Discrete mathematics

Petr Kova¥r & Tereza Kovarova
petr.kovarQvsb.cz

VSB — Technical University of Ostrava

Winter Term 2022/2023
DiM 470-2301/02, 470-2301/04, 470-2301/06

** % EUROPEAN UNION =
z ot European Structural and Investment Funds
i " Operational Programme Research,)

* ok X Development and Education 5

The translation was co-financed by the European Union and the Ministry of Education, Youth and Sports from the Operational
Programme Research, Development and Education, project “Technology for the Future 2.0", reg. no.

CZ.02.2.69/0.0/0.0/18.058/0010212. ® @
This work is licensed under a Creative Commons “Attribution-ShareAlike 4.0 International” license. @
BY SA

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

About this file

This file is meant to be a guideline for the lecturer. Many important pieces
of information are not in this file, they are to be delivered in the lecture:
said, shown or drawn on board. The file is made available with the hope
students will easier catch up with lectures they missed.

For study the following resources are better suitable:

@ Meyer: Lecture notes and readings for an
http://ocw.mit.edu/courses/electrical-engineering-and-
computer-science/6-042j-mathematics-for-computer-science
-fall-2005/readings/" (weeks 1-5, 8-10, 12-13), MIT, 2005.

@ Diestel: Graph theory http://diestel-graph-theory.com/
(chapters 1-6), Springer, 2010.

See also http://homel.vsb.cz/ kovl16/predmety_dm.php

Lecture overview

Chapter Trees

motivation

basic tree properties
rooted trees
isomorphism of trees

spanning trees of graphs

Chapter Trees

Motivation
Among the most common structures in both nature and mathematics are
trees (objects with “tree” structure).
There exist a vast amount of objects, that can be described by a “tree”.
@ genealogy trees
@ evolutionary tree
@ electrical circuits
@ hierarchical structure (chief and subordinated)
@ branching in a search

Common property: no ‘“cycle” in the structure.

Elementary properties of trees
We say, that a graph is acyclic, if it does not contain a cycle. thus if no its
subgraph is isomorphic to a cycle.

Definition

A simple connected graph that acyclis is a tree.
A forest is a graph, whose components are trees.

K e AR

Note to terminology

@ Forest is a (finite simple) acyclic graph.
@ Tree is a connected forest.

Seems awkward. ..

Vertices of degree 1 are called leaves.
All other vertices are non-leaf vertices.

A tree with more than one vertex contains at least one leaf. l

Proof Connected graph with more than one vertex cannot have a vertex of
degree 0. Let us take any tree T and some vertex v. Now we construct a
longest possible trail S in T starting at v. S starts with any edge from v
(such an edge exists, why?). In every consequent vertex u of the trail S

@ either u is of degree at least 2 and we can extend S by another edge
(notice: if some vertex would repeat in trail S, then S would contain
a cycle, that would be a subgraph of tree T, which contradicts the
definition of a tree),

@ or u is the last vertex of the trail (v is of degree 1),

Since T is finite, we surely find such vertex of degree 1 in any tree T. [

_

It's easy to prove, that every nontrivial tree T contains at least two leaves.

@ How is called a tree with, precisely two vertices of degree 2 and no
vertex with larger degree?

@ Does there exist a tree with a vertex of degree k and less than k
vertices of degree 17

@ Can you prove the previous assertion?

@ How many edges have to be removed from K, to obtain a tree?

A tree on n vertices has precisely n — 1 edges.

Proof
We proceed by induction on n.

Basis step: A (trivial) tree with one vertex has n — 1 = 0 edges.

