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About this file

This file is meant to be a guideline for the lecturer. Many important pieces
of information are not in this file, they are to be delivered in the lecture:
said, shown or drawn on board. The file is made available with the hope
students will easier catch up with lectures they missed.

For study the following resources are better suitable:

Meyer: Lecture notes and readings for an
http://ocw.mit.edu/courses/electrical-engineering-and-

computer-science/6-042j-mathematics-for-computer-science

-fall-2005/readings/”(weeks 1-5, 8-10, 12-13), MIT, 2005.

Diestel: Graph theory http://diestel-graph-theory.com/

(chapters 1-6), Springer, 2010.

See also http://homel.vsb.cz/~kov16/predmety dm.php
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Lecture overview

Chapter 6. Congruences and modular arithmetics

motivation

division and divisibility

congruence relation

modular arithmetics

linear congruences in one variable

methods of solving

examples and applications
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6. Congruences and modular arithmetics
Modern electronic communication makes use of coding theory and
cryptography.

coding – storing or transfer of data with possible loss or disruption of
the data; we require to minimize the possible loss
cryptography – storing or transfer of data, which has to stay hidden
from or unreadable for third parties

Using results of Number Theory and Grout Theory.

Exampkles

CD storage format, mp3
digital phone calls
bar codes, ISBN
RSA cryptosystem

Now follows a brief introduction to Number Theory used in later sections.
We will be mostly using integers on a limited set (8, 16, 32 bits . . . ).
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Motivation examples

First we show/recall counting “mod n” and we learn to answer following
questions:

Example

A devise read a UPC bar code. Is 041331021641 a valid UPC bar code?

Example

We wrote an ISBN book number 0-03-001559-5. Is this a valid ISBN code?

Later we show some errors can be detected and some can be corrected.

Example

We know the fourth digit of the UPC bar code 041331021641 is wrong,
what is the correct digit?

Example

We know the ISBN book code 0-03-001559-5 is wrong. We know we often
swap adjacent digits while writing. Can you derive the correct ISBN code?
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Divisibility

Divisibility

Let a, b be two integers. We say a divides b, if there exists an integer k ,
such that a · k = b, we write a | b.
If not, we say a does not divide b, we write a - b.
Integer a is the divisor of b and b is a multiple of a.

Example

It holds 3 | 6, 3 | 15.
Also it holds 2 | −6, 5 | −5 a 7 | 0.
However 6 - 3, 2 - 5, 4 - −6, 0 - 1.
It holds that 0 | 0, while 0 = k0, for an arbitrary k ∈ Z.
We can’t divide by zero, but zero can be a divisor, however a divisor of
zero only.
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Operation vs. relation

Division is an operation Z× (Z \ {0})→ Q.
The result of the division of an arbitrary number by a nonzero number is
the resulting (third) number.

Example

It holds 18 : 3 = 6, 0 : 7 = 0, 18 : 4 = 9
2 .

Divisibility is a relation |⊂ Z× Z.
Two number (in the given order) are or are not related – one is the divisor
of the second or not.

Example

3 divides 18.
7 divides 0.
4 does not divide 18.
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Properties of divisibility

Theorem

Let b, c be integers and let a be a nonzero integer. Plat́ı

If a | b and a | c, then a | (b + c).

If a | b then a | bc for all integer c .

If a | b and b | c , then a | c.

Examples

Because 3 | 12, then 3 | 12c for every integer c .
(notice, not only 12c , but also 12c + 3, 12c + 6, and 12c + 9)

Corollary

Let b, c be integers and let a be a nonzero integer. If a | b and a | c , then
a | rb + sc for arbitrary integers r , s.
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The Quotient Remainder Theorem

The Quotient Remainder Theorem

For very integer a and every natural number b there exist unique integers
q and r , such that a = qb + r , where 0 ≤ r < b.

Integer q is the quotient and non negative integer r is the remainder when
dividing a by b.

Example

For a = 111 and b = 9 holds:

111 = 11 · 9 + 12

111 = 12 · 9 + 3 must hold 0 ≤ r < 9

111 = 13 · 9− 6

Example

It holds 7 | 21, therefore 21 = 3 · 7 + 0, remainder is r = 0.
Since 8 - 21, therefore 21 = 2 · 8 + 5, remainder is r = 5 6= 0.
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Integer division with a remainder

By the Quotient Remainder Theorem we can to each pair of integers a, b
(b > 0) assign an integer quotient and a remainder after integer division.

