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About this file

This file is meant to be a guideline for the lecturer. Many important pieces
of information are not in this file, they are to be delivered in the lecture:
said, shown or drawn on board. The file is made available with the hope
students will easier catch up with lectures they missed.

For study the following resources are better suitable:

Meyer: Lecture notes and readings for an
http://ocw.mit.edu/courses/electrical-engineering-and-

computer-science/6-042j-mathematics-for-computer-science

-fall-2005/readings/”(weeks 1-5, 8-10, 12-13), MIT, 2005.

Diestel: Graph theory http://diestel-graph-theory.com/

(chapters 1-6), Springer, 2010.

See also http://homel.vsb.cz/~kov16/predmety dm.php
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Lecture overview

Chapter Graph colorings and graph drawing

motivation

graph coloring

drawing graphs in the plane

recognizing planar graphs

map coloring and planar graphs coloring
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Graph colorings
We mention two problems that can be solved naturally using graph
colorings.

Storing goods

There are many different food products in a storehouse. By regulations
several of them certain have to be stored separately. E.g. fruit salads
cannot be in the same department as raw eggs or salami cannot share
department with raw meat.
What is the smallest number of departments necessary?

Set up a graph whose vertices represent stored goods and an edges joins
two vertices whenever the corresponding two commodities have to be
stored separately. Compartments are distinguished by colors.

Question

What is the least number of different colors necessary to color the vertices
of the graph so that any two adjacent vertices have the different colors?
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Optimization of traffic lights

A crossing has several corridors for both cars and pedestrians. Corridors
(even of different directions) may not interfere and the traffic can flow
simultaneously. On the other hand corridors that do interfere with each
other have to have green within non-overlapping time slots. Time slots are
distinguished by colors.
What is the least number of time intervals necessary in one “cycle” of the
traffic lights?

In the graph model the vertices will represent corridors and edges will join
vertices that correspond to corridors that do interfere.

Question

What is the least number of colors necessary to color the vertices of the
graph so that any two adjacent vertices have the different colors?

We show some special cases and prove a couple of simpler theorems. First
we introduce several definitions.
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Definition

Graph coloring of G by k colors is such a mapping

c : V (G )→ {1, 2, . . . , k},

that any two adjacent vertices have different colors, i.e. c(u) 6= c(v) for
every edge uv ∈ E (G ).

Note

Graph coloring is called also a proper vertex coloring of a graph.

There exists a proper coloring of every graph by |V (G )| colors. We are
interested in the lowest possible number of colors, for which a graph
coloring of G exists.

Definition

The chromatic number χ(G ) of G is the least k , such that there exists a
proper coloring of G by χ(G ) colors.
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Example

What is the chromatic number of C5?

v1

v2

v3 v4

v5

Example

What is the chromatic number of C6?

v1v2

v3

v4 v5

v6
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Upper bounds on the number of colors

Lemma

Let G by a simple graph on n vertices. Then χ(G ) ≤ n. Equality holds if
and only if G is a complete graph.

Proof In any graph G with n vertices it is enough to color every vertex by
a different color and we get a proper vertex coloring of G by n different
colors. Thus, χ(G ) ≤ n.

If G ' Kn, then no two adjacent vertices can have the same color Thus,
χ(Kn) = n.

If some edge uv is missing in G , we can color c(u) = c(v) = 1 and color
the remaining vertices by colors 2, 3, . . . , n − 1. We obtain a proper vertex
coloring by less than n colors, thus χ(G ) < n. �
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Brook’s Theorem

For every graph G with n vertices different from Kn and different from odd
cycles Cn is χ(G ) ≤ ∆(G ).

Proof is beyond the level of this course, you can find it in the textbook

”
Teorie graf̊u“ (in Czech) or on-line.

Notice, not in every graph G as many as ∆(G ) color have to be used. For
example to color the vertices of a complete bipartite graph only two colors
are necessary.

Algorithms for finding a proper vertex coloring by the least number of
colors are complex and are not included in this text. For general graphs
there are algorithms with complexity O(n2n), where n is the number of
vertices.
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Lower bounds on the number of colors
Brooks Theorem says at most how many colors are necessary to color the
graph properly. Now we show a couple of simple bounds on how many
colors are necessary at least for a proper edge coloring.

Theorem

Graph G has chromatic number 1 if and only if it has no edge.

Proof If a graph has no edge, we color all vertices by color 1. If all vertices
have the same color, no edge can be in the graph. �

The next theorem we mention without proving it.

Theorem

If there is a complete subgraph on k vertices in a given graph G , then any
proper vertex coloring of G requires at least k colors.
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We prove one particular case of the theorem.

Theorem

Graph G has chromatic number 2 if and only if it contains no cycle of odd
length (as a subgraph).

