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Petr Ková̌r & Tereza Ková̌rová
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About this file

This file is meant to be a guideline for the lecturer. Many important pieces
of information are not in this file, they are to be delivered in the lecture:
said, shown or drawn on board. The file is made available with the hope
students will easier catch up with lectures they missed.

For study the following resources are better suitable:

Meyer: Lecture notes and readings for an
http://ocw.mit.edu/courses/electrical-engineering-and-

computer-science/6-042j-mathematics-for-computer-science

-fall-2005/readings/”(weeks 1-5, 8-10, 12-13), MIT, 2005.

Diestel: Graph theory http://diestel-graph-theory.com/

(chapters 1-6), Springer, 2010.

See also http://homel.vsb.cz/~kov16/predmety dm.php
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Course number: 470-2301/02, 470-2301/04*, 470-2301/06
Credits: 6 credits (2/2/2), *5 credits (2/2/1)
Warrant: Petr Ková̌r
Lecturer: Petr Ková̌r/Tereza Ková̌rová

Web: am.vsb.cz/kovar
Email: Petr.Kovar@vsb.cz
Office: EA536
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Classification

Tests

every week (starting with the third week)

2–10 minutes

evaluation 0/1/2 (no/almost correct/completely correct)

every other week one additional teoretical question

we take 4 best 2-point scores and 4 best 3-point scores among 10

total up to 20 points

if a student skips a test: 0 points

Typical assignments available at http://am.vsb.cz/kovar (in Czech).
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Classification (cont.)

Project

assigned in the second half of the term

project: two or four problems (discrete math & graph theory)

Bonus Projects for all who want to learn something
contains two problems (1 discrete mathematics & 1 graph theory)

total of 10 points

to receive credit (“zápočet”) the project has to be accepted
(minimum standards, see web)

keep the deadline!

work alone!

Credit (“Zápočet”) = at least 10 points and an accepted project
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Classification (cont.)

Exam

examining dates given at the end of the term

total of 70 points

sample exam on the web (http://am.vsb.cz/kovar)

you can use one page A4 with handwritten notes
definitions, theorems a formulas, but no examples
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Literature

In Czech:

(partially M. Kubesa. Základy diskrétńı matematiky, textbook
on-line).
P. Ková̌r: Algoritmizace diskrétńıch struktur on-line.
P. Ková̌r. Úvod do teorie graf̊u, textbook on-line.
P. Ková̌r: Cvičeńı z diskrétńı matematiky, exercises on-line.
solved examples as “pencasts” available on-line.

In English:

Meyer: Lecture notes and readings for an open course (weeks 1-5,
8-10, 12-13), MIT, 2005.
Diestel: Graph theory on-line preview (chapetrs 1-6), Springer, 2010.

You are free to use any major textbook, but beware: details can differ!
At the exam things will be required as in the lecture.

Office hours

We 9:30–10:30 (?) EA536.

see web: http://am.vsb.cz/kovar
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Sample problems

Some problem, we will learn how to solve:

handshaking problem. . .

list all possible tickets in powerball . . .

nine friends exchanging three presents each. . .

three lairs and three wells. . .

seven bridges of Königsberg. . .

missing digits in social security number (“rodné č́ıslo”). . .

correcting UPC bar codes. . .

Monty Hall. . .

Additional interesting problems and exercises:
http://am.vsb.cz/kovar.
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Z p̌redchoźıho semestru znáte

Chapter 0. Review
number sets

set and set operations

relations

proof techniques

mathematical induction

ceiling and floor functions
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Numbers and interval of integers

Natural numbers and integers

Natural numbers are denoted by N = {1, 2, 3, 4, 5, . . .}
notice! zero is not among them
Natural numbers with zero included denoted by N0 = {0, 1, 2, 3, 4, 5, . . .}
Integers are denoted by Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, 4, . . .}

Intervals of integers between a and b

is the set {a, a + 1, . . . , b − 1, b}
we denote it by: [a, b] = {a, a + 1, . . . , b − 1, b}

Compare to the notation used for an interval of real numbers (a, b).

Examples

[3, 7] = {3, 4, 5, 6, 7} [−2,−2] = {−2}
[5, 0] = ∅ (the empty set)
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Cartesian product and Cartesian power

Cartesian product of two sets A× B = {(a, b) : a ∈ A, b ∈ B}
is the set of all ordered pairs (a, b) such that a ∈ A and b ∈ B in this order.
A1 × A2 × · · · × An = {(a1, a2, . . . , an) : ai ∈ Ai , i = 1, 2, . . . , n}
For A1 = A2 = . . . = An we get the Cartesian power An.
We define A0 = {∅}, A1 = A.

