Discrete mathematics

Petr Kovář \& Tereza Kovářová petr.kovar@vsb.cz

VŠB - Technical University of Ostrava

> Winter Term 2022/2023
> DiM 470-2301/02, 470-2301/04, 470-2301/06

EUROPEAN UNION

European Structural and Investment Funds Operational Programme Research, Development and Education

The translation was co-financed by the European Union and the Ministry of Education, Youth and Sports from the Operational Programme Research, Development and Education, project "Technology for the Future 2.0", reg. no.
CZ.02.2.69/0.0/0.0/18_058/0010212.

This work is licensed under a Creative Commons "Attribution-ShareAlike 4.0 International" license.

About this file

This file is meant to be a guideline for the lecturer. Many important pieces of information are not in this file, they are to be delivered in the lecture: said, shown or drawn on board. The file is made available with the hope students will easier catch up with lectures they missed.

For study the following resources are better suitable:

- Meyer: Lecture notes and readings for an http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-042j-mathematics-for-computer-science -fall-2005/readings/" (weeks 1-5, 8-10, 12-13), MIT, 2005.
- Diestel: Graph theory http://diestel-graph-theory.com/ (chapters 1-6), Springer, 2010.

See also http://homel.vsb.cz/~kov16/predmety_dm.php

Course number: 470-2301/02, 470-2301/04*, 470-2301/06 Credits: 6 credits ($2 / 2 / 2$), ${ }^{*} 5$ credits ($2 / 2 / 1$) Warrant: Petr Kovár
Lecturer: Petr Kovář/Tereza Kovářová
Web: am.vsb.cz/kovar
Email: Petr.Kovar@vsb.cz
Office: EA536

Classification

Tests

- every week (starting with the third week)
- 2-10 minutes
- evaluation $0 / 1 / 2$ (no/almost correct/completely correct)
- every other week one additional teoretical question
- we take 4 best 2 -point scores and 4 best 3 -point scores among 10
- total up to 20 points
- if a student skips a test: 0 points

Typical assignments available at http://am.vsb.cz/kovar (in Czech).

Classification (cont.)

Project

- assigned in the second half of the term
- project: two or four problems (discrete math \& graph theory)
- Bonus Projects for all who want to learn something contains two problems (1 discrete mathematics \& 1 graph theory)
- total of 10 points
- to receive credit ("zápočet") the project has to be accepted (minimum standards, see web)
- keep the deadline!
- work alone!

Credit ("Zápočet") = at least 10 points and an accepted project

Classification (cont.)

Exam

- examining dates given at the end of the term
- total of 70 points
- sample exam on the web (http://am.vsb.cz/kovar)
- you can use one page A4 with handwritten notes definitions, theorems a formulas, but no examples

Literature

In Czech:

- (partially M. Kubesa. Základy diskrétní matematiky, textbook on-line).
- P. Kovář: Algoritmizace diskrétních struktur on-line.
- P. Kovár. Úvod do teorie grafů, textbook on-line.
- P. Kovář: Cvičení z diskrétní matematiky, exercises on-line.
- solved examples as "pencasts" available on-line.

In English:

- Meyer: Lecture notes and readings for an open course (weeks 1-5, 8-10, 12-13), MIT, 2005.
- Diestel: Graph theory on-line preview (chapetrs 1-6), Springer, 2010.

You are free to use any major textbook, but beware: details can differ! At the exam things will be required as in the lecture.

Office hours

We 9:30-10:30 (?) EA536.
see web: http://am.vsb.cz/kovar

Sample problems

Some problem, we will learn how to solve:

- handshaking problem...
- list all possible tickets in powerball...
- nine friends exchanging three presents each...
- three lairs and three wells...
- seven bridges of Königsberg. . .
- missing digits in social security number ("rodné číslo")...
- correcting UPC bar codes...
- Monty Hall. . .

Additional interesting problems and exercises:
http://am.vsb.cz/kovar.

