integer values, so will be the maximum flow.

Note

We point out that omitting the requirement on integer capacities one can
come up with examples of simple networks with irrational capacities for
which Ford-Fulkerson algorithm does not stop after finitely many steps.

Moreover, the iterated flow does not have to converge toward the
maximum flow.
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Generalizations of networks and their applications

The method shown above we can generalize to

1 multiple sources and sinks,

2 allow unoriented edges in a network,

3 introduce capacities of vertices,

4 transport several products in one network,

5 pose minimal capacities on edges (something has to flow).

Instead of providing new of modifying the previous algorithms for each of
the problems, we show how to modify the network.

The more complex problems will be transformed to the basic problem for
which Ford-Fulkerson’s algorithm can be used.
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1) Multiple sources and sinks
If there are multiple sources or sinks in the network, we can transform the
problem easily to a single source/sink problem.

zk

z2

z1

...

sl

s2

s1

...

zk

z2

z1

...

sl

s2

s1

...

z s

∞

∞

∞

∞

∞

∞

One can also introduce the source/sink capacities by taking the
corresponding edge capacities instead of ∞.
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2) Unoriented edges
In some real life application the orientation of edges is given (e.g. in sewage
system, traffic corridors in road networks, . . . ) In other applications the
orientation of edges can be arbitrary (information or computer networks).
Ford-Fulkerson algorithm is designed for oriented graphs.

Unoriented edges can be simply represented by a pair of edges with the
same capacity and opposite orientation.

u v
c

u v
c

c

Yet, once the algorithm stops, the flow on the unoriented edge is given by
the difference of flows on both oriented edges.
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3) Vertex capacities
Naturally, constraints can arise not only for vertices, but also for vertices
(crossings, nodes).
A network with vertex capacities can easily be translated into a network
where just edges have capacities.

v

c
v1 v2

c

Each vertex with a given capacity c we replace by a pair of vertices joined
by an edge with capacity c (we double the vertex).

Arcs incoming to v will come into v1 and arcs outgoing from v will go out
from v2.
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4) Several products in one network
For multiple products transfered in one network the problem is complex.
The algorithm for a maximum multi-product flow is beyond this course.

We show, how to translate an unoriented graph into an oriented network
with given capacities.

Beware, it is not sufficient to take two opposite arcs:

u v
c

u v
c

c

The sum of flows transfered in one direction and another product
transfered in the opposite direction must not exceed the capacity.

u v
c u

x

y

vc

This conversion guarantees the total capacity for several products.
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5) Minimal capacities of edges
If there are besides the maximal capacities also minimal capacities given,
i.e. there is a nonzero flow required, the solution does not need to exist.

This problem is beyond the scope of this course.

FYI: J. Demel, Grafy, SNTL, Praha, (1989).
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Matching in bipartite graphs

There is a surprising variety of applications of the maximum flow
algorithm. We show how to translate the search for maximum matching
into the search for maximum flow.

Definition

Matching in (bipartite) graph G is a subset of independent edges
M ⊆ E (G ) (no two edges in M share a vertex).

There are two graphs on six vertices. In the graph on the left the matching
has at most one edge, while in the second graph there is a matching that
covers all vertices.
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Algorithm Maximum matching in a bipartite graph

Let G be a bipartite graph vertex set split into two partite sets U and W :

1 we construct a network S : we add the source z and sink s, all vertices
in U we join to z and all vertices in W to s, all edges are oriented
from the source to the sink; their capacity is 1;

2 we find a (integer) maximum flow in S using previous algorithm;

3 maximum matching in G contains edges with non-zero flow.

Proof By a corollary the maximum flow will have integer flow, the flow on
each edge is either 0 or 1.

Each vertex in U is the end-vertex of precisely one edge with capacity 1,
thus each vertex will be in at most one edge of the matching. Similarly for
vertices in W . Thus the edges with non-zero flow form a matching, they
share no end-vertex.

The matching is maximum. A matching with more edges would correspond
to a flow in S with higher value, which leads to a contradiction. �



27 / 40

u1
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u5

u6
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w4

w5

w6

G

U W

We are given a bipartite graph G .
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u1

u2

u3

u4

u5

u6

w1

w2

w3

w4

w5

w6

z s

S

U W

Let us construct the corresponding network S :

we add a source vertex z and a sink vertex s,

all vertices in U we join with z and all vertices in W we join with s,

all edges of the network S are oriented from z to s; all capacities
are 1.
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u1

u2

u3

u4

u5

u6

w1

w2

w3

w4

w5

w6

z s

S

U W

Using the Algorithm we find the maximum flow in the network S . By
Corollary all values of the maximum flow are integers.
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u1

u2

u3

u4

u5

u6
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w2

w3

w4

w5

w6

G

U W

The maximum matching contains just those edges of G with non-zero flow.
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k-connectivity
Earlier we defined k-connectivity of graphs. Without proof we stater
Menger’s Theorem:

Theorem (Menger’s theorem)

Graph G is k-edge connected if and only if there are at least k
edge-disjoint paths between any two vertices (the paths can share vertices).
Graph G is k-vertex connected if and only if there are at least k
internally-disjoint paths between any two vertices (the paths share only
end-vertices).

