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About this file

This file is meant to be a guideline for the lecturer. Many important pieces
of information are not in this file, they are to be delivered in the lecture:
said, shown or drawn on board. The file is made available with the hope
students will easier catch up with lectures they missed.

For study the following resources are better suitable:

Meyer: Lecture notes and readings for an
http://ocw.mit.edu/courses/electrical-engineering-and-

computer-science/6-042j-mathematics-for-computer-science

-fall-2005/readings/”(weeks 1-5, 8-10, 12-13), MIT, 2005.

Diestel: Graph theory http://diestel-graph-theory.com/

(chapters 1-6), Springer, 2010.

See also http://homel.vsb.cz/~kov16/predmety dm.php
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Lecture overview

Kapitola 5. Recurrence relations
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sequences given by recurrences
main problem
methods of solving
examples
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5. Recurrence relations
Last chapter already mentioned that not all selections and arrangements
can be expressed in simple “closed” formulas mentioned in Section 2.
Today we mention several typical problems that we encounter when using
recursive algorithms.
We say, how the complexity of certain such algorithms can be expressed.

Typical examples of recursive algorithms or recursive approaches

merge sort
dynamic programming
using n pairs of parentheses on n + 1 terms
number of “ordered rooted trees” in chapter UTG 4
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5.1. Motivation examples
The classic Fibonacci sequence is notoriously known.

Fibonacci sequence

A young pair of rabbits has been released on an island. The rabbits are
mature at the age of two months, after that they raise another pair of
rabbits each month. What is the number fn of pairs of rabbits after n
months?

Clearly f1 = f2 = 1.
For n ≥ 3 is the number of pairs given by

the number of pairs in the previous months,

the number of pairs of two months age fn−2, that became mature and
can breed.

Altogether we have fn = fn−1 + fn−2 pairs, if dying of age is neglected.

The solution, i.e. the formula for fn we derive at the end of the lecture.
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Towers of Hanoi

Example

We have three pegs and a set of discs of different sizes. All discs are on
one peg arranged according their size. The task is to move all discs to
another peg while

always one disc is moved,

never a larger disc can be on top of a smaller one.

What is the smallest number of moves Hn to move the entire tower of n
discs?
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Towers of Hanoi

To move the largest disc, n − 1 smaller discs have to be moved to another
peg using Hn−1 moves.

We divide the total number of moves Hn into three parts.

First using Hn−1 moves transfer n − 1 smaller discs on the third peg,

then using a single move transfer the largest disc to the desired peg,

finally using Hn−1 moves transfer n − 1 smaller discs on top of the
largest disc.

The total number of moves is given by the recurrence relation

Hn = 2Hn−1 + 1,

while clearly H1 = 1.

The solution, i.e. the formula for Hn we derive at the end of the lecture.
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Bit strings without adjacent zeroes

Example

How many bit strings of length n are there, that have no two adjacent
zeroes? (important in bar codes)

Denote the number of required bit strings with n bits by an.
We distinguish, if a string of n bits end with a 0 or a 1 (assume n ≥ 3).

if the last bit is 1, then there are precisely an−1 such strings with an
additional bit 1,

if the last bit is 0, then the next-to-the-last bit has to be 1 and there
are an−2 such strings with additional bits 10 at the end.

These are all the options, therefore the total number of strings with n bits,
where no two zeroes are adjacent, is

an = an−1 + an−2.

It remains to figure out that a1 = 2, a2 = 4− 1 = 3.

At the end of the lecture we derive the formula for an.
Notice: an is similar to, yet different from the Fibonacci sequence.
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Code words with an even number of zeroes

Example

A computer system works with keywords made from digits 0, 1, . . . , 9. A
valid code word has an even number of zeroes. How many such code
words of length n exist?

Let xn denote the number of such code words with n digits.
We distinguish if the n-th digit of a code word is 0 or no (suppose n ≥ 2).

code words with last digit not 0 are precisely 9xn−1, where the last
digit 1,2,. . . , 9 was added to some of xn−1 code words of length n− 1,

code words with last digit 0, are precisely those that are not code
words xn−1.

These are all possibilities, therefore the total of code words of length n
with an even number of zeroes is

xn = 9xn−1 + (10n−1 − xn−1) = 8xn−1 + 10n−1.