Z předchozího semestru znáte

Chapter 0. Review

- number sets
- set and set operations
- relations
- proof techniques
- mathematical induction
- ceiling and floor functions

Numbers and interval of integers

Natural numbers and integers

Natural numbers are denoted by $\mathbb{N}=\{1,2,3,4,5, \ldots\}$
notice! zero is not among them
Natural numbers with zero included denoted by $\mathbb{N}_{0}=\{0,1,2,3,4,5, \ldots\}$ Integers are denoted by $\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3,4, \ldots\}$

Intervals of integers between a and b

is the set $\{a, a+1, \ldots, b-1, b\}$
we denote it by: $[a, b]=\{a, a+1, \ldots, b-1, b\}$
Compare to the notation used for an interval of real numbers (a, b).

Examples

$[3,7]=\{3,4,5,6,7\} \quad[-2,-2]=\{-2\}$
$[5,0]=\emptyset \quad$ (the empty set)

Cartesian product and Cartesian power

Cartesian product of two sets $A \times B=\{(a, b): a \in A, b \in B\}$ is the set of all ordered pairs (a, b) such that $a \in A$ and $b \in B$ in this order. $A_{1} \times A_{2} \times \cdots \times A_{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right): a_{i} \in A_{i}, i=1,2, \ldots, n\right\}$ For $A_{1}=A_{2}=\ldots=A_{n}$ we get the Cartesian power A^{n}.
We define $A^{0}=\{\emptyset\}, A^{1}=A$.

Cartesian product of sets $A \times B=\{a, b\} \times\{\boldsymbol{\phi}, \triangle, \boldsymbol{\oplus}\}$.

Power set of A

is the set of all subsets of A

$$
2^{A}=\{X: X \subseteq A\}
$$

A family of sets over A

or a family of subsets of A is some $\mathcal{T} \subseteq 2^{A}$.
We prefer the term "family of sets" to "set of sets".

All subsets of the set of colors $C=\{r, g, b, y\}$.

Generalized unions and intersections

Generalized union $\bigcup_{i=1}^{n} X_{i}$ and intersection $\bigcap_{i=1}^{n} X_{i}$ of sets.
Given an index set J, we can write $\bigcup_{j \in J} X_{j}$ and $\bigcap_{j \in J} X_{j}$.

Examples

$$
A_{i}=\{1,2, \ldots, i\}, \quad \text { for each } i \in \mathbb{N}
$$

$$
\bigcup_{i=1}^{5} A_{i}=\{1,2,3,4,5\}, \quad \bigcap_{i=1}^{5} A_{i}=\{1\}, \quad \bigcap_{i=1}^{\infty} A_{i}=\{1\}
$$

Questions

What is $\bigcap A_{j}$ for $J=\{2,5\}$?

$$
j \in J
$$

What is $\bigcup_{j \in J} A_{j}$ for $J=\mathbb{N}$?

Definition

(Homogenous) binary relation R on the set A is a subset of the Cartesian product $A \times A=A^{2}$, i.e.

$$
R \subseteq A^{2}
$$

Definition

(Homogenous) n-ary relation S on the set A is a subset of the Cartesian power $A \times A \times \cdots \times A=A^{n}$, i.e.

$$
S \subseteq A^{n}
$$

Example

- Relation between students, with the same grade in DiM.
- Relation between pairs of students, who has a higher score.
- Relation between documents with similar terms (plagiarism)...

Binary relation is a special case of an n-ary relation. (unary, ternary, ...). (Homogenous) relations on a given set are special case of (heterogenous) relation between sets. In greater detail in another course.

Equivalence relation

Definition

Equivalence on the set A is a reflexive, symmetric, and transitive binary relation on the set A. We denote it by \simeq.

Definition

Let \simeq be an equivalence relation on the set A. An equivalence class of x (denoted by $[\simeq x]$) is the subset of A defined by $[\simeq x]=\{z \in A: z \simeq x\}$.

Equivalence relation expresses "having the same property".

Examples

- congruence relation \equiv (same remainder after division by n)
- relation among students "having the same grade in DIM"
- relation "synonyms in a language" is (often) an equivalence

Partial ordering

Ordering and equivalence are among the most common relations.