Operation integer division with a remainder

Let a, b be two integers.
In the equality a = q · b + r given gy the Quotient Remainder Theorem
is a the dividend, b is the divisor, q is the integer quotient and r is the
remainder after integer division of a by b.
The following notation is used to denote the two integer operations of
quotient and remainder.

q = a div b, r = amod b

Example

For a = 111 and b = 9 from the previous example holds:

111 div 9 = 12, 11mod 9 = 3

Notice, “mod” written inside a parenthesis has a different meaning (later).
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Congruences

Let a, b be integers, let m be a positive integer. We say a, b are congruent
modulo m, if both yield the same remainder after dividing by m. We write

a ≡ b (mod m).

Otherwise we write
a 6≡ b (mod m).

Using the “mod” operation introduced earlier we can write

a ≡ b (mod m) ⇔ amodm = bmodm.

Example

It holds 7 ≡ 1 (mod 2), since 7 is odd.
It holds 12 ≡ 0 (mod 2), since 12 is even.
It holds 61 725 ≡ 0 (mod 3), since 61 725 is a multiple of 3.
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Equivalent formulations for congruence of two numbers

Lemma

Let a, b be integers, let m be a positive integer. Then a ≡ b (mod m) if
an only if m | (b − a).

Example

It holds 8 298 ≡ 8 228 (mod 7), because the difference
8 298− 8 228 = 70 is a multiple of 7.

Lemma

Let a, b be integers, let m be a positive integer. Then a ≡ b (mod m) if
and only if there exists an integer k such that b = a + km.

Example

Evaluate 748 549mod 7 (the remainder after dividing 748 549 by 7).

It holds 748 549 = 700 000 + 48 549 ≡ 48 549 = 49 000− 451 ≡ −451 =
−490 + 39 ≡ 39 = 35 + 4 ≡ 4 (mod 7).
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Properties of congruences

Congruences with the same modulus can be summed and multiplied.

Theorem

Let a, b, c , d be integers, let m be a positive integer.
If a ≡ b (mod m), c ≡ d (mod m), then also a + c ≡ b + d (mod m),
ac ≡ bd (mod m).

Example

Because 7 ≡ 12 (mod 5) a −7 ≡ 3 (mod 5), then also
7− 7 ≡ 12 + 3 (mod 5) a 7 · (−7) ≡ 12 · 3 (mod 5).

Notice, the reverse implication does not hold!

Example

It holds 3 + 6 ≡ 7 + 5 (mod 3), but 3 6≡ 7 (mod 3) nor 6 6≡ 5 (mod 3).
Similarly 10 · 6 ≡ 4 · 15 (mod 5), but 10 6≡ 4 (mod 5) nor 6 6≡ 15 (mod 5).
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Modular arithmetics

We can sum and multiply remainders, when dividing by the same divisor
(or modulus). The result is expressed again as a remainder modulo m.

Definition

Let a, b be integers. We introduce operations “+m” and “·m” using the
usual sum and product and the “mod” operation.

a +m b = (a + b)modm, a ·m b = (a · b)modm.

This can also be introduces as counting with congruence classes modulo m.

Example

Counting on the clock: 9 +12 5 = 2, (9 + 5)mod 12 = 2.

Example

The sum of two even integers or the sum of odd two integers is an even
integer.

a +m b = (a + b)mod 2.
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Modular arithmetics - continued

Such operations have “nice” properties. They are

closed on the set {0, 1 . . . ,m − 1} (under operation modulo m),

commutative, a +m b = b +m a, a ·m b = b ·m a,

asociative,

a +m (b +m c) = (a +m b) +m c , a ·m (b ·m c) = (a ·m b) ·m c ,

and distributive with respect to addition,

a ·m (b +m c) = a ·m b +m a ·m c ,

there exist opposite numbers −a = m − a.

However inverses might not exist!
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Greatest common divisor and least common multiple

A prime is such positive integer that has two positive divisors: one and
itself.