A

B

A×B
a

b

♣ ♥ ♠

(a,♣)

(b,♣)

(a,♥)

(b,♥)

(a,♠)

(b,♠)

Cartesian product of sets A× B = {a, b} × {♣,♥,♠}.

Power set of A

is the set of all subsets of A

2A = {X : X ⊆ A}.
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A family of sets over A

or a family of subsets of A is some T ⊆ 2A.
We prefer the term “family of sets” to “set of sets”.

r

b

g y

rg

b y

All subsets of the set of colors C = {r , g , b, y}.
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Generalized unions and intersections

Generalized union
n⋃

i=1

Xi and intersection
n⋂

i=1

Xi of sets.

Given an index set J, we can write
⋃
j∈J

Xj and
⋂
j∈J

Xj .

Examples

Ai = {1, 2, . . . , i}, for each i ∈ N
5⋃

i=1

Ai = {1, 2, 3, 4, 5},
5⋂

i=1

Ai = {1},
∞⋂
i=1

Ai = {1}

Questions

What is
⋂
j∈J

Aj for J = {2, 5}?

What is
⋃
j∈J

Aj for J = N?
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Definition

(Homogenous) binary relation R on the set A is a subset of the Cartesian
product A× A = A2, i.e.

R ⊆ A2.

Definition

(Homogenous) n-ary relation S on the set A is a subset of the Cartesian
power A× A× · · · × A = An, i.e.

S ⊆ An.

Example

Relation between students, with the same grade in DiM.

Relation between pairs of students, who has a higher score.

Relation between documents with similar terms (plagiarism). . .

Binary relation is a special case of an n-ary relation. (unary, ternary, . . . ).
(Homogenous) relations on a given set are special case of (heterogenous)
relation between sets. In greater detail in another course.
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Equivalence relation

Definition

Equivalence on the set A is a reflexive, symmetric, and transitive binary
relation on the set A. We denote it by '.

Definition

Let ' be an equivalence relation on the set A. An equivalence class of x
(denoted by [' x ]) is the subset of A defined by [' x ] = {z ∈ A : z ' x}.

['a]

[' b]

[' c]

[' d]

Equivalence relation expresses “having the same property”.

Examples

congruence relation ≡ (same remainder after division by n)
relation among students “having the same grade in DIM”
relation “synonyms in a language” is (often) an equivalence
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Partial ordering
Ordering and equivalence are among the most common relations.

Definition

Partial ordering � on the set A is reflexive, antisymmetric, and transitive
binary relation on the set A. The set with the relation is called a poset.

The word partial emphasizes the fact, that the relation does not have to
be linear relation on A, i.e. not every pair of elements has necessarily to be
related. Neither xRy nor yRx .
Partial orderings can be illustrated by a Hasse diagram

if x � y , then the element y will be drawn higher than x ,
elements x and y will be connected by a line if x � y . We omit all
lines that follow from transitivity.

1

2 3

4

5

6

7

8

9 10

12

3

4 5

6
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0.4.2. Concept of a mathematical proof
Theorem (claims) in mathematics are usually of the form of a conditional
statement: P ⇒ C
Precisely formulated premise (or hypothesis) P, under which the
conclusion (consequence) C holds.

Detailed description how to obtain the conclusion from the premises is
called a proof.

Mathematical proof

of some statement C is a finite sequence of steps including:

axioms – or postulates that are considered true (the set of postulates
differs for various disciplines∗),
hypothesis P is an assumption on which we work,
statement derived from previous by some correct rule (depends on
logic used).

The last step is a conditional statement with conclusion C .

∗ Discrete mathematics relies on Peano axioms, geometry is build upon
five Euklid’s postulates, . . .
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Peano axioms

Stating the axioms

There exists a natural number (usually denoted 0), which is not
a successor of any number.
For every natural number n there exists its successor S(n).
Different natural numbers have different successors.
If for a property X the following hold

I number 0 has property X and
I if from n having the property X follows that property X has also its

successor S(n),

then property X have all natural numbers including 0.
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What could I need a proof for?

“What is the use of a newborn?”

correctly understand the limitations of various method

arguments for/against a presented solution

comparison of quality of different solutions

100% validity of an algorithm may be required
(autopilot, intensive care unit)
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Mathematical induction
Mathematical induction is a common proof technique used to prove
propositional functions with a natural parameter n, denoted by P(n).