Definition

Partial ordering \preceq on the set A is reflexive, antisymmetric, and transitive binary relation on the set A. The set with the relation is called a poset.

The word partial emphasizes the fact, that the relation does not have to be linear relation on A, i.e. not every pair of elements has necessarily to be related. Neither $x R y$ nor $y R x$.
Partial orderings can be illustrated by a Hasse diagram

- if $x \preceq y$, then the element y will be drawn higher than x,
- elements x and y will be connected by a line if $x \preceq y$. We omit all lines that follow from transitivity.

0.4.2. Concept of a mathematical proof

Theorem (claims) in mathematics are usually of the form of a conditional statement: $\quad P \Rightarrow C$
Precisely formulated premise (or hypothesis) P, under which the conclusion (consequence) C holds.

Detailed description how to obtain the conclusion from the premises is called a proof.

Mathematical proof

of some statement C is a finite sequence of steps including:

- axioms - or postulates that are considered true (the set of postulates differs for various disciplines*),
- hypothesis P is an assumption on which we work,
- statement derived from previous by some correct rule (depends on logic used).
The last step is a conditional statement with conclusion C.
> * Discrete mathematics relies on Peano axioms, geometry is build upon five Euklid's postulates, ...

Peano axioms

Stating the axioms

- There exists a natural number (usually denoted 0), which is not a successor of any number.
- For every natural number n there exists its successor $S(n)$.
- Different natural numbers have different successors.
- If for a property X the following hold
- number 0 has property X and
- if from n having the property X follows that property X has also its successor $S(n)$,
then property X have all natural numbers including 0 .

What could I need a proof for?

"What is the use of a newborn?"

- correctly understand the limitations of various method
- arguments for/against a presented solution
- comparison of quality of different solutions
- 100% validity of an algorithm may be required (autopilot, intensive care unit)

Mathematical induction

Mathematical induction is a common proof technique used to prove propositional functions with a natural parameter n, denoted by $P(n)$.

Mathematical induction

Let $P(n)$ be a propositional function with an integer parameter n.
Suppose:

- Basis step:

The proposition $P\left(n_{0}\right)$ is true, where $n_{0}=0$ or 1 , or some integer.

- Inductive step:

Assume the Inductive hypothesis: $P(n)$ holds for some n.
Show, that for all $n>n_{0}$ if $P(n)$ holds, then also $P(n+1)$ holds.
Then $P(n)$ is true for all integers $n \geq n_{0}$.

Mathematical induction can be used also to prove validity of algorithms.
A few examples follow...

Wait a minute!

But. . .

- we verify the Basis step,
- we verify the Inductive step (using the Inductive hypothesis),
... how come this implies the validity for infinity many values!?!

Example

How high can you climb a ladder?
Suppose we can

- mount the first step,
- standing on rung n climb the rung $n+1$.
...thus, we can reach any rung of the ladder!

Theorem

The sum of the first n even natural numbers is $n(n+1)$.
$2+4+6=12=3 \cdot 4$
$2+4+6+8+10+12+14+16+18+20=110=10 \cdot 11$
Proof by mathematical induction based on n :
We prove $\forall n \in \mathbb{N}$ the following holds $\sum_{i=1}^{n} 2 i=n(n+1)$.

- Basis step: For $n=1$ claim $\mathrm{P}(1)$ gives " $2=1 \cdot 2$ ".
- Inductive step: Does $P(n)$ imply $P(n+1)$?
I.e. does $\sum_{i=1}^{n} 2 i=n(n+1)$, imply $\sum_{i=1}^{n+1} 2 i=(n+1)(n+2)$?

We state Inductive hypothesis $\mathrm{P}(\mathrm{n})$:
Suppose $\exists n \in \mathbb{N}: \sum_{i=1}^{n} 2 i=n(n+1)$.
Now
$\sum_{i=1}^{n+1} 2 i=\sum_{i=1}^{n} 2 i+2(n+1) \stackrel{I H}{=} n(n+1)+2(n+1)=(n+1)(n+2)$.
We have shown the correctness of the formula for the sum of the first $n+1$ evens using the formula for the sum of the first n evens.
By mathematical induction the claim holds $\forall n \in \mathbb{N}$.