It remains to notice that x1 = 9. We search for the formula expressing xn.
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Number of ways to parenthesize n + 1 terms with n parentheses

Example

We have an expression with n + 1 terms, priority of operation ⊕ is given by
n pairs of parentheses. In how many different ways can Cn be parethesized?

C0 = 1, since x1 is unique.
C1 = 1, since (x1 ⊕ x2) is unique.
C2 = 2, since ((x1 ⊕ x2)⊕ x3), (x1 ⊕ (x2 ⊕ x3)) are two possibilities.
C3 = 5, there are 5 ways (((x1 ⊕ x2)⊕ x3)⊕ x4), ((x1 ⊕ (x2 ⊕ x3))⊕ x4),
((x1 ⊕ x2)⊕ (x3 ⊕ x4)), (x1 ⊕ ((x2 ⊕ x3)⊕ x4)), (x1 ⊕ (x2 ⊕ (x3 ⊕ x4))).

In general the most our parenthesis have only one operator “⊕”. Notice
the operation is between two smaller terms, there are n different numbers
of terms to the left of the operator in the outer parenthesis.

Cn =
n−1∑
k=0

CkCn−k−1

Recurrence relation Cn =
∑n−1

k=0 CkCn−k−1 appears in a number of
different real life problems, so called Catalan numbers.
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5.2. Sequences given by recurrence relations
Recall:
Sequences are given by

a list of first elements: 1, 3, 7, 15, 31, . . .

a recurrence relation: an = 2an−1 + 1, a0 = 1

a formula for n-th term: an = 2n − 1

Now we deal with recurrence relations, every subsequent term can be
evaluated based on previous terms.

Main problem

Find the formula for the n-th term.

if it exists,

if it is possible,

and if we can do so.
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Linear homogeneous recurrence relations of order k with constant
coefficients

Linear homogeneous recurrence relations of order k with constant
coefficients is a sequence given by a recurrence relation of the form

an = c1an−1 + c2an−2 + · · ·+ ckan−k ,

where c1, c2, . . . , ck are real numbers, ck 6= 0.

Let us explore the definition

it is linear, because it is a linear combination of the previous terms,

it is homogeneous, because there is no term without ai ,

it is of order k , because an is given by at most k previous terms,

it has constant coefficients, because each coefficient at ai is a
constant independent on n.

For a unique description of the sequence given by a recurrence relation of
order k we have to provide k first terms.
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Fibonacci sequence

Fibonacci sequence fn = fn−1 + fn−2 is a linear homogeneous recurrence
relation of second order with constant coefficients.
First two terms are f1 = 1, f2 = 1.

Bit strings without adjacent zeroes

Sequence of the number of bit strings of length n, which have no adjacent
zeroes an = an−1 + an−2, is a linear homogeneous recurrence relation of
order 2 with constant koeficients.
First two terms are a1 = 2, a2 = 3.

Hanoi tower

Sequence of the number of steps Hn necessary to move the entire tower of
n discs Hn = 2Hn−1 + 1 is a linear recurrence relation of the first order
with constant coefficients, which is not homogeneous.
First term is H1 = 1.
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Code words with an even number of zeroes

The number of codewords made from digits 0, 1, . . . , 9, where each
codeword has an even number of zeroes is a linear recurrence relation of
the first order with constant coefficients xn = 8xn−1 + 10n−1. First term is
x1 = 9.
This relation is not homogeneous, since 10n−1 is not a coefficient at ai .

Catalan numbers

The sequence of Catalan numbers Cn =
∑n−1

k=0 CkCn−k−1 is given by a
homogeneous recurrence relation. First terms are C1 = 1, C2 = 2.
This recurrence relation is not linear, because we multiply terms Ck , Cn−k
and has no fixed order, because the number of terms grows with n.

Example

Recurrence relation an = an−1 · an−2 is a homogeneous recurrence relation
of second order with constant coefficients. First two terms are a1 = 1,
a2 = 2.
This recurrence relation is not linear, since we multiply terms an−1, an−2.
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5.3. Methods for solving recurrence relations

Main problem of solving recurrence relations

If a linear recurrence relation of (small) order k with constant coefficients
is given by a recurrence relation and sufficient first terms, we can “solve”
this recurrence relation. This means, we find a formula for the n-th term,
which evaluates an without the knowledge of previous terms.

