
1 / 30

Discrete mathematics

Petr Ková̌r & Tereza Ková̌rová
petr.kovar@vsb.cz

VŠB – Technical University of Ostrava

Winter Term 2022/2023
DiM 470-2301/02, 470-2301/04, 470-2301/06

The translation was co-financed by the European Union and the Ministry of Education, Youth and Sports from the Operational
Programme Research, Development and Education, project “Technology for the Future 2.0”, reg. no.

CZ.02.2.69/0.0/0.0/18 058/0010212.

This work is licensed under a Creative Commons “Attribution-ShareAlike 4.0 International” license.

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

2 / 30

About this file

This file is meant to be a guideline for the lecturer. Many important pieces
of information are not in this file, they are to be delivered in the lecture:
said, shown or drawn on board. The file is made available with the hope
students will easier catch up with lectures they missed.

For study the following resources are better suitable:

Meyer: Lecture notes and readings for an
http://ocw.mit.edu/courses/electrical-engineering-and-

computer-science/6-042j-mathematics-for-computer-science

-fall-2005/readings/”(weeks 1-5, 8-10, 12-13), MIT, 2005.

Diestel: Graph theory http://diestel-graph-theory.com/

(chapters 1-6), Springer, 2010.

See also http://homel.vsb.cz/~kov16/predmety dm.php

3 / 30

Lecture overview

Chapter Connectivity of graphs

motivation
connectivity and components of a graph
searching through a graph
higher degrees of connectivity

4 / 30

Connectivity of graphs
If a graph represents a computer network or a road network, it is natural
to examine, whether one can transmit a signal or send goods from vertex
u to vertex v . This leads us to the notion of connectivity of graphs.
For similar reasons one can examine the robustness against local failures:

vertex redundancy
connectivity even in the case where several edges are cut

Hence we arrive at the notion of the degree of vertex- and
edge-connectivity .

Connected and not connected graphs.

5 / 30

Connections in graphs, components
Informally: A graph is connected, if there exists a “connection” between
every two vertices (not necessarily an edge).

Formally: we introduce the concept of a walk , trail , and path in s graph.

Definition

A v0vn walk in a graph G is such a sequence of vertices and edges

(v0, e1, v1, e2, v2, . . . , en, vn),

where vi are vertices and ei are edges of G such, that vi−1 and vi are
incident with ei . The number of edges n is the length of the v0vn walk.
v0 is the starting vertex and vn the end-vertex of the walk.

If there are no multiple edges, we can describe the walk by listing just a
sequence of vertices.

(v0, v1, v2, . . . , vn)

Alternatively we can omit the parentheses: v0, v1, v2, . . . , vn.

6 / 30

Example

v1 v2 v3

v4 v5 v6

v7

Walk v1, v1v2, v2, v2v5, v5, v5v7, v7, v7v6, v6,
v6v3, v3, v3v2, v2, v2v5, v5, v5v4, v4, v4v5, v5

is highlighted in blue.

Briefly:
v1, v2, v5, v7, v6, v3, v2, v5, v4, v5.

Example

v2v1

v4

v6 v7

v5v3

v1, v2, v6, v7, v2, v1, v2, v3 is not a walk
walk v1, v2, v6, v7, v2, v1, v2, v4

walk v1, v2, v7, v5, v6, v4, v3

(trivial) walk v4

7 / 30

The notion of “connectivity” is based on the term “walk”.

Definition

We say vertex v can be reached from vertex u, if there exists a uv walk in
the given graph.
We say a graph is connected if for every pair of vertices u, v is vertex v
reachable from vertex u. Otherwise the graph is not connected.

Example

Is each of the two graphs connected?

v1

v2

v3

v4 v5

v6

v7

v8 v1

v2

v3

v4 v5

v6

v7

v8

8 / 30

In some application the repetitions of edges or vertices is not allowed
(pipes, traffic networks, electrical networks, . . .).

Definition

Trail is a walk with no repeated edges.
Path is a walk with no repeated vertices.

Terminology: we travel along trails, we draw “in one stroke”.
Vertices and edges of a path in a graph form a subgraph that is a path.

Example

v1 v2 v3

v4 v5 v6

v7

v1 v2 v3

v4 v5 v6

v7

Trail v1, v2, v5, v7, v6, v5, v4 and a path v1, v2, v5, v7, v6, v3.

9 / 30

Theorem

If there exists a uv walk in G , then there exists also a uv path in G .