Strong mathematical induction compared to mathematical induction

Mathematical induction

Let $P(n)$ be a propositional function with an integer parameter n. Suppose:

- Basis step:

The proposition $P\left(n_{0}\right)$ is true, where $n_{0}=0$ or 1 , or some integer n_{0}.

- Inductive step:

Assume the Inductive hypothesis: $P(n)$ holds for some n.
Show, that for all $n>n_{0}$ if $P(n)$ holds, then also $P(n+1)$ holds.
Then $P(n)$ is true for all integers $n \geq n_{0}$.

Strong mathematical induction

- Basis step: The proposition $P\left(n_{0}\right)$ is true.
- Inductive step:

Inductive hypothesis: Assume $P(k)$ holds for all $n_{0} \leq k<n$.
Show, that also $P(n)$ is true.
Then $P(n)$ is true for all integers $n \geq n_{0}$.

Example

There are always $p r-1$ breaks necessary to split a chocolate bar of $p \times r$ squares.
By strong induction on $n=p r$:

- Basis step:

For $n_{0}=1$ we have a bar with only one square, there are no breaks necessary ($p r-1=0$).

- Inductive step:

Suppose now the claim holds for any chocolate bars with less than n squares. Take any bar with n squares. We break this bar into two parts of s or t squares, respectively, where $1 \leq s, t<n$ and $s+t=n$. By Inductive hypothesis we can break each part by $s-1$ or $t-1$ breaks, respectively. There is a total of

$$
(s-1)+(t-1)+1=s+t-1=n-1 \text { breaks necessary. }
$$

The proof is complete by strong induction for all positive p, r.

Integer part of a real number

$\lfloor x\rfloor$ floor function for a real number x
$\lceil x\rceil$ ceiling function for a real number x

Example

$$
\begin{aligned}
& \lfloor 3.14\rfloor=3 \\
& \lfloor x\rfloor=\lceil x\rceil \quad \Rightarrow \quad\lfloor-3.14\rfloor=-4 \\
& x \in \mathbb{Z}
\end{aligned}
$$

Question

Gives the expression $\lceil\log n\rceil$ the number of digits of n (in decimal system)?
If not, can you find a "correct" formula?

Question

$$
\left\lceil\frac{n}{n+1}\right\rceil=?, \text { where } n \in \mathbb{N} \quad\left(\text { what if } n \in \mathbb{N}_{0}\right)
$$

Lecture overview

Chapter 1. Sequences

- sequences
- sums and products
- arithmetic progression
- geometric progression

Sequence

is an ordered list of objects, called elements.
We denote it by $\left(a_{i}\right)_{i=1}^{n}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$.

- in real analysis defined as mappings $p: \mathbb{N} \rightarrow \mathbb{R}$
- we distinguish first, second, third, ... element in the sequence.
- indices are natural numbers, usually starting at 1
- elements in a sequence can repeat (in contrary to sets)
- sequences can be finite $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and infinite (a_{1}, a_{2}, \ldots), the sequence can even be empty (we focus mainly on finite sequences)

Examples

(x, v, z, v, y)
$(2,3,5,7,11,13,17,19,23,29)$
$(2,3,5,7,11,13,17,19,23,29, \ldots)$
$(1,-1,1,-1,1,-1,1,-1, \ldots)$
A sequence is given by: listing the elements, recurrence relations or a formula for the n-th element

Sums

Sum of a sequence is denoted by

$$
\begin{gathered}
\sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+\cdots+a_{n-1}+a_{n} \\
\sum_{i \in J} a_{i}=a_{i_{1}}+a_{i_{2}}+\cdots+a_{i_{n}}, \text { where } J=\left\{i_{1}, i_{2}, \ldots, i_{n}\right\} .
\end{gathered}
$$