We provide a general framework:

first we set up a so called characteristic equation,

we find the roots of the characteristic equation,

based on the roots we set up a general solution,

based on the value of the given first terms of the sequence we
evaluate coefficients of the general solution.

We start with simple examples.
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Characteristic equation and its roots

One can show (e.g. using so called generating functions), that the solution
of the linear homogeneous recurrence relations with constant coefficients
will have the form an = rn, where r is a constant.
Substituting into the recurrence relation we obtain

an = c1an−1 + c2an−2 + · · ·+ ckan−k

rn = c1rn−1 + c2rn−2 + · · ·+ ck rn−k

rk = c1rk−1 + c2rk−2 + · · ·+ ck rk−k

0 = rk − c1rk−1 − c2rk−2 − · · · − ck .

The last equation is the characteristic equation of the recurrence relation.
Clearly, the solution of this equation in variable r are the roots ri . We call
them characteristic roots.
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Generalization of the solution

We split the solution of linear homogeneous recurrence relation with
constant coefficients into several steps.
The next step includes solutions to a larger family of recurrence relations:

first we show how a general form of the solution of a linear
homogeneous recurrence relation of order 2 with constant coefficients
looks like,

I if there are two distinct real characteristic roots,
I if there are two identical real characteristic roots.

Next we show a general form of the solution of a linear homogeneous
recurrence relation of order k with constant coefficients, with different
roots.

Then we provide a general form of the solution of a linear
homogeneous recurrence relation of order k with constant coefficients.

and finally we provide a general form of the solution of a
non-homogeneous linear recurrence relation of order k with constant
coefficients.

We only mention further generalizations.
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Form of the solution

There exists a general solution in a specific form.

Theorem

Let c1, c2 be two real numbers. If the characteristic equation
r 2 − c1r − c2 = 0 has two distinct (real) roots r1, r2, then the solution of
the recurrence relation an = c1an−1 + c2an−2 is of the form
an = α1rn1 + α2rn2 , for n = 0, 1, 2, . . . .

We omit the proof.

There is a stronger claim, holds even if the roots are complex numbers.
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Example

Solve the recurrence relation an = an−1 + 2an−2, where a0 = 2, a1 = 7.

We follow the steps suggested earlier:
We expect the solution of the form an = rn. Substituting to the recurrence
relation we get the characteristic equation

r 2 − r − 2 = 0

(r + 1)(r − 2) = 0.

Characteristic roots are r1 = 2, r2 = −1. The general solution has the form

an = α12n + α2(−1)n.

Substituting a0, a1 we get two equations in two variables α1, α2.

a0 = 2 = α1 · 1 + α2 · 1
a1 = 7 = α1 · 2 + α2 · (−1)

Solving the equation yields α1 = 3, α2 = −1, thus the general solution is

an = 3 · 2n − 1 · (−1)n.
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Indeed,

the formula an = 3 ·1 2n − 1(−1)n for n = 0, 1, 2, . . .

the recurrence relation an = an−1 + 2an−2, where a0 = 2, a1 = 7

describe the same sequence:

2, 7, 11, 25, 47, 97, 191, 385, 767, 1 537, 3 071, . . .

Now we examine the case with two identical characteristic roots.

Theorem

Let c1, c2 be two real numbers, where c2 6= 0. If the characteristic
equation r 2 − c1r − c2 = 0 has a double (real) root r0, then the solution of
the recurrence relation an = c1an−1 + c2an−2 is of the form
an = α1rn0 + α2nrn0 , for n = 0, 1, 2, . . . .

Notice, the second term of the general solution is a multiple of n.



21 / 37

Example

Solve the recurrence relation an = 10an−1 − 25an−2, where a0 = 3, a1 = 5.

We follow the same steps:
We expect the solution of the form an = rn. Substituting to the recurrence
relation we get the characteristic equation

r 2 − 10r + 25 = 0

(r − 5)(r − 5) = 0.

Characteristic roots are r1 = r2 = 5, we denote r0 = 5. The general
solution has the form

an = α15n + α2n5n.