Inductive step: Let T be any non-trivial tree on n > 1 vertices. By
induction hypothesis every tree with less than n vertices has one edge less
than vertices.
By the previous lemma T has a vertex of degree 1. By T" =T — v we
denote the graph, which arises from T by removing vertex v (“shaving”).
@ After removing a leaf the graph remains connected (no path between
two vertices different from v does not pass through a vertex of
degree 1), T’ is connected.
@ Removing a vertex/an edge no cycle arises, T’ is also acyclic.
By induction hypothesis T’ has one edge less then vertices, thus T’ has
(n—1) — 1 edges. Hence the original tree T has one edge more, i.e.
(n—1)—1+1=n—1 edges.
The claim follows by induction. U

In the database there are 12 objects and 34 relations between the objects.
We want the structure of objects draw as a graph in which objects
correspond to vertices and relations to edges.

a) Will the resulting graph be a tree?

b) Will the resulting graph always be connected?

a) The resulting graph cannot be a tree, it has to contain cycles. A tree
on 12 vertices has precisely 11 edges (relations).
Even if there were 11 relations, we cannot guarantee the resulting
graph to be a tree, why?

b) The resulting graph can, but does not have to be connected.
Connectivity depends on the stored structure.
E.g. it could be a graph with one component close to Kg and three
isolated vertices (Ko has (3) = 36 edges, we can remove any 2 edges).

If the graph has 12 vertices and more than 55 edges, the resulting graph
has to be connected. Ko has 66 edges and is edge 11-connected. After
removing any less than 66 — 55 = 11 edges the graph remains connected.

on proving theorems of the form A= B

Suppose A is the premise and B is the conclusion of the theorem.

Direct proof consists of a sequence of valid implications.
A=A A= A= ---=>A,=B

Indirect proof is a direct proof of the theorem =B = —A, which has the
same truth value table as A = B.

B=A=A=>A= -=A=-A

In a proof by contradiction we assume that both the premise A and the
negation of the conclusion =B are true. By a sequence of valid
implications we obtain a contradiction. By a contradiction we mean that
both V and its negation =V are true simultaneously, which is not possible.

AN-B=..-= VAV

Assuming —B leads to a contradiction, thus B holds.

In a tree there exists exactly one path between every pair of vertices. l

Proof By contradiction.

We assume the premise (T is a tree) and the negation of conclusion (there
exists a pair of vertices T connected by none or at least two different
paths).

Since T is connected (by definition of a tree), there is a path between any
pair of vertices u, v. Now if u, v are connected by two different paths, their
union is a walk in T and after “deleting” all repeated vertices in this walk
we obtain a cycle in T, which contradicts the premise that there is no
cycle in T.

The negation of the conclusion leads to a contradiction, thus thus there is
precisely one path between any v and v. O

Paths from u to v and the “reversed” path from v to u we consider a
single path between u, v.

We know already, that a tree on n vertices contains n — 1 edges. Adding
one new edge

@ does not violate connectivity,
@ violates the state of being acyclic.

A tree with one additional edge contains a cycle, we show that there is
just one such cycle.

By adding one (new) edge to a tree (on at least three vertices) we obtain
a graph with a single cycle.

Proof Suppose there is no edge uv in a tree T.
By adding edge uv precisely one cycle arises by joining uv and a unique
path between u andv in T (unique by previous theorem). O

By adding at least two edges to a tree, the number of emerging cycles
depends on where we add the edges.

Given a connected graph G and determining k-connectivity we asked how
many edges at least have to be removed from G to obtain a disconnected
graph. Now we ask
@ how many edges at most can be removed from G to obtain a
connected graph or, conversely
@ how many edges at least have to remain in G for G to remain
connected.
Trees are graphs that are both connected and no edge can be removed
without loosing connectivity.

A tree is the minimum connected graph (on a given set of vertices).

Proof A tree is connected by definition. If a graph contains a cycle, it
remains connected also after removing any edge of this cycle. Thus the
minimum connected graph is a tree.

Conversely, if after removing edge uv form a tree T the resulting graph
remains connected, then between u, v in T would exist two paths:

u, v-path in T\ uv and edge uv. This contradicts previous theorem.

Thus, tree is the minimum connected graph on a given set of vertices. [J

At most how many edges can be removed from the graph G so that the
graph remains connected?

Graph G.

By the previous theorem the resulting graph has to be a tree.
The graph G has 9 vertices and 16 edges, thus by the theorem on the
number of edges in a tree at most 8 edges can be removed.

Moreover, one can remove such 8 edges that both removed edges and the
remaining edges for a connected factor. Can you find such 8 edges?

Rooted trees
Is certain instances of “trees” it is convenient to select a vertex, called

root, (as the “start” of data). Rooted trees have their origins also in family
trees, (Tiggers "family tree”) which implied terminology.