Mathematical induction

Let P(n) be a propositional function with an integer parameter n.
Suppose:

Basis step:
The proposition P(n0) is true, where n0 = 0 or 1, or some integer.
Inductive step:
Assume the Inductive hypothesis: P(n) holds for some n.
Show, that for all n > n0 if P(n) holds, then also P(n + 1) holds.

Then P(n) is true for all integers n ≥ n0.

Mathematical induction can be used also to prove validity of algorithms.

A few examples follow. . .
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Wait a minute!

But. . .

we verify the Basis step,

we verify the Inductive step (using the Inductive hypothesis),

. . . how come this implies the validity for infinity many values!?!

Example

How high can you climb a ladder?
Suppose we can

mount the first step,

standing on rung n climb the rung n + 1.

. . . thus, we can reach any rung of the ladder!
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Theorem

The sum of the first n even natural numbers is n(n + 1).

2 + 4 + 6 = 12 = 3 · 4
2 + 4 + 6 + 8 + 10 + 12 + 14 + 16 + 18 + 20 = 110 = 10 · 11

Proof by mathematical induction based on n:
We prove ∀n ∈ N the following holds

∑n
i=1 2i = n(n + 1).

Basis step: For n = 1 claim P(1) gives “2 = 1 · 2”.

Inductive step: Does P(n) imply P(n + 1)?

I.e. does
∑n

i=1 2i = n(n + 1), imply
∑n+1

i=1 2i = (n + 1)(n + 2)?

We state Inductive hypothesis P(n):
Suppose ∃n ∈ N :

∑n
i=1 2i = n(n + 1).

Now∑n+1
i=1 2i =

∑n
i=1 2i + 2(n + 1)

IH
= n(n + 1) + 2(n + 1) = (n + 1)(n + 2).

We have shown the correctness of the formula for the sum of the first
n + 1 evens using the formula for the sum of the first n evens.

By mathematical induction the claim holds ∀n ∈ N. �
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Strong mathematical induction compared to mathematical induction

Mathematical induction

Let P(n) be a propositional function with an integer parameter n.
Suppose:

Basis step:
The proposition P(n0) is true, where n0 = 0 or 1, or some integer n0.
Inductive step:
Assume the Inductive hypothesis: P(n) holds for some n.
Show, that for all n > n0 if P(n) holds, then also P(n + 1) holds.

Then P(n) is true for all integers n ≥ n0.

Strong mathematical induction

Basis step: The proposition P(n0) is true.
Inductive step:
Inductive hypothesis: Assume P(k) holds for all n0 ≤ k < n.
Show, that also P(n) is true.

Then P(n) is true for all integers n ≥ n0.
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Example

There are always pr − 1 breaks necessary to split a chocolate bar of p × r
squares.
By strong induction on n = pr :

Basis step:
For n0 = 1 we have a bar with only one square, there are no breaks
necessary (pr − 1 = 0).

Inductive step:
Suppose now the claim holds for any chocolate bars with less than n
squares. Take any bar with n squares. We break this bar into two
parts of s or t squares, respectively, where 1 ≤ s, t < n and s + t = n.
By Inductive hypothesis we can break each part by s − 1 or t − 1
breaks, respectively. There is a total of
(s − 1) + (t − 1) + 1 = s + t − 1 = n − 1 breaks necessary.

The proof is complete by strong induction for all positive p, r . �
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Integer part of a real number

bxc floor function for a real number x
dxe ceiling function for a real number x

Example

b3.14c = 3 b−3.14c = −4
bxc = dxe ⇒ x ∈ Z

Question

Gives the expression dlog ne the number of digits of n (in decimal system)?

If not, can you find a “correct” formula?

Question⌈
n

n+1

⌉
=?, where n ∈ N (what if n ∈ N0)
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Lecture overview

Chapter 1. Sequences
sequences

sums and products

arithmetic progression

geometric progression
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Sequence

is an ordered list of objects, called elements.
We denote it by (ai )

n
i=1 = (a1, a2, . . . , an).

in real analysis defined as mappings p : N→ R
we distinguish first, second, third, ... element in the sequence.
indices are natural numbers, usually starting at 1
elements in a sequence can repeat (in contrary to sets)
sequences can be finite (a1, a2, . . . , an)
and infinite (a1, a2, . . . ), the sequence can even be empty
(we focus mainly on finite sequences)

Examples

(x , v , z , v , y)
(2, 3, 5, 7, 11, 13, 17, 19, 23, 29)
(2, 3, 5, 7, 11, 13, 17, 19, 23, 29, . . . )
(1,−1, 1,−1, 1,−1, 1,−1, . . .)