Substituting a0, a1 we get two equations in two variables α1, α2.

a0 = 3 = α1 · 1 + 0

a1 = 5 = α1 · 5 + α2 · 5

Solving the equation yields α1 = 3, α2 = −2, thus the general solution is

an = 3 · 5n − 2n5n.
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We found the formula for the n-th term

an = 3 · 5n − 2n5n describes the same sequence as

the recurrence relation an = 10an−1 − 25an−2, where a0 = 3, a1 = 5.

Sequence is

3, 5,−25,−375,−3 125,−21 875,−140 625, . . .

Solution of linear recurrence relations can be generalized to higher orders.

Theorem

Let c1, c2, . . . , ck be k real numbers. If the characteristic equation
rk − c1rk−1 − c2rk−2 − · · · − ck = 0 has k distinct (real)
roots r1, r2, . . . , rk , then the solution of the recurrence relation
an = c1an−1 + c2an−2 + · · ·+ ckan−k is of the form
an = α1rn1 + α2rn2 + · · ·+ αk rnk , for n = 0, 1, 2, . . . .



23 / 37

Example

Solve the recurrence relation an = 4an−1 − an−2 − 6an−3, where a0 = 6
a1 = 5, a2 = 13.

We get the characteristic equation

r 3 − 4r 2 + r + 6 = 0.

Characteristic roots are r1 = −1, r2 = 2, r3 = 3. The general solution has
the form

an = α1(−1)n + α22n + α33n.

Substituting a0, a1, a2 we get three equations in three variables α1, α2, α3.

a0 = 6 = α1 + α2 + α3

a1 = 5 = −α1 + 2α2 + 3α3

a2 = 13 = α1 + 4α2 + 9α3

Solving the equation yields α1 = 2, α2 = 5, α3 = −1, thus the general
solution is

an = 2 · (−1)n + 5 · 2n − 3n.
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Solving general linear homogeneous recurrence relations with
constant coefficients

Theorem

Let c1, c2, . . . , ck be k real numbers. If the characteristic equation
rk − c1rk−1 − c2rk−2 − · · · − ck = 0 has t distinct roots r1, r2, . . . , rt with
multiplicities m1,m2, . . . ,mt , then the solution of the recurrence relation
an = c1an−1 + c2an−2 + · · ·+ ckan−k for n = 0, 1, 2, . . . has the form

an = (α1,1 + α1,2n + · · ·+ α1,m1nm1−1)rn1 +

+(α2,1 + α2,2n + · · ·+ α2,m2nm2−1)rn2 +

+ · · ·+ (αt,1 + αt,2n + · · ·+ αt,mt n
mt−1)rnt

To find the solution, we
1 get the characteristic equation,
2 find characteristic roots (if possible),
3 set up the general form of the solution with coefficients αi ,j ,
4 substitute k first (known) terms,
5 solve the system of equations with k variables,
6 set up the general solution.
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Solving general linear non-homogeneous recurrence relations with
constant coefficients
So far only homogeneous recurrence relations . . .

Solving non-homogeneous recurrence relations in two steps:

general solution of the associated homogeneous recurrence relation,

one particular solution of the linear non-homogeneous recurrence.

Theorem

Let c1, c2, . . . , ck be k real numbers, let F (n) be a function not identically
zero.
If a

(p)
n is a particular solution to the linear non-homogeneous recurrence

relations with constant coefficients

an = c1an−1 + c2an−2 + · · ·+ ckan−k + F (n),

then every solution is of the form a
(p)
n + a

(h)
n , where a

(h)
n is the general

solution of the associated homogeneous recurrence relation

an = c1an−1 + c2an−2 + · · ·+ ckan−k .
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Example

Show that a
(p)
n = −n − 2 is a (particular) solution of the recurrence

relation an = 2an−1 + n.

To verify a solution is easy: substitute and compare:
an = 2an−1 + n

−n − 2 = 2 (−(n − 1)− 2) + n

−n − 2 = −n − 2.

Notice: the particular solution has the form a
(p)
n = cn + d .

Example

Show that a
(p)
n = c · 7n is the form of a (particular) solution of the

recurrence relation an = 5an−1 − 6an−2 + 7n.