Definition

Let a, b be two integers. Greatest common divisor of a, b is such a
positive common divisor m of a, b, which is divisible by each other
common divisor. We denote it GCD(a, b) or simply (a, b). Moreover, if
GCD(a, b) = 1, we say a, b are coprime.

Examples

Numbers 91 and 77 are not coprime, GCD(91, 77) = 7.
Numbers 92 and 77 are coprime, GCD(92, 77) = 1.

We can have a set of mutually coprime numbers.

Finding a prime factorization, or verifying that a certain integer is a prime,
is a difficult task.
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Euclid’s algorithm

IS an efficient way to find the GCD of two positive integers a, b.

easy to implement,
no need for prime factorization.

Euklid̊uv algoritmus

Let a, b be two positive integers. We divide a by b in modular arithmetic
with a remainder (using the Quotient Remainder Theorem) and proceed
repeating this process, until the remainder is zero.

a = bq1 + r1

b = r1q2 + r2

r1 = r2q3 + r3
...

rn−2 = rn−1qn−1 + rn

rn−1 = rnqn + 0

The last non-zero remainder rn is the greatest common divisor.
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Example

Find the greatest common divisor of 414 ans 662.

We denote a = 414, b = 662. (It is better to denote a = 662, b = 414.)

Proceed by the Euclid’s algorithm:

414 = 662 · 0 + 414

662 = 414 · 1 + 248

414 = 248 · 1 + 166

248 = 166 · 1 + 82

166 = 82 · 2 + 2

82 = 2 · 41 + 0

The greatest common divisor (414, 662) = 2.
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Euclid’s algorithm – implementation

Input are two positive integers a, b. Repeatedly we divide in modular
arithmetic with a remainder.

Euclid’s algorithm

int a,b; // positive integers

x = a; // dividend

y = b; // divisor

while (y<>0) {

r = x mod y; // evaluate the remainder r

x = y; // the divisor becomes the dividend

y = r; // the remainder becomes the divisor

}

return x; // (a,b) last non-zero remainder

Variable x holds the last non-zero remainder, which is the greatest
common divisor of a, b.
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Further use of Euclid’s algorithm

Euclid’s algorithm work not only for integers but on any set with two
(nice) operations.

dividing polynomials

for so called Gaussian integers

The following theorem states that the greatest common divisor of a,b can
be expressed as a linear combination of a, b.

Bézout’s Theorem

Let a, b be positive integers. There exists integers r , s such that
GCD(a, b) = ra + sb.

Bézout’s Theorem provides a nice tool to solve certain problems expressed
by congruences.

Euclid’s algorithm can be easily extend to evaluate the coefficients r , s in
the Bézout’s equality.
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Example

We have shown that the greatest common divisor of 414 and 662 is 2.
Find the Bézout’s coefficients r , s, so that 2 = r · 414 + s · 662.

Using the Euclid’s algorithm we got:

662 = 414 · 1 + 248

414 = 248 · 1 + 166

248 = 166 · 1 + 82

166 = 82 · 2 + 2

82 = 2 · 41 + 0

Now from the next-to-the last equation express GCD(414, 662) and
backward substitutions.

2 = 166− 2 · 82

2 = 166− 2 · (248− 166 · 1) = (−2) · 248 + 3 · 166

2 = (−2) · 248 + 3 · (414− 248 · 1) = 3 · 414 + (−5) · 248

2 = 3 · 414 + (−5) · (662− 414 · 1) = 8 · 414 + (−5) · 662

The coefficients are r = 8, s = −5.
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The following statements follow by the Bézout’s Theorem

Theorem

Let a, b, c be positive integers. If a | bc and (a, b) = 1, then a | c .

In congruences we can cancel by numbers coprime with modulus m.

Theorem

Let a, b, c be integers and m a positive integer. If ac ≡ bc (mod m) and
(m, c) = 1, then a ≡ b (mod m).

In congruences we can cancel by common divisors of both sides and
the modulus m.

Theorem

Let a, b, c be integers and m a positive integer. If ac ≡ bc (mod cm),
then a ≡ b (mod m).

We use these theorems in the last part of this lecture.
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Linear congruences

Definition

Let a, b be integers, let m be a positive integer, and let x be a variable.
Congruence

ax ≡ b (mod m)

is a linear congruence in one variable.

To solve a congruence is to find all values of x , for which the congruence
holds.