Proof (idea of “⇐”) An odd cycle cannot be properly colored by two
colors. We choose any vertex v in G and color it by color 1. Vertices in
odd distance from v we color by color 2. Vertices in even distance from v
we color by color 1.
If any two vertices x , y in even distance from v are joined be edge xy , then
v , . . . x , y , . . . v is a walk of odd length. From the walk we obtain an odd
cycle be deleting repeated parts which contradicts the premise. For vertices
in odd distance from v we reason similarly. Thus, in this coloring no
adjacent vertices have the same color and we have a proper coloring by
two colors. �

Graphs without cycles of odd lengths are bipartite. The vertices of each
such graph can be partitioned into two independent (partite) sets.
In each partite set it is enough to use only one color for all the vertices in
the set.
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How to determine chromatic number

To determine the chromatic number of a graph means to find the smallest
number of colors required for a proper vertex coloring.

There is no theorem that would yield the chromatic number “easily”.

The chromatic number can be found by algorithms with complexity
O(n2n), where n is the number of vertices of the given graph.

Here we have shown

upper and lower bound of the chromatic number,

applications (warehouse problem, scheduling).
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Drawing graphs in the plane
In some cases it is important how the drawing looks like. Printed circuit
boards can be represented as graphs and when designing the board
crossings have to be avoided.

Question:
”
Is it possible to draw a given graph without crossing edges?“

Definition

Planar drawing of a graph G is such a drawing in the plane, in which
vertices are different points and edges are lines connecting the points of
their end-vertices and no two edges intersect save their end-points.
We say a graph is planar if there exists its planar drawing.

Not every graph has a planar drawing!
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Examples

Examples of planar graphs are graphs of polyhedrons (tetrahedron, cube,
octahedron, dodecahedron, prisms, . . . )

All graphs of polyhedrons are planar and (at least) 3-connected.

On contrary every planar 3-connected simple graph is a graph of some
polyhedron.
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Example

Are the graphs a) K5, b) K5 − e planar (drawn without crossing edges)?

Graph K5 and its drawing with a single crossing of edges.

Graph K5 with an edge removed and two its planar drawings.
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Definition

Faces in a planar drawing of a graph are connected regions in a plane
bounded by edges and points of the drawing.

Faces in a planar drawing.

We show an important formula that counts graph elements of a planar
graph: Euler’s formula.
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Theorem Euler’s formula

A planar drawing of a nonempty connected graph G has f faces. The the
following holds

v + f − e = 2.

Proof Proof goes by induction on the number of edges e.

Basis step: If G is a tree, it contains no cycle and the planar drawing has
only one face. By a theorem a tree has e = v − 1 edges and be evaluate
that v + f − e = v + 1− (v − 1) = 2.

Inductive step: Suppose the claim holds for all graphs with e − 1 edges. If
G contains a cycle C , then by omitting one edge uv of cycle C the number
of edges decreases by 1. At the same time the number of faces decreases
by 1, since the edge uv separated two faces (neighboring to uv) and by
deleting uv these faces merge. The number of vertices remains the same.

By the induction hypothesis is v + (f − 1)− (e − 1) = 2, thus also
v + f − e = 2. �
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Note

Euler’s formula is independent of a particular drawing, only on the graph
structure.

Though it is a simple formula it has many applications and corollaries.

Corollary

A simple planar graph on v ≥ 3 vertices has at most 3v − 6 edges.

Proof Suppose we have a connected graph G , otherwise we can add more
edges. By v we denote the number of vertices in G , by f the number of
faces and by e the number of edges.
Since there are no loops or multiple edges, each face of G (in any planar
drawing) is bounded by at least three edges. Each edge is counted at most
twice (for both neighboring faces). Thus 2e ≥ 3f , from which follows
2
3e ≥ f . Substituting into the Euler’s formula we get

2 = v + f − e ≤ v +
2

3
e − e = v − 1

3
e

e ≤ 3(v − 2) = 3v − 6.

�
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If there are no faces with only three edges in G (a triangle-free graph) the
number of edges is even smaller.

Corollary

A simple triangle-free planar graph on v ≥ 3 vertices has at most 2v − 4
edges.

Proof The proof is similar. By v we denote the number of vertices in G , by
f the number of faces and by e the number of edges. Now we know there
are no triangles in G , thus each face is bounded by at least four edges.
Thus 2e ≥ 4f , which implies 2

4e ≥ f . Substituting into the Euler’s formula
we get

2 = v + f − e ≤ v +
2

4
e − e = v − 1

2
e

e ≤ 2(v − 2) = 2v − 4.

�
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We can also bound the smallest degree of a planar graph!

Corollary

Every planar graph has a vertex of degree at most 5.
Every triangle-free planar graph has a vertex of degree at most 3.

Proof By contradiction. If all vertices would be of degree at least 6, there
would be at least 1

2 · 6v = 3v edges in a planar graph, which contradicts
previous Corollary. Thus there has to be a vertex of degree smaller than 6.