Definition

A rooted tree is a tree T along with one significant root vertex r € V(T),
denoted by (T,r), we say tree T with root r.

There is a difference between a ,tree” and a , rooted tree”, which has
some extra information.

Root will be drawn on top.

Definition

Take a rooted tree (T,r) and a pair of adjacent vertices u, v, such that u
is the neighbor of v on the path to r. Then u is called the parent of v and
v is called the child of u.

root

parent

children

Sometimes we will use other terms as ,grandfather”, ,sibling", ...

Notice: by choosing a different root the parent-child relationship can swap.

Definition

Vertices without children in non-trivial graphs are called bottom vertices.

Notice the bottom vertices are leaves, but not all leaves are necessarily
bottom vertices.

Definition

Center of a tree T is the vertex or edge in T determined by the following
algorithm:
@ If a tree T has a unique vertex v, then v is the center of T.
If a tree T has two vertices, its center is the edge joining the two
vertices.

@ Otherwise we create a (smaller) tree T C T by deleting all leaves of
T (shaving). It is obvious, that T is not empty; proceed by step 1.

The center of T’ obtained by recursion is also the center of T.

The process of removing leaves is called shaving.

Example

Find the center of tree T7.

Find the center of tree T5.

Notice: we added a new vertex (and two edges instead of one edge).

The root and the center
The root can be any vertex in a given tree; the root does not have to be
the center.

If the root of a tree has to be determined uniquely, then center is the best
candidate (it is determined uniquely).

If the center is an edge add a new vertex onto the central edge so that it
“splits” the edge into two.

Ordered rooted trees
Another information assigned to rooted trees is the ordering of children of
every vertex (ordering the ancestors in one generation by their birth date).

Definition
The rooted tree (T, r) is ordered, if for every vertex is the order of its
children determined uniquely (“from left to right”).

Formally: ordered rooted tree is (T, r,f), where T is a tree and r its root.
Function f : V(T) — N assigns each vertex it order among siblings
1,2,..., k.

Isomorphism of trees

The notion of isomorphism of trees is a special case of isomorphism of
graphs. Two trees are isomorphic, if they are isomorphic as graphs.

Recall that no fast algorithm for deciding whether two general graphs are
isomorphic is known. Trees are such a special class of graphs that, for trees
such algorithm does exist!

Before we give the algorithm, we have to introduce several terms.

Definition

Two rooted trees (T, r) and (T’,r’) are isomorphic if there exists an
isomorphism of T and T’, that takes root r onto root r’.

T T
Two isomorphic trees that are not isomorphic as rooted trees.

Notice: the root is different in T and T'.

Definition
Two ordered rooted trees are isomorphic, if there exists an isomorphism of
rooted trees, such that it preserves the order of children of every vertex.

Two isomorphic rooted trees that are not isomorphic as ordered rooted
trees.

Notice: the order of children of the root differs.

Definition
Subtree of a vertex v of a given rooted tree (T, r) is each component of
the graph T — u, which contains some child x of u.

Each subtree of vertex u is again a (rooted) tree.

Encoding ordered rooted trees
To every ordered rooted tree we can easily assign a string of 0 and 1 which
uniquely determine the tree.

Definition

Code of an ordered rooted tree is constructed recursively by joining codes
of all subtrees of the root, ordered in a particular (uniquely chosen)
ordering and enclosed in a pair of 0 and 1 (see figure).

0000101101011 01 00010101111

0001011 01 011 0001010111

001 011 00101011

Coding a rooted tree.

Instead of “0" and “1” one can use, e.g. “(" and “)" or ,A", ,B".

Ordered rooted trees given by their code
We described how to obtain a code for a given rooted tree tree.
Now we show the reverse: how to draw a rooted tree given by its code.

Lemma

Take the code of an ordered rooted tree. The corresponding tree can be
drawn by the following algorithm:

@ when reading “0" at the beginning put the pen on the paper, draw
the root vertex,

@ when reading another “0" draw an edge to a child vertex of the
current vertex,

@ when reading “1" return to the parent of the current vertex or lift the
pen if the current vertex is the root.

v

Notice: not every sequence of 0 and 1 is a code of some tree (see
discussion).