Question

$$
\sum_{i \in\{1,3,5,7\}} i^{2}=?
$$

Example

$$
\sum_{i=1}^{n} i=?
$$

Product

Product of elements in a sequence is denoted by

$$
\begin{gathered}
\prod_{i=1}^{n} a_{i}=a_{1} \cdot a_{2} \cdots \cdots a_{n-1} \cdot a_{n} \\
\prod_{i \in J} a_{i}=a_{i_{1}} \cdot a_{i_{2}} \cdot \cdots \cdot a_{i_{n}}, \text { where } J=\left\{i_{1}, i_{2}, \ldots, i_{n}\right\}
\end{gathered}
$$

Examples

$$
\begin{gathered}
\sum_{i=2}^{5} \ln (i)=\ln \left(\prod_{i=2}^{5} i\right)=\ln (2 \cdot 3 \cdot 4 \cdot 5)=\ln 120 \\
\sum_{i=1}^{n} \sum_{j=1}^{n}(i \cdot j)=\sum_{i=1}^{n}\left(i \cdot \sum_{j=1}^{n} j\right)=\left(\sum_{i=1}^{n} i\right) \cdot\left(\sum_{j=1}^{n} j\right)=\left(\frac{1}{2} n(n+1)\right)^{2} \\
\text { empty sum } \sum_{i=3}^{2} i=0 \quad \text { empty product } \prod_{i=3}^{2} i=1
\end{gathered}
$$

Examples

$$
\begin{aligned}
& \sum_{i=1}^{n}(i+j)=\sum_{i=1}^{n} i+\sum_{i=1}^{n} j=\frac{n}{2}(n+1)+n j \\
J= & \{2,8,12,21\}, \quad \sum_{j \in J} j=2+8+12+21=43
\end{aligned}
$$

Questions

$$
\begin{array}{cc}
\sum_{i=1}^{5} \ln (i)=? & \sum_{i=1}^{100} i=? \\
\prod_{i=1}^{6} i=? & \prod_{i=1}^{n} i=? \\
\prod_{i=1}^{n}(n-i)=? & \sum_{i=1}^{n}(n+1-i)=?
\end{array}
$$

Question

Can you find a sequence $\left(a_{i}\right)_{i=1}^{n}$, such that $\sum_{i=1}^{n} a_{i}<\sum_{i=1}^{n}\left(-a_{i}\right)$?

Question

Can you find a sequence $\left(a_{i}\right)_{i=1}^{n}$, such that $\sum_{i=1}^{n} a_{i}>0$ and $\prod_{i=1}^{n} a_{i}<0$?

Question

Does there exist a sequence of positive numbers $\left(a_{i}\right)_{i=1}^{n}$, such that $\sum_{i=1}^{n} a_{i}>\prod_{i=1}^{n} a_{i}$?

Arithmetic progression

Certain sequences for special progressions and we know several their properties.

Arithmetic progression

The sequence $\left(a_{i}\right)$ is an arithmetic progression if its terms are

$$
a, \quad a+d, \quad a+2 d, \quad a+3 d, \ldots
$$

Real numbers a, d are the first term and the difference of the progression, respectively.

Notice that the sequence $\left(a_{i}\right)$ is an arithmetic progression, if there exists a real number d, such that for all $i>1$ is $a_{i}-a_{i-1}=d$.

Every subsequent term arises by adding (the same!) difference d to the previous term.
Finite arithmetic progressions are also considered.
We have n terms

$$
a, a+d, a+2 d, \ldots, a+(n-1) d
$$

Examples

$-2,3,8,13,18, \ldots$ first term -2 , difference 5
$-3,2,7,12,17, \ldots$ first term -3 , difference 5
$20,9,-2,-13,-24, \ldots \quad$ first term 20, difference -11
$\sqrt{2}, \sqrt{2}, \sqrt{2}, \sqrt{2}, \sqrt{2}, \ldots \quad$ first term $\sqrt{2}$, difference 0