Example

Solution of the congruence x ≡ 1 (mod 2) are (precisely) all odd integers.
Solution of the congruence x ≡ 4 (mod 7) are integers x = 7k + 4, k ∈ Z.
Solution of the congruence 3x ≡ 0 (mod 7) are integers x = 7k , k ∈ Z.
Solution of the congruence 3x ≡ 4 (mod 7) are integers x = 7k + 6,
k ∈ Z.
Congruence 3x ≡ 1 (mod 6) has no solution.

Now we show how to find the solutions, provided it exists.
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Solving linear congruences

For solving congruences we use (similarly as for equations) so called
inverses modulo m.

Definition

Let a be an integer and let m be a positive integer, where m > 1. The
integer a is the inverse to a modulo m, if a · a ≡ 1 (mod m).

Example

Number 5 is inverse to 3 modulo 7, because 5 · 3 = 15 ≡ 1 (mod 7).
Number 3 is inverse to itself modulo 8, because 3 · 3 ≡ 1 (mod 8).
Number 7 is inverse to 3 modulo 10, because 7 · 3 ≡ 1 (mod 10).
Number 8 has no inverse modulo 10, since 8 · x is even, 8 · x 6≡ 1 (mod 10).

The following theorem shows, when inverses modulo m exist.

Theorem

Let a be an integer, let m be a positive integer, m > 1. If a, m are coprime,
then there exists the inverse a of a modulo m and is unique modulo m.

The proof is constructive, it provides a way to find the inverse a to a.
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Theorem

Let a be an integer, let m be a positive integer, where m > 1. If a, m are
coprime, then there exists the inverse a of a modulo m and is unique
modulo m.

Proof: Since a, m are coprime, then by Bézout’s Theorem exist integers r ,
s, such that

r · a + s ·m = 1.

This implies

r · a + s ·m ≡ 1 (mod m)

r · a ≡ 1 (mod m)

Hence, r is the inverse a modulo m, thus a = r .
We wont prove uniqueness here. �

A stronger claim holds also: if GCD(a,m) > 1, then no inverse to a
modulo m exists.
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Example

Because (3, 7) = 1, we can write 1 = 5 · 3− 2 · 7 ≡ 3 · 5 (mod 7).
Number 5 is inverse to 3 modulo 7, thus 3 = 5.

Notice, if a is not coprime to modulus m, no inverse can exist!

Example

Take 14, 6. Because (14, 6) = 2, by Bézout’s Theorem follow
2 = 1 · 14− 2 · 6 and no such smaller integer exist.
Therefore, for no number a can hold 14a ≡ 1 (mod 6).

When solving linear congruences we conclude:

Theorem

Let a, b be integers and let m be a positive integer. There exists a solution
of the linear congruence ax ≡ b (mod m) if and only if GCD(a,m) divides
b.
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Solving linear congruences

Now we can solve linear congruences in one variable analogously to solving
linear equations.

Example

Find all solutions of the linear congruence 3x ≡ 4 (mod 7).

First we find the inverse to 3 modulo 7. By previous example 3 = 5.
We multiply both sides of the congruence by the inverse 5. We get

5 · 3x ≡ 5 · 4 (mod 7)

x ≡ 20 (mod 7)

x ≡ 6 (mod 7)

The solution are all integers, that have remainder 6 when dividing by 7.
The solution is x = 7k + 6, where k ∈ Z.

The most toilsome part is to find the inverse modulo m.
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Manipulation and simplification of congruences

Let a, b, c , d be integers and let m be a positive integer.
Let a ≡ b (mod m), c ≡ d (mod m) be congruences.

We can add congruences with the same modulus.

a + c ≡ b + d (mod m)

We can multiply congruences with the same modulus.

ac ≡ bd (mod m)

We can multiply both sides of a congruence by the same integer c .

ac ≡ bc (mod m)

We can cancel in congruences by c coprime with the modulus, thus
for (c ,m) = 1 is

ac ≡ bc (mod m) ⇒ a ≡ b (mod m).

We can cancel in congruences by c = GCD(a, b,m)

ac ≡ bc (mod mc) ⇒ a ≡ b (mod m).

These manipulations allow to simplify and solve linear congruences.
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Example

Find the solution of the congruence 5x ≡ 2 (mod 13) and verify it.