Again substitute and compare:
an = 5an−1 − 6an−2 + 7n

c · 7n = 5c · 7n−1 − 6c · 7n−2 + 7n

c =
49

20
.
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Theorem

Let c1, c2, . . . , ck be k real numbers, let F (n) be a function not identically
zero.
Suppose a

(p)
n is a solution of the linear non-homogeneous recurrence

relations with constant coefficients

an = c1an−1 + c2an−2 + · · ·+ ckan−k + F (n),

where F (n) = (btn
t + bt−1nt−1 + · · ·+ b1n + b0)sn.

1 When s is not a root of the characteristic equation of the associated

linear homogeneous recurrence relations, then a
(p)
n has the form

(ptn
t + pt−1nt−1 + · · ·+ p1n + p0)sn.

2 When s is a root with multiplicity m of the characteristic equation of

the associated linear homogeneous recurrence relations, then a
(p)
n has

the form
nm(ptn

t + pt−1nt−1 + · · ·+ p1n + p0)sn.
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Example

Solve the recurrence relation an = 2an−1 + n2n.

First we find the solution of the associated linear homogeneous recurrence
relation

an = 2an−1.

The characteristic equation rn = 2rn−1 has a nonzero root r = 2.

Therefore the general solution has the form a
(h)
n = α2n.

Next we find a particular solution of the original linear non-homogeneous
recurrence relation. By the previous theorem is

a
(p)
n = n(cn + d)2n,

since base 2 is the root of the characteristic equation.

To find the constants we substitute the particular solution

a
(p)
n = n(cn + d)2n into the recurrence relation an = 2an−1 + n2n.
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Example continued

We get
n(cn + d)2n = 2 · (n − 1)(c(n − 1) + d)2n−1 + n2n

(cn2 + dn)2n = 2 · (c(n − 1)2 + d(n − 1))2n−1 + n2n

(cn2 + dn)2n = (cn2 − 2cn + c + dn − d + n)2n

dn = (−2c + d + 1)n + (c − d).

Comparing coefficients of the polynomials at n1 and n0 we get a system of
linear equations

n1 : d = −2c + d + 1

n0 : 0 = c − d .

The solution is c = 1
2 , d = 1

2 and thus the particular solutions is

a
(p)
n = n( 1

2 n + 1
2 )2n = (n2 + n)2n−1.

The solution of the given recurrence relation is

an = a
(h)
n + a

(p)
n = α · 2n + (n2 + n)2n−1 = (n2 + n + 2α)2n−1.

Value of α depends on the initial term a1.
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5.4. Solving the motivation examples from the first section

Fibonacci sequence

Solve the recurrence relation fn = fn−1 + fn−2, where f0 = 0, f1 = 1.

We obtain the characteristic equation r 2 − r − 1 = 0.
Characteristic roots are r1 = (1 +

√
5)/2, r2 = (1−

√
5)/2. The general

solution has the form

fn = α1

(
1 +
√

5

2

)n

+ α2

(
1−
√

5

2

)n

.

Substituting f0 = 0, f1 = 1 we get two equations in two variables α1, α2.

0 = α1 · 1 + α2 · 1

1 = α1 ·

(
1 +
√

5

2

)
+ α2 ·

(
1−
√

5

2

)
Solving the system yields α1 =

√
5

5 , α2 = −
√

5
5 , thus, the general solution is

fn =

√
5

5
·

(
1 +
√

5

2

)n

−
√

5

5
·

(
1−
√

5

2

)n

.
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Towers of Hanoi

Solve the recurrence relation Hn = 2Hn−1 + 1, where H1 = 1.

It is a linear non-homogeneous recurrence relation.
On the other hand it is a first order recurrence, we can obtain the solution
differently.
Notice

Hn = 2Hn−1 + 1

= 2(2Hn−2 + 1) + 1 = 22Hn−2 + 2 + 1

= 22(2Hn−3 + 1) + 2 + 1 = 23Hn−2 + 22 + 2 + 1
...

= 2n−1H1 + 2n−2 + 2n−3 + · · ·+ 2 + 1

= 2n−1 + 2n−2 + 2n−3 + · · ·+ 2 + 1

= 2n − 1.