Examples

Find the n-th term of the progressions a_{n} from previous example
$-2,3,8,13,18, \ldots \quad a_{n}=-2+(n-1) 5$
$-3,2,7,12,17, \ldots \quad a_{n}=-3+(n-1) 5$
$20,9,-2,-13,-24, \ldots \quad a_{n}=20-(n-1) 11$
$\sqrt{2}, \sqrt{2}, \sqrt{2}, \sqrt{2}, \sqrt{2}, \ldots \quad a_{n}=\sqrt{2}$

Example

Which sequence is given by the n-th term $a_{n}=-8+5 n$?
Second progression $-3,2,7,12,17, \ldots$

Summing n terms of an arithmetic progression

$$
a_{1}+a_{2}+\cdots+a_{n}=\sum_{i=1}^{n} a_{i}
$$

In this case

$$
a+(a+d)+\cdots+a+(n-1) d=\sum_{i=1}^{n}\left(a_{1}+(i-1) d\right)
$$

holds
$\sum_{i=1}^{n}\left(a_{1}+(i-1) d\right)=\frac{n}{2}\left(a_{1}+a_{n}\right)=\frac{n}{2}\left(2 a_{1}+(n-1) d\right)=n a_{1}+\frac{n(n-1) d}{2}$.
Sum of certain consecutive n terms of an arithmetic progression

$$
\sum_{i=k}^{k+n-1} a_{i}=\frac{n}{2}\left(a_{k}+a_{k+n-1}\right)=\frac{n}{2}\left(2 a_{k}+(n-1) d\right)=n a_{k}+\frac{n(n-1) d}{2}
$$

Notes

The sum of an infinite arithmetic progression generally does not exist.
Sequence of partial sums

- diverges to $+\infty$ for $d>0$,
- diverges to $-\infty$ for $d<0$,
- for $d=0$ diverges to $+\infty$ or to $-\infty$ or converges based on a_{1}.

Arithmetic progression with first term a and difference d can be given by a recurrence relation

$$
a_{n}=a_{n-1}+d, \quad a_{1}=a .
$$

Example savings

Example

Uncle Scrooge has 4514 cents in his safe. Every week he adds 24 cents to the safe. What is the formula for a_{n} ?

$$
4514,4538,4562,4586, \cdots=4514+24(n-1)=4490+24 n .
$$

Example

Uncle Scrooge has 4514 cents in his safe. The pocket money of each of his three nephews is 1 cent, but every week he increases the pocket money by one cent.
a) Evaluate the total pocket money in the n-th week.
b) Evaluate the number of cents in the safe in the n-th week.
a) pocket money $k=3+3(n-1)=3 n$
b) in safe $s=4514-3 n$

Geometric progression

Geometric progression

The sequence $\left(a_{i}\right)$ is a geometric progression if its terms are

$$
a, \quad a \cdot q, \quad a \cdot q^{2}, \quad a \cdot q^{3}, \ldots
$$

Real numbers a, q are the first term and the common ration of the progression, respectively.

Notice that the sequence $\left(a_{i}\right)$ is a geometric progression if there exists a real number q, such that for all $i>1$ is $\frac{a_{i}}{a_{i-1}}=q$.
Every subsequent term arises by multiplying the previous term by (the same!) common ratio q.
Finite geometric progressions are also considered. We have n terms

$$
a, \quad a \cdot q, \quad a \cdot q^{2}, \ldots, \quad a \cdot q^{n-1}
$$

Question

Can a progression be both geometric and arithmetic at the same time? If yes, can you find different solutions? Infinitely many?