A sequence is given by: listing the elements, recurrence relations or a
formula for the n-th element
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Sums

Sum of a sequence is denoted by

n∑
i=1

ai = a1 + a2 + · · ·+ an−1 + an

∑
i∈J

ai = ai1 + ai2 + · · ·+ ain , where J = {i1, i2, . . . , in}.

Question ∑
i∈{1,3,5,7}

i2 =?

Example

n∑
i=1

i =?
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Product

Product of elements in a sequence is denoted by

n∏
i=1

ai = a1 · a2 · · · · · an−1 · an

∏
i∈J

ai = ai1 · ai2 · · · · · ain , where J = {i1, i2, . . . , in}

Examples

5∑
i=2

ln(i) = ln

(
5∏

i=2

i

)
= ln (2 · 3 · 4 · 5) = ln 120

n∑
i=1

n∑
j=1

(i · j) =
n∑

i=1

i ·
n∑

j=1

j

 =

(
n∑

i=1

i

)
·

 n∑
j=1

j

 =

(
1

2
n(n + 1)

)2

empty sum
2∑

i=3

i = 0 empty product
2∏

i=3

i = 1



31 / 44

Examples

n∑
i=1

(i + j) =
n∑

i=1

i +
n∑

i=1

j =
n

2
(n + 1) + nj

J = {2, 8, 12, 21},
∑
j∈J

j = 2 + 8 + 12 + 21 = 43

Questions

5∑
i=1

ln(i) =?
100∑
i=1

i =?

6∏
i=1

i =?
n∏

i=1

i =?

n∏
i=1

(n − i) =?
n∑

i=1

(n + 1− i) =?
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Question

Can you find a sequence (ai )
n
i=1, such that

∑n
i=1 ai <

∑n
i=1(−ai )?

Question

Can you find a sequence (ai )
n
i=1, such that

∑n
i=1 ai > 0 and

∏n
i=1 ai < 0?

Question

Does there exist a sequence of positive numbers (ai )
n
i=1, such that∑n

i=1 ai >
∏n

i=1 ai?
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Arithmetic progression

Certain sequences for special progressions and we know several their
properties.

Arithmetic progression

The sequence (ai ) is an arithmetic progression if its terms are

a, a + d , a + 2d , a + 3d , . . .

Real numbers a, d are the first term and the difference of the progression,
respectively.

Notice that the sequence (ai ) is an arithmetic progression, if there exists a
real number d , such that for all i > 1 is ai − ai−1 = d .

Every subsequent term arises by adding (the same!) difference d to the
previous term.

Finite arithmetic progressions are also considered.
We have n terms

a, a + d , a + 2d , . . . , a + (n − 1)d .
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Examples

−2, 3, 8, 13, 18, . . . first term −2, difference 5

−3, 2, 7, 12, 17, . . . first term −3, difference 5

20, 9,−2,−13,−24, . . . first term 20, difference −11
√

2,
√

2,
√

2,
√

2,
√

2, . . . first term
√

2, difference 0

Examples

Find the n-th term of the progressions an from previous example
−2, 3, 8, 13, 18, . . . an = −2 + (n − 1)5

−3, 2, 7, 12, 17, . . . an = −3 + (n − 1)5

20, 9,−2,−13,−24, . . . an = 20− (n − 1)11
√

2,
√

2,
√

2,
√

2,
√

2, . . . an =
√

2

Example

Which sequence is given by the n-th term an = −8 + 5n?

Second progression −3, 2, 7, 12, 17, . . .
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Summing n terms of an arithmetic progression

a1 + a2 + · · ·+ an =
n∑

i=1

ai

In this case

a + (a + d) + · · ·+ a + (n − 1)d =
n∑

i=1

(a1 + (i − 1)d)

holds

n∑
i=1

(a1 + (i − 1)d) =
n

2
(a1 + an) =

n

2
(2a1 + (n− 1)d) = na1 +

n(n − 1)d

2
.

Sum of certain consecutive n terms of an arithmetic progression

k+n−1∑
i=k

ai =
n

2
(ak + ak+n−1) =

n

2
(2ak + (n − 1)d) = nak +

n(n − 1)d

2
.
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Notes

The sum of an infinite arithmetic progression generally does not exist.

Sequence of partial sums

diverges to +∞ for d > 0,

diverges to −∞ for d < 0,

for d = 0 diverges to +∞ or to −∞ or converges based on a1.

Arithmetic progression with first term a and difference d can be given by a
recurrence relation

an = an−1 + d , a1 = a.
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Example savings

Example

Uncle Scrooge has 4 514 cents in his safe. Every week he adds 24 cents to
the safe. What is the formula for an?