Minimum code
We can consider tree codes as strings and we can order these strings
uniquely, e.g. lexicographically.

Suppose the symbol 0 precedes symbol 1 in the dictionary.
E.g. the string 000111 precedes codes 001011, 0011, and O1.

One has to distinguish code of an ordered rooted tree and minimum code
of a rooted tree:
@ drawing a tree given by the code of an ordered rooted tree (T, r), we
obtain (T, r) again,
@ drawing a tree given by the minimum code, the order of children can
differ from the order in (T, r).

We say the rooted tree (T,r) ,was reordered”.

The upper bound on time complexity for finding a minimum code of one
tree is O(n?).

0001001011011 01 0001010111 1

001001011011 0001010111

0010 00101011

01 01 01 01 01
The code of an ordered rooted tree.

00001010111 000101101011 011
000101101011 0001010111

0010 00101011

01 01 01 01 01
The minimum code of an ordered rooted tree.

When determining isomorphism of two arbitrary trees we
o find the center of each tree,
@ the center of each tree we choose as the root,

@ we find the minimum codes (we order the codes of the children
lexicographically by their codes)

@ we use the following Lemma which guarantees the uniqueness of each
code.

Two ordered rooted trees are isomorphic if and only if their codes,
obtained as described above, are the same strings.

The process results in the algorithm described below.

Algorithm Determining isomorphism of trees

Algorithm determines if two trees T and U are isomorphic (T =~ U)

// Let T, U be two trees with the same number of vertices.
Input < trees T and U;
for (X=T,U) {
// find the centers of U, T
x = center (X);
if (x is one vertex)
r = x;
else
add new vertex r, replace edge x=uv by edges ru, rv;
k[X] = minimum_code(X,r);
}
if ((IV(D) |==IV(U) |) && (k[T1==k[U] as strings))
print("Trees T and U are isomorphic.");
else
print("Trees T and U are not isomorphic.");
exit;

Algorithm ... continued (finding the minimum code)

Function minimum code (X, r) finds for tree X with root r (lexicographic)
minimum code.

// the input is a rooted tree (or a subtree)
input < rooted tree (X,r);

function minimum_code(tree X, vertex r) {
if (X has one vertex)
return "01";
Y[1...d] = {connected components X-r, subtrees without r}
s[1...d] = {roots of subtrees Y[] in corresponding order}
// roots are the children of r
for (i=1,...,d)
k[i] minimum_code(Y[i],s[i]);
sort lexicographic so that k[1] <= k[2] <= ... <= k[d];
return "O"+k([1]+...+k[d]+"1";

3

Functions recursively constructs the minimum code of tree X.

Note

Notice that in the Algorithm we check whether both have the same
number of vertices.

For example paths P>, and P»,1 are not isomorphic, but since the center
of path P, is the ,middle” edge, by finding the center we add a new
vertex to this edge and obtain a second path P>, 1. Without checking the
number of vertices the algorithm could give a wrong answer.

| A\

Questions
@ Is the following code a minimum code? Why?

@ How would a minimum code look like?

0000101101011 01 00010101111

0001011 01 011 0001010111

001 011 00101011

Spanning tree
Recall the following terms:

@ subgraph, factor
@ connected and disconnected graph

o labeled graph, graph labeling

Definition

A spanning tree of a connected graph G is such a factor of G, which is a
tree. (Factor of G is a subgraph, which contains all vertices of G.)
\Weight of a spanning tree in a labeled graph G is the sum of labels of all
edges of the spanning tree.

We say “edge label” and “spanning tree weight".

The importance of “spanning trees” lies in the minimality with respect to
number of edges, while connectivity is preserved.
(we have a Theorem about the minimum connected subgraph)

The label of every edge can differ, we obtain:

Minimum spanning tree problem (MST)

Given a connected labeled graph G with non-negative edge labels w. The
task is to find such a spanning tree T of G, which has among all spanning
trees the minimum weight. Formally

MST = min Z w(e)
span.treeTCG ecE(T)

| \

Questions
@ How many edges has a spanning tree of a connected graph with n
vertices?