Examples

$2,10,50,250,1250, \ldots$ first term 2 , common ratio 5
$9,6,4, \frac{8}{3}, \frac{16}{9}, \ldots$ first term 9 , common ratio $\frac{2}{3}$
$4,-2,1,-\frac{1}{2}, \frac{1}{4}, \ldots \quad$ first term 4 , common ratio $-\frac{1}{2}$
$\sqrt{2}, \sqrt{2}, \sqrt{2}, \sqrt{2}, \sqrt{2}, \ldots$ first term $\sqrt{2}$, common ratio 1

Examples

Find the n-th term of the progressions a_{n} from previous example $2,10,50,250,1250, \ldots \quad a_{n}=2 \cdot 5^{n-1}$
$9,6,4, \frac{8}{3}, \frac{16}{9}, \ldots \quad a_{n}=9 \cdot\left(\frac{2}{3}\right)^{n-1}=\frac{27}{2} \cdot\left(\frac{2}{3}\right)^{n}$
$4,-2,1,-\frac{1}{2}, \frac{1}{4}, \ldots \quad a_{n}=4 \cdot\left(-\frac{1}{2}\right)^{n-1}=-8 \cdot\left(-\frac{1}{2}\right)^{n}$
$\sqrt{2}, \sqrt{2}, \sqrt{2}, \sqrt{2}, \sqrt{2}, \ldots \quad a_{n}=\sqrt{2}$

Example

Which sequence is given by the n-th term $a_{n}=\left(\frac{1}{2}\right)^{n} ? \quad \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots$

Sum of n terms of a geometric progression

$$
a_{1}+a_{2}+\cdots+a_{n}=\sum_{i=1}^{n} a_{i}
$$

In our case

$$
a+(a \cdot q)+\cdots+a \cdot q^{n-1}=\sum_{i=1}^{n}\left(a_{1} \cdot q^{i-1}\right)
$$

for $q \neq 1$ holds

$$
\sum_{i=1}^{n}\left(a_{1} \cdot q^{i-1}\right)=a_{1} \frac{q^{n}-1}{q-1}
$$

For $q=1$ is the progression both arithmetic and geometric; we use a different formula.

Question

How does the sum of first n terms of a geometric progression with common ratio 1 look like?

Notes

The sum of an infinite geometric progression

- generally does not exist for $|q| \geq 1$,
- for $q=1$ the sequence is constant; the sum depends on a_{1},
- for $q=-1$ the sequence oscillates, there is no sum
- for $|q|<1$ the sum is finite $\frac{a_{1}}{1-q}$

Sequence of partial sums of an infinite geometric progression

- diverges for $q \geq 1$,
- oscillates (and does not converge for $q \leq-10$,
- converges to $\frac{a_{1}}{1-q}$ for $|q|<1$.

A geometric progression with first term a and common ratio q can be described recursively

$$
a_{n}=a_{n-1} \cdot q, \quad a_{1}=a
$$

Example savings

Example

Uncle Scrooge has 4514 cents in a bank. Every year he get an interest of 2 percent (no rounding). What is the formula for the amount a_{n} (after n years)?

$$
4514,4604.3,4696.4,4790.3,4886.1,4983.8, \cdots=4514 \cdot 1.02^{n-1}
$$

Example

Uncle Scrooge has 4514 cents in his safe. The pocket money of each of his three nephews is 1 cent, but every week he doubles the pocket money of each.
a) Evaluate the total pocket money in the n-th week.
b) Evaluate the number of cents in the safe in the n-th week.
a) pocket money $k=3 \cdot 2^{n-1}=\frac{3}{2} \cdot 2^{n}$
b) in safe $s=4514-3 \cdot 2^{n-1}$

Example

We tilt the pendulum to 5 cm height. Due friction each sway of the pendulum looses one fifth of it energy. Describe the sequence of heights to which the pendulum rises after each sway.

$$
5 \mathrm{~cm}, \quad 4 \mathrm{~cm}, \quad \frac{16}{5} \mathrm{~cm}, \quad \frac{64}{25} \mathrm{~cm}, \quad \frac{256}{125} \mathrm{~cm}, \ldots, \quad 5 \cdot\left(\frac{4}{5}\right)^{n-1} \mathrm{~cm}
$$

first term 5 cm , common ratio $\frac{4}{5}$.

Question

After how many tilts will the pendulum stop?

Next lecture

Arrangements and selections

- multiplication principle (of independent selections)
- method of double counting