Using 5 = 8 we get x ≡ 16 (mod 13), therefore x = 13t + 3, t ∈ Z.

Another solution: we add modulus 13 to the right side 5x ≡ 2 + 13
(mod 13). Cancelation by 5 yileds x ≡ 3 (mod 13), thus x = 13t + 3,
t ∈ Z.

Verification? Substitute 5(13t + 3) ≡ 5 · 13t + 15 ≡ 0t + 2 (mod 13).

Example

Find the solution of the congruence 3x ≡ 2 (mod 15).

Congruence has no solution, because (3, 15) = 3, and can’t cancel by 3.

Example

Find the solution of the congruence 3x ≡ 6 (mod 15).

We cancel both sides and modulus by 3. We get x ≡ 2 (mod 5).
This conguence tha the solution x = 5t + 2, t ∈ Z, because (3, 15) = 3.
We canceled both sides and the modulus by 3.
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Restoring an ISBN code

A friend has an excellent book on C language. Its ISBN-10 code is
80-05-001?4-1. Unfortunately, we cannot read the eighth digit. Which digit
was it?

We know the ISBN-10 code must satisfy

x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 + 7x7 + 8x8 + 9x9 + 10x10 ≡ 0 (mod 11).

We set up a linear congruence.

8 + 0 + 0 + 20 + 0 + 0 + 7 + 8x8 + 36 + 10 ≡ 0 (mod 11)

8x8 + 81 ≡ 0 (mod 11)

8x8 ≡ −81 (mod 11)

8x8 ≡ 7 (mod 11)

7 · 8x8 ≡ 7 · 7 (mod 11)

x8 ≡ 49 ≡ 5 (mod 11)

The missing digit of the ISBN-10 code is 5. (We used 8 = 7 modulo 11.)
The ISBN-10 code of the book is 80-05-00154-1.
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Chinese Remainder Theorem

The following theorem states, that there is a unique solution to a system
of congruences with pairwise coprime moduli.

Chinese Remainder Theorem

Let m1,m2, . . . ,mn be coprime positive integers greater than one. Let
a1, a2, . . . , an be integers. The system of congruences

x ≡ a1 (mod m1)

x ≡ a2 (mod m2)
...

x ≡ an (mod mn)

Has a unique solution modulo m1 ·m2 · · ·mn.

We provide a general method.

Due problems solved in ancient manuscripts is the theorem called “Chinese
Remainder Theorem”.
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The proof of the theorem is constructive, however the solution can be
found using manipulations backward substitution of congruences.

Example

Find the solution of the system of congruences

x ≡ 1 (mod 5)

x ≡ 2 (mod 6)

x ≡ 3 (mod 7)

Based on the theorems above we get the solution of the first congruence

x ≡ 1 (mod 5)

to be x = 1 + 5t, where t ∈ Z.
This solution we substitute the the second congruence

1 + 5t ≡ 2 (mod 6)

5t ≡ 1 (mod 6)

−t ≡ 1 (mod 6)

t ≡ −1 = 5 (mod 6)
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The solution of the congruence

t ≡ 5 (mod 6)

is t = 6u + 5, where u ∈ Z.
Substituting do x = 1 + 5t we get the solution of the first two congruences

x = 1 + 5(6u + 5) = 30u + 26, u ∈ Z,

which can be substituted to the third congruence. We get

30u + 26 ≡ 3 (mod 7)

2u − 2 ≡ 3 (mod 7)

4 · 2u ≡ 4 · 5 (mod 7)

u ≡ 6 (mod 7).

The solution is u = 7v + 6, where v ∈ Z, which we substitute to the
solution of the first two congruences.

x = 30u + 26 = 30(7v + 6) + 26 = 210v + 206, v ∈ Z.

We get the solution of the system of three congruences.
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Application of congruences – hash functions

When storing a large database we can add a new entry x to the end of the
database. This is cumbersome or searching the database – we have to
search the whole database.
Of there are m entries, we need O(m) steps.

Hash function: We estimate the expected database size m and allocate the
corresponding memory. New entry with key k we enter to position h(k),
where

h(k) = k modm,

or the next appropriate free place after h(k).
Instead of searching whole database, we start searching at position h(k).