@ Is it possible to find a minimum spanning tree in a graph with
negative labels?

@ Is every connected factor with minimum edge labels a spanning tree?

v

We present several algorithms for finding a minimum spanning tree in a
non-negatively labeled graph.

Algorithm Greedy minimum spanning tree algorithm

We have a labeled graphs G with non-negative labels w of edges. By m we
denote the number of edges of G.

@ We order the edges of G in an non-decreasing order according their
labels:

w(er) < w(er) <--- < w(epm).
o We start with an empty set of edges T = () for the spanning tree.

@ Fori=1,2,..., m we take the edge ¢; and if by adding it to the
set T no cycle (induced by T U {e;}) originates, we include ¢; into T.
Otherwise we “discard” e;.

@ At the end T contains all edges of a minimum spanning tree of graph
G with labels w.

v

We show that the algorithm works correctly.

The greedy algorithm finds a minimum spanning tree of a connected graph.

Proof By contradiction. Let T be the set of edges obtained by the
Algorithm. Suppose that w(e;) < w(ex) < --- < w(em). Let T by the set
of edges of such a minimum spanning tree (multiple spanning trees can
have the same weight), which matches T in the most first edges. If

To = T, algorithm works correctly.

Suppose now that Tg # T and we obtain a contradiction. Thus we show
that To # T cannot occur.

By j > 0 denote such an index, that the sets To and T match in the first
J— 1edges er,...,e_1, but they do not match in edge ¢;. Thus ¢; € T,
but e & To. (According the algorithm e; ¢ T and e; € Tg cannot
happen.) graph To U {e;} contains the graph with edges precisely one
cycle C. Cycle C cannot be a subgraph of the spanning tree T, thus there
is an edge e, in C, such that e, & T and k > j. Since w(ex) > w(ej), the
spanning tree with edges T = (To \ {ex}) U {e;} (swapping edges e and
ej) does not have higher weight than Tg, but it matches T in more first
edges! This is a contradiction with the choice of Ty. U

This greedy algorithm was introduced first by Kruskal in 1956. But it is
known that Kruskal continued the work of a Czech mathematician Otakar
Bordivka.

Already in 1926 solved Borlivka the question of building an optimal
electrical network in southern Moravia and described a very similar
algorithm in great detail using matrices.

Algorithm Bortivka’s minimum spanning tree algorithm

Suppose G is a positively weighted graph with edges labeled by pairwise
different labels.

At the beginning we order the edges according their increasing labels
w(er) < w(e) < ... < w(em).

The spanning tree we construct by adding edge e; (for i =1,2,...,n), if
no cycle originates by adding e;.

In response to Boriivka's work Vojtéch Jarnik designed in 1929 a similar
algorithm.

The Jarnik's algorithm is known as Prim'’s algorithm (1957).

Algorithm Jarnik’s minimum spanning tree algorithm

We do not order the edges. We construct the minimum spanning tree
starting from any vertex. In every step we choose the edge with the
smallest label with one end-vertex among the vertices in the already
constructed subgraph and the other end-vertex among remaining vertices.

Notice:
@ in Jarnik’s algorithm we need not to sort the edges,

@ we do not need to check whether adding an edge produces a cycle, we
save time.

Examples of the Greedy algorithm and Jarnik's algorithm are given at
http://homel.vsb.cz/~kovl6/predmety_dm.php

http://homel.vsb.cz/~kov16/predmety_dm.php

MSP algorithms can be used for constructing labyrinths.

Ifa=y
i

_IZI:[I _—I:,

L —
LU —
T
|—||_——|
— - 1

TR

il
I

IIIIIII_III

ﬁ_
I
_I

Labyrinth constructed using Jarnik's algorithm.

For details see textbook ,,Uvod do teorie grafi" (in Czech) or on-line.

Next lecture

Chapter Graph colorings and graph drawing
motivation

graph coloring

°

°

@ drawing graphs in a plane
@ recognizing planar graphs
°

map coloring and planar graphs coloring

	About file
	Overview
	UTG 5. Trees
	UTG 5.1. Elementary properties of trees
	UTG 5.2. Rooted trees
	UTG 5.3. Isomorphism of trees
	UTG 5.4. Spanning tree