4 514, 4 538, 4 562, 4 586, · · · = 4 514 + 24(n − 1) = 4 490 + 24n.

Example

Uncle Scrooge has 4 514 cents in his safe. The pocket money of each of
his three nephews is 1 cent, but every week he increases the pocket money
by one cent.
a) Evaluate the total pocket money in the n-th week.
b) Evaluate the number of cents in the safe in the n-th week.

a) pocket money k = 3 + 3(n − 1) = 3n
b) in safe s = 4 514− 3n
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Geometric progression

Geometric progression

The sequence (ai ) is a geometric progression if its terms are

a, a · q, a · q2, a · q3, . . .

Real numbers a, q are the first term and the common ration of the
progression, respectively.

Notice that the sequence (ai ) is a geometric progression if there exists
a real number q, such that for all i > 1 is ai

ai−1
= q.

Every subsequent term arises by multiplying the previous term by (the
same!) common ratio q.
Finite geometric progressions are also considered. We have n terms

a, a · q, a · q2, . . . , a · qn−1.

Question

Can a progression be both geometric and arithmetic at the same time?
If yes, can you find different solutions? Infinitely many?
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Examples

2, 10, 50, 250, 1250, . . . first term 2, common ratio 5

9, 6, 4, 8
3 ,

16
9 , . . . first term 9, common ratio 2

3

4,−2, 1,−1
2 ,

1
4 , . . . first term 4, common ratio −1

2
√

2,
√

2,
√

2,
√

2,
√

2, . . . first term
√

2, common ratio 1

Examples

Find the n-th term of the progressions an from previous example
2, 10, 50, 250, 1250, . . . an = 2 · 5n−1

9, 6, 4, 8
3 ,

16
9 , . . . an = 9 ·

(
2
3

)n−1
= 27

2 ·
(

2
3

)n
4,−2, 1,−1

2 ,
1
4 , . . . an = 4 ·

(
−1

2

)n−1
= −8 ·

(
−1

2

)n
√

2,
√

2,
√

2,
√

2,
√

2, . . . an =
√

2

Example

Which sequence is given by the n-th term an =
(

1
2

)n
? 1

2 ,
1
4 ,

1
8 ,

1
16 , . . .
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Sum of n terms of a geometric progression

a1 + a2 + · · ·+ an =
n∑

i=1

ai

In our case

a + (a · q) + · · ·+ a · qn−1 =
n∑

i=1

(a1 · qi−1)

for q 6= 1 holds
n∑

i=1

(a1 · qi−1) = a1
qn − 1

q − 1
.

For q = 1 is the progression both arithmetic and geometric; we use a
different formula.

Question

How does the sum of first n terms of a geometric progression with
common ratio 1 look like?



41 / 44

Notes

The sum of an infinite geometric progression

generally does not exist for |q| ≥ 1,

for q = 1 the sequence is constant; the sum depends on a1,

for q = −1 the sequence oscillates, there is no sum

for |q| < 1 the sum is finite a1
1−q

Sequence of partial sums of an infinite geometric progression

diverges for q ≥ 1,

oscillates (and does not converge for q ≤ −10,

converges to a1
1−q for |q| < 1.

A geometric progression with first term a and common ratio q can be
described recursively

an = an−1 · q, a1 = a.
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Example savings

Example

Uncle Scrooge has 4 514 cents in a bank. Every year he get an interest of
2 percent (no rounding). What is the formula for the amount an (after n
years)?

4 514, 4 604.3, 4 696.4, 4 790.3, 4 886.1, 4 983.8, · · · = 4 514 · 1.02n−1.

Example

Uncle Scrooge has 4 514 cents in his safe. The pocket money of each of
his three nephews is 1 cent, but every week he doubles the pocket money
of each.
a) Evaluate the total pocket money in the n-th week.
b) Evaluate the number of cents in the safe in the n-th week.

a) pocket money k = 3 · 2n−1 = 3
2 · 2

n

b) in safe s = 4 514− 3 · 2n−1
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Example

We tilt the pendulum to 5 cm height. Due friction each sway of the
pendulum looses one fifth of it energy. Describe the sequence of heights to
which the pendulum rises after each sway.

5 cm, 4 cm,
16

5
cm,

64

25
cm,

256

125
cm, . . . , 5 ·

(
4

5

)n−1

cm

first term 5 cm,
common ratio 4

5 .

Question

After how many tilts will the pendulum stop?
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Next lecture

Arrangements and selections
multiplication principle (of independent selections)
method of double counting
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