Similarly, if in a triangle-free graph all vertices would be of degree at least
4, there would be at least 1

2 · 4v = 2v edges in the graph, which
contradicts previous Corollary. Thus there has to be a vertex of degree
smaller than 4. �

Notice, that a planar graph can have vertices of high degree, but not all of
them. There has to be some vertex (or vertices) of small degree as well.
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Recognizing planar graphs
To “be planar”, or “non-planar” is an important property of a graph with
many applications. Among the most important are

printed circuit boards of single layer (the circuits form a graph, need
solder wires?)

well drawn graphs (no unnecessary crossings)

We show that Euler’s formula and its corollaries can help when
determining whether a graph is or is not planer.

In comparison to Hamiltonian cycles or graph colorings there are relatively
fast algorithms.
We focus only on small graphs, the algorithm mentioned above go beyond
the scope of this course.

We show two important graphs, that are not planar.
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Example

Graphs K5 and K3,3 are non planar (are non-planar).

Graphs K5 and K3,3.

Proof We use the Corollary on the number of edges.
Notice that K5 has 5 vertices and 10 edges. But by the Corollary a planar
graph on five vertices has at most e ≤ 3 · 5− 6 = 9 edges, hence K5 is
non-planar.

Similarly K3,3 has 6 vertices and 9 edges. Moreover, it is triangle-free. But
by the Corollary a triangle-free planar graph on six vertices has at most
2 · 6− 4 = 8 edges, thus K3,3 is non-planar. �
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Corollary

Graphs K5 and K3,3 are not planar.

It can be shown that both K5 and K3,3 are special among all non-planar
graphs. Their structure does not allow their planar drawing.

Moreover, no other such structure exists.
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We introduce the notion of subdivision of a graph, that is a graph with
similar structure, with some vertices of degree 2 added.

Definition

A subdivision of a graph G is a graphs that is obtained by replacing some
edges by internally-disjoint paths.

We replace the edge uv of a graph G by a pair of edges uw and wv . We
obtain a new graph G ′, which is a subdivision of the original graph G .

G ′ = (V (G ) ∪ {w}, (E (G ) \ {uv}) ∪ {uw ,wv})

u

v

G
u

v

w
G′

Graph G with a selected edge uv and a subdivision G ′ of graph G.
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In 1930 K. Kuratowski proved the following simple theorem.

Theorem

Graph G is planar if and only if it does not contain a subgraph isomorphic
to a subdivion of K5 or K3,3.

A subdivision of graphs K5 and K3,3.

It can be shown, that there exists a “nice” drawing of every planar graph:

Theorem

Every simple planar graph can be drawn in a plane without crossing edges
so that all edges are straight lines.
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Graph colorings and graph drawing
One of the best known problems in graph theory is the Four color theorem.
Though the formulation is easy, correct solution took more than 100 years.

Four color problem

Given any political map, the regions may be colored using no more than
four colors in such a way that no two adjacent (sharing a borderline)
regions receive the same color.

The solution required besides substantial theoretical work also a large scale
computer search.
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Example

A coloring of a political map can be translated into a proper vertex
coloring of a graph.
Each region becomes a vertex (the capital).
Two vertices are joined by an edge if the corresponding states are
neighboring.
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Definition

Dual graph of a planar graph G we obtain by replacing every region by a
vertex. Two vertices of the new graph are connected by an edge if and
only if the corresponding regions share an edge.

Graph G with blue dual multigraph and a redrawn dual graph.

It can be shown, that the dual graph to a planar graph is again planar.
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The process of transforming a political map into a graph is similar to
constructing a dual graph.

In 1976 Appel and Haken, and later in 1993 again Robertson, Seymour,
Sanders, and Thomas proved the theorem, which solved the four color
problem. It is one of the most famous results in discrete mathematics.

Theorem Four Color Theorem

Every planar graph without loops has a proper coloring by at most 4 colors.

Proof . . . definitely exceed the scope of this course :-) �

But easily we can show a weaker result for 6 colors.
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Theorem

Every planar graph can be properly colored by at most 6 color.
Every triangle-free planar graph can be properly colored by at most 4
colors.

Proof We show the second part, the first part is shown in the textbook.

We proceed by induction on the number of vertices of G .

Basis step: The trivial graph with one vertex is surely planar and can be
colored by one color.

Inductive step: We have a planar graph with at least two vertices.
Suppose all smaller planer graphs we can color by at most four colors. By
a previous corollary we find in G a vertex v of degree at most 3. The
graph G − v is again planar and triangle-free. By the induction hypothesis
we can color the graph G − v by at most four colors. At most three of
them will be used to color the neighbors of v , thus always there is a fourth
color available to color v . �

Notice, the proof is constructive – we can find such coloring.
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Next chapter

Chapter Flow in a network

motivation

definition of a network

maximal flow algorithm

network generalization

further applications
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