Proof Let W be a uv walk u = v0, e1, v1, . . . , en, vn = v of length n in G .
We want to find a uv walk P with no repeated vertex. If no vertex in W is
repeated, then P = W is the wanted path.
If a certain vertex vi is repeated, we can omit the entire part of W
between its first occurrence vi and its last occurrence of, say vk . We
obtain a uv walk W ′, in which the vertex vi occurs only once.
Now if no other vertex is repeated in W ′ we take P = W ′. Otherwise
repeat the process for the next repeated vertex.
The algorithm is deterministic, since there are only finitely many vertices
in G . �

If there exists a uv walk in G , we can obtain a uv path by the proof of the
theorem. We say that vertices u and v are joined by a path in G .

10 / 30

On the set of vertices of a given graph G we introduce the relation ∼.
Two vertices u, v ∈ V (G) are related in ∼ (we write u ∼ v) if and only if
there is uv walk in G .

We call ∼ a “relation of being reachable.”

Lemma

The relation ∼ is an equivalence relation.

Proof

Reflexivity follows from the existence of a trivial walk uu of length 0.
For each vertex u ∈ V (G) is u ∼ u.

Symmetry is obvious, since for each uv walk in G we can easily
construct the vu walk in G by “reversing” the sequence of vertices
and edges (in an unoriented graph). ∀u, v ∈ V (G) is u ∼ v ⇔ v ∼ u.

Transitivity follows from the fact, that by joining the walks u, . . . , v
and v , . . . ,w we obtain the walk u, . . . ,w . ∀u, v ,w ∈ V (G) is
u ∼ v ∧ v ∼ w ⇒ u ∼ w . �

The relation ∼ from the Lemma above defines a partitioning of V (G).

11 / 30

Now we can define the following:

Definition

Every maximal connected subgraph of graph G is a component of G .

Example

Examples of graphs with one and more components.

12 / 30

Two alternative definitions of connectivity follow.

Definition

We say that a graph G is connected if it has only one component.

Equivalent definition

We say that G is connected if the ∼ relation on V (G) is total.

Example

Examples of connected graphs and a not connected graph.

13 / 30

How bishop moves.

Example

Take the graph S , which describes all possible movements of a bishop on a
chess board. (Recall that a bishop moves any number of vacant squares
diagonally.)
Vertices correspond to squares and an edges joins two squares if and only
if there is legal move of a bishop between them.

Graph S has 64 vertices, many edges and it is not connected.

14 / 30

Example

Loyds’ fifteen puzzle is a classic. The task is to shuffle the pieces
numbered 1 through 15 so that they form an arithmetic progression 1
through 15 by rows.
We construct a graph of states: vertices are all possible arrangements of
the pieces and an edge joined two arrangements if there is a single valid
move from one to the other. One can show that such graph is not
connected and thus there is no solution to the puzzle!

15 / 30

Towers of Hanoi

We have three pegs and a set of discs of different sizes. All discs are on
one peg arranged according their size. The task is to move all discs to
another peg while

always one discs is moved,

never a larger disc can be on top of a smaller one.

Is it possible? What is the least number of moves required?

In chapter on recurrence relations we found the minimum number of
moves for n discs.

16 / 30

Graph formulation – state graph

For the solution we set up a state graph:

vertices – each valid distribution of discs,

edges – join two states with a valid move in between.

The puzzle with a single disc and with two discs.

For two discs we distinguish three cases where to put the larger discs.

For each we take a copy of the state graph for one disc.
We add edges where the larger discs can be moved.

17 / 30

Graph formulation

For three discs similarly. . .

18 / 30

Graph formulation

. . . and for five discs.

19 / 30

Interpretation of the graph formulation

For n discs we have:

3n different valid states = 3n vertices in the graph,

all discs on one peg = “tip” vertices,

each state is reachable,

to move all discs – at least 2n − 1 moves,

fastest solution = shortest path (next chapter).

20 / 30

Searching in a graph
For a general concept of “searching” in a graph we need to distinguish for
each graph element few different states and one auxiliary structure:
Vertex can have the status . . .

initial – at the beginning,
found – if it is found as an endpoint of an edge,
processed – once all outgoing edges are processed.

Edge can have the status . . .

initial – at the beginning,
processed – once it is processed from one end-point.

Depository as an auxiliary structure (sequence/set, see later),

we store here all found and unprocessed vertices.