Example

Students at a university with 15 000 students, key is the social security
number.

Possible hash function h(k) = security number mod 15 000.
Even better h(k) = security number mod 30 000.
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Application of congruences – Pseudorandom numbers

A truly random number is computationally “expensive”.
However, pseudorandom numbers we evaluate quickly

xn+1 = (axn + b)modm,

where a, b,m are carefully selected integers. The value x0 is the “seed”.

Example

For example for a = 7, b = 4, m = 9, and x0 = 1 we get

x1 = (7x0 + 4)mod 9 = 11mod 9 = 2

x2 = (7x1 + 4)mod 9 = 18mod 9 = 0

x3 = (7x0 + 4)mod 9 = 4mod 9 = 4

x4 = (7x0 + 4)mod 9 = 32mod 9 = 5
...

This gives the sequence 1, 2, 0, 4, 5, 3, 7, 8, 6, 1, 2, 0, 4, . . .

A commonly used random generator: a = 75, b = 0, m = 231 − 1.
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Application of congruences – check sums

Parity sums

Let x1, x2, . . . , xn be an n-bit word.
The sender adds another bit (bits), a parity check digit

xn+1 = (x1 + x2 + · · ·+ xn)mod 2.

If during the transfer one (or an odd number) errors occur, the recipient
evaluates

x1 + x2 + · · ·+ xn + xn+1 6≡ 0 (mod 2)

and can require ask for the message to be sent again.

Using several parity check digits, we can CORRECT certain errors without
sending it again.
(example provided later)
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Application of congruences – UPC bar codes

UPC bar code (Universal Product Code)

There are many variations on UPC bar codes, most of them make use of
check sums.
UPC-A bar code has 12 digits. It satisfies

3x1+x2+3x3+x4+3x5+x6+3x7+x8+3x9+x10+3x11+x12 ≡ 0 (mod 10)

Example

Is 041331021641 a valid UPC code?

Since 0 + 4 + 3 + 3 + 9 + 1 + 0 + 2 + 3 + 6 + 12 + 1 = 44 ≡ 4 (mod 10),
therefore the code is invalid.
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Application of solving linear congruences

Reconstruction of UPC bar codes

We know the UPC code 041331021641 is not valid. However it seems the
fourth digit is damaged. What is the correct UPC code?

We know the digits of the UPC code 041?31021641 must satisfy

3x1+x2+3x3+x4+3x5+x6+3x7+x8+3x9+x10+3x11+x12 ≡ 0 (mod 10)

We set up a linear congruence.

0 + 4 + 3 + x4 + 9 + 1 + 0 + 2 + 3 + 6 + 12 + 1 ≡ 0 (mod 10)

x4 + 41 ≡ 0 (mod 10)

x4 ≡ −1 (mod 10)

x4 ≡ 9 (mod 10)

The missing digit of the UPC bar code is 9. The code is 041931021641.

It is easy to verify

3x1 + x2 + 3x3 + x4 + 3x5 + x6 + 3x7 + x8 + 3x9 + x10 + 3x11 + x12 =

= 0 + 4 + 3 + 9 + 9 + 1 + 0 + 2 + 3 + 6 + 12 + 1 = 50 ≡ 0 (mod 10).
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Further application of congruences

ISBN/ISSN

social security numbers (rodná č́ısla)

banknote numbers

bank account numbers

simple ciphers
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Application of solving linear congruences

Reconstruction of the social security number (rodné č́ıslo)

An old lady forgot her social security number. She remembers her birthday
and the last three digits. Thus, we can reconstruct the following parts of
the number: 346509?248. What is the missing digit?

We know that the digits have to satisfy

x1x2 + x3x4 + x5x6 + x7x8 + x9x10 ≡ 0 (mod 11).

We set up a linear congruence

34 + 65 + 9 + (10x + 2) + 48 ≡ 0 (mod 11)

1− 1− 2 + 10x + 2 + 4 ≡ 0 (mod 11)

10x ≡ −4 (mod 11)

−x ≡ −4 (mod 11)

x ≡ 4 (mod 11)

The missing digit is 4.
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Next lecture

Algorithms for discrete structures

types discrete structures
implementation of sets
generating selection and arrangements
generating random numbers
combinatorial explosion
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