The solution of the linear non-homogeneous recurrence relation of the
Towers of Hanoi is

Hn = 2n − 1.
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Bit strings with no adjacent zeroes

Solve the recurrence relation an = an−1 + an−2, where a1 = 2, a2 = 3.

The characteristic equation is r 2 − r − 1 = 0.
Characteristic roots are r1 = (1 +

√
5)/2, r2 = (1−

√
5)/2. The general

solution has the form

an = α1

(
1 +
√

5

2

)n

+ α2

(
1−
√

5

2

)n

.

Substituting a1 = 2, a2 = 3 we get two equations in two variables α1, α2.

2 = α1 ·

(
1 +
√

5

2

)
+ α2 ·

(
1−
√

5

2

)

3 = α1 ·

(
1 +
√

5

2

)2

+ α2 ·

(
1−
√

5

2

)2

Solving the system yields α1 = 5+
√

5
10 , α2 = 5−

√
5

10 , the general solution is

an =
5 +
√

5

10
·

(
1 +
√

5

2

)n

+
5−
√

5

10
·

(
1−
√

5

2

)n

.

Example
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Code words with an even number of zeroes

Solve the recurrence relation xn = 8xn−1 + 10n−1, where x1 = 9.

This is a linear non-homogeneous recurrence relation with constant
coefficients.

First we find the general solution of the associated homogeneous
recurrence relation

xn = 8xn−1.

Its characteristic equation rn = 8rn−1 has a non-zero root r = 8.

Therefore the general form of the solution is x
(h)
n = α8n.

Constant α can be evaluated only after we get the particular solution.

Next we find a particular solution of the linear non-homogeneous
recurrence relation. By the theorem we expect a solution of the form

x
(p)
n = c · 10n,

since base 10 is not the root of the characteristic equation.

To evaluate c we substitute the particular solution x
(p)
n = c · 10n to the

recurrence relation xn = 8xn−1 + 10n−1.
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We get
c10n = 8 · c10n−1 + 10n−1

10c = 8c + 1

2c = 1

c =
1

2
.

Now the general solution of the recurrence relation xn = 8xn−1 + 10n−1 is

xn = x
(h)
n + x

(p)
n = α · 8n +

1

2
· 10n.

To evaluate α we substitute x1 = 9 and n = 1 to the general solution
xn = α · 8n + 1

2 · 10n. We get

9 = α · 8 +
1

2
· 10

9− 5 = 8α

α =
1

2
.

The solution of the recurrence relation including the initial term is

an =
1

2
· 8n +

1

2
· 10n.
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Merge sort

Merge sort is a well known algorithm for sorting a sequence of n numbers.
It is a recursive algorithm.
Knowing the algorithm, it is easy to see, that the number of comparisons
(and operations) Mn to sort a sequence of n terms can be bounded by a
recurrence relation Mn = 2Mdn/2e + n, where M1 = 1.

This linear non-homogeneous recurrence relation we cannot solve now, it
has not a constant order.

HOwever it can be shown, that the solution describing the number of steps
of the Merge sort algorithm, is a function of complexity

Mn = O(n log n).
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Tower of Hanoi – another solution

Solve the recurrence relation Hn = 2Hn−1 + 1, where H1 = 1.

It is a linear non-homogeneous recurrence relation. First we find the
general solution of the associated homogeneous relation Hn = 2Hn−1.
The characteristic equations r = 2 has a single root, therefore the general
solution has form Hn = α · 2n. The value of α can be determined only later.

Since the fuction F (n) = 1, the particular solution H
(p)
n has the form c · 1.

To evaluate c , the particular solution is substituted to the recurrence
relation. Hn = 2Hn−1 + 1

c = 2c + 1

−1 = c

The particular solution is H
(p)
n = −1 and the general solution of the

non-homogeneous equation has the form Hn = α · 2n − 1.

Now we can evaluate α by substituting the initial value H1 = 1. We get
1 = α · 21 − 1, thus α = 1.
The solution of the linear non-homogeneous equation giving the number of
moves to solve the Towers of Hanoi is Hn = 2n − 1.
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Next lecture

Chapter 6. Congruences and modular arithmetics

motivation

division and divisibility

linear congruences in one variable

methods of solving

examples and applications
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