Based on how we pick the vertices in the depository, we obtain different
variants of graph searching (depth-first/breadth-first search). For every
vertex and edge we can implement an action to be performed – searching
and processing a graph.

21 / 30

At the beginning

pick an arbitrary vertex
assign initial status to all vertices and edges

Algorithm of traversing all components

Traversing all connected components – we traverse each vertex and each
edge.

// on the input is the graph G

input < graph G;

status(all vertices and edges of G) = initial;

depository U = arbitrary vertex u of G;

status(u) = found;

Now we traverse the graph. . .

22 / 30

Algorithm of traversing all components (continued. . .)

// processing a component of G

while (U is not empty) {

pick a vertex v from the depository U: U = U - {v};

PROCESS(v);

for (edges e incident with v) // for all edges

if (status(e) == initial) PROCESS(e);

w = other end-vertex of e = vw; // known neighbor?

if (status(w) == initial) {

status(w) = found;

add vertex w to depository U: U = U + {w};

}

status(e) = processed;

}

status(v) = processed;

// check for additional components of G

if (U is empty && G has additional vertices)

U = {vertex u_1 from another component of G};

}

23 / 30

By various implementations of the depository we get various algorithms.

“Depth-first” search – depository U is implemented as a stack,
i.e. next processed vertex is the last found (and unprocessed).

“Breadth-first” search – depository U is implemented as a queue,
i.e. next processed vertex is the first found (and unprocessed).

Dijkstra algorithm for shortest path – from the depository pick always
the vertex closest to the initial vertex v_0;
(work as breadth-first search when all edges are of “equal length”).

Example

v1

v2 v3 v4

v5

v6 v7

Search through the graph using the depth-first and breadth-first search
(starting at the vertex v1).

24 / 30

v1

v2 v3 v4

v5

v6 v7

1

2 5 7

4

3 6

Breadth-first search (starting at v1).

v1

v2 v3 v4

v5

v6 v7

1

2 3 4

7

5 6

Depth-first search (starting at v1).

25 / 30

Note

The symbol O(g(n)) stands for all functions f (n), for which there exist
such positive constants c and n0, that ∀n > n0 is 0 ≤ f (n) ≤ c · g(n).

The algorithm described above is both easy and fast. The number of steps
grows linearly with the number of vertices plus the number of edges of a
given graph, the complexity is O(n + m), where n is the number of
vertices and m is the number of edges.

Questions

How to modify the algorithm to list all edges of a given graph?
How to modify the algorithm to check connectivity of a given graph?
How to modify the algorithm to find and distinguish all components of a
given graph?

26 / 30

k-connectivity
Often we examine not only if there exists a connection between a two
vertices in a graph, but also if there will be a loss of connectivity if the
case of local failures (web, roads, electricity network).

Eisenhower Interstate Highway System in the USA.

27 / 30

Definition

Graph G is edge k-connected if k ≥ 1 and after removing any k − 1 edges
from G remains the resulting factor connected.
The edge-connectivity of G is such a highest number k that G is edge
k-connected.

Definition

Graph G is vertex k-connected if |V (G)| > k ≥ 1 and after removing any
k − 1 vertices from G remains the resulting induced subgraph connected.
The vertex-connectivity of G is such a highest number k that G is vertex
k-connected.

Graphs with different edge/vertex k-connectivity.

28 / 30

We say that paths P and P ′ are:

edge-disjoint if they share no edge,

internally-disjoint if they share no internal vertex.

Theorem (Menger’s theorem)

Graph G is edge k-connected if and only if there are at least k
edge-disjoint paths between any two vertices (the paths can share vertices).
Graph G is vertex k-connected if and only if there are at least k
internally-disjoint paths between any two vertices (the paths share only
end-vertices).

Proof In the last Chapter. �

The following important theorem we state without a proof:

Theorem

In any graph G is the vertex-connectivity does not exceed
edge-connectivity which then does not exceed the minimum vertex
degree δ(G).

29 / 30

Example

The complete graph Kn is edge and vertex (n − 1)-connected.

x

y

x

y

x

y

x

y

x

y

x

y

Different edge-/internally-disjoint paths between x and y in K7.

30 / 30

Next lecture

Chapter Eulerian and hamiltonian graphs

motivation
eulerian graphs traversable in “one trail”
hamiltonian graphs traversable in “one path”

	About file
	Overview
	UTG 2. Connectivity of graphs
	UTG 2.1. Connections in graphs, components
	UTG 2.2. Searching in a graph
	UTG 2.3. k-connectivity