Now we prove the theorem using the algorithm for maximum flow in a
network.
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First we notice that by definition of (vertex) k-connectivity holds:

Lemma

Let u, v be two vertices in G and k > 0 a natural number. Then between
u and v there exist in G at least k edge-disjoint paths if and only if after
removing any k − 1 edges remain u and v in the same component.

Proof
”⇒” Follows by the definition of edge k-connectivity of a graph.
”⇐” Let G be a graph and let u and v be any pair of vertices in G . Let
vertex u be the source and v the sink, we assign capacity 1 to each edge.
Using Ford-Fulkerson’s algorithm find the maximum flow from u to v .

The value of the flow is at least k , otherwise the value of the minimum
cut is smaller than k . By removing the cut-edges we get a disconnected
graph, while there are less than k removed edges which is not possible.

Thus, the edges with flow 1 form different (edge-disjoint) paths from u
to v . (The second Mengers Theorem is proven similarly.) �
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System of distinct representatives

Definition

Let M1,M2, . . . ,Mk be non-empty sets. System of distinct representatives
for M1,M2, . . . ,Mk is a sequence of distinct elements (m1,m2, . . . ,mk),
such that mi ∈ Mi for i = 1, 2, . . . , k .

Example

Find the distinct representatives for the given system.

x1
x2

x3

x4
x5

x6 x7
M1

M2

M3

One of the solutions.

x1
x2

x3

x4
x5

x6 x7
M1

M2

M3
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An important and well known result is the following theorem

Marriage Theorem

Let M1,M2, . . . ,Mk for k > 0 be non-empty sets. There exists a system of
distinct representatives for these sets if and only if

∀J ⊂ {1, 2, . . . , k} :
∣∣∣⋃

j∈J
Mj

∣∣∣ ≥ |J|,
meaning the union of and j sets in this system has at least j elements.

Marriage Theorem gives a sufficient and necessary condition for a set if
distinct representatives to exist for a given set-system.

The find the system of representatives is difficult, yet sometimes by
choosing a certain collection of sets one can disprove the existence of
distinct representatives.

Note

Marriage Theorem is in some literature called
”
Hall’s Theorem“.
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Proof of the Marriage Theorem
First implication “⇒” is straight forward. Idea of the proof of “⇐”:

Denote by x1, x2, . . . , xm all vertices in the union M1 ∪M2 ∪ · · · ∪Mk . We
define a network S on the vertices {1, 2, . . . , k} ∪ {x1, x2, . . . , xm} ∪ {u, v}.
Moreover we add edges {u, i} for i = 1, 2, . . . , k , {xj , v}
for j = 1, 2, . . . ,m and edges {i , xj} for xj ∈ Mi .

The construction of the network S is analogous as in Algorithm for
maximum matching.
Each path from u to v is of the form u, i , xj , v . It describes each
representative xj ∈ Mi uniquely. The system of distinct representatives
correspond to k vertex-disjoint paths from u to v .

Let X be any minimal subset of vertices in G , such that removing all
vertices of X from G no path from u to v remains. By a lemma have all
such sets a system of distinct representatives if and only if each such
separating set X has et least k elements.

We define J = {1, 2, . . . , k} \ X .
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J
X

1

2

3

...

k

x1

x2

x3

x4

...

xm

u v

G

Now each edge leaving J (besides u) goes to vertices in X ∩ {x1, . . . , xm},
because no path from u to v exists. Thus∣∣∣⋃

j∈J
Mj

∣∣∣ = |X ∩ {x1, . . . , xm}| = |X | − |X ∩ {1, . . . , k}| = |X | − k + |J|.

From this |X | ≥ k for all (minimal) separating sets X if and only if∣∣∣⋃j∈J Mj

∣∣∣ ≥ |J| for all J. This completes the proof. �
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Example

We finish the lecture by providing a couple of examples on the maximum
flow and minimum cut algorithm.

Example

What is the maximum flow in this network (G , z , s,w)?
And where is the minimum cut in the network?

z

v1 v2

v3 v4

s

5

5

3

2 7

3

1

2

3 2

Network (G , z , s,w).
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Last example

Example

What is the maximum flow in this network (G , z , s,w)?
And where is the minimum cut in the network?

z

v1 v2

v3 v4

v5 v6

s

9

3

1

2

5

4

9

5

2
1

0

8

1

6

9

1

2

Network (G , z , s,w).
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The end

Thank you for your attention

Please do not forget about the evaluation.
Especially comments.
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Exam dates

“early” exam (?)

Good luck with your exam!
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