Discrete mathematics

Petr Kovář & Tereza Kovářová petr.kovar@vsb.cz

VŠB – Technical University of Ostrava

Winter Term 2022/2023 DiM 470-2301/02, 470-2301/04, 470-2301/06

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

The translation was co-financed by the European Union and the Ministry of Education, Youth and Sports from the Operational Programme Research, Development and Education, project "Technology for the Future 2.0", reg. no. C2.022.69/0.0/0.0/18.0/88/0010212.

This work is licensed under a Creative Commons "Attribution-ShareAlike 4.0 International" license.

About this file

This file is meant to be a guideline for the lecturer. Many important pieces of information are not in this file, they are to be delivered in the lecture: said, shown or drawn on board. The file is made available with the hope students will easier catch up with lectures they missed.

For study the following resources are better suitable:

- Meyer: Lecture notes and readings for an http://ocw.mit.edu/courses/electrical-engineering-andcomputer-science/6-042j-mathematics-for-computer-science -fall-2005/readings/" (weeks 1-5, 8-10, 12-13), MIT, 2005.
- Diestel: Graph theory http://diestel-graph-theory.com/ (chapters 1-6), Springer, 2010.

See also http://homel.vsb.cz/~kov16/predmety_dm.php

```
Course number: 470-2301/02, 470-2301/04*, 470-2301/06
Credits: 6 credits (2/2/2), *5 credits (2/2/1)
Warrant: Petr Kovář
Lecturer: Petr Kovář/Tereza Kovářová
```

Web: am.vsb.cz/kovar Email: Petr.Kovar@vsb.cz Office: EA536

Classification

Tests

- every week (starting with the third week)
- 2–10 minutes
- evaluation 0/1/2 (no/almost correct/completely correct)
- every other week one additional teoretical question
- we take 4 best 2-point scores and 4 best 3-point scores among 10
- total up to 20 points
- if a student skips a test: 0 points

Typical assignments available at http://am.vsb.cz/kovar (in Czech).

Classification (cont.)

Project

- assigned in the second half of the term
- project: two or four problems (discrete math & graph theory)
- Bonus **Projects for all who want to learn something** contains two problems (1 discrete mathematics & 1 graph theory)
- total of 10 points
- to receive credit ("zápočet") the project has to be accepted (minimum standards, see web)
- keep the deadline!
- work alone!

Credit ("Zápočet") = at least 10 points and an accepted project

Classification (cont.)

Exam

- examining dates given at the end of the term
- total of 70 points
- sample exam on the web (http://am.vsb.cz/kovar)
- you can use one page A4 with handwritten notes definitions, theorems a formulas, but no examples

Literature

In Czech:

- (partially M. Kubesa. Základy diskrétní matematiky, textbook on-line).
- P. Kovář: Algoritmizace diskrétních struktur on-line.
- P. Kovář. Úvod do teorie grafů, textbook on-line.
- P. Kovář: Cvičení z diskrétní matematiky, exercises on-line.
- solved examples as "pencasts" available on-line.

In English:

- Meyer: Lecture notes and readings for an open course (weeks 1-5, 8-10, 12-13), MIT, 2005.
- Diestel: Graph theory on-line preview (chapetrs 1-6), Springer, 2010.

You are free to use any major textbook, but beware: details can differ! At the exam things will be required as in the lecture.

Office hours

We 9:30-10:30 (?) EA536.

Sample problems

Some problem, we will learn how to solve:

- handshaking problem...
- list all possible tickets in powerball
- nine friends exchanging three presents each...
- three lairs and three wells...
- seven bridges of Königsberg. . .
- missing digits in social security number ("rodné číslo")...
- correcting UPC bar codes...
- Monty Hall...

Additional interesting problems and exercises: http://am.vsb.cz/kovar.

Z předchozího semestru znáte

Chapter 0. Review

- number sets
- set and set operations
- relations
- proof techniques
- mathematical induction
- ceiling and floor functions

Natural numbers and integers

Natural numbers are denoted by $\mathbb{N} = \{1, 2, 3, 4, 5, \ldots\}$ notice! zero is not among them Natural numbers with zero included denoted by $\mathbb{N}_0 = \{0, 1, 2, 3, 4, 5, \ldots\}$ Integers are denoted by $\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, 4, \ldots\}$

Intervals of integers between a and b

is the set $\{a, a+1, \ldots, b-1, b\}$ we denote it by: $[a, b] = \{a, a+1, \ldots, b-1, b\}$

Compare to the notation used for an interval of real numbers (a, b).

Examples

$$[3,7] = \{3,4,5,6,7\} \quad [-2,-2] = \{-2\}$$

[5,0] = Ø (the empty set)

Cartesian product and Cartesian power

Cartesian product of two sets $A \times B = \{(a, b) : a \in A, b \in B\}$ is the set of all ordered pairs (a, b) such that $a \in A$ and $b \in B$ in this order. $A_1 \times A_2 \times \cdots \times A_n = \{(a_1, a_2, \dots, a_n) : a_i \in A_i, i = 1, 2, \dots, n\}$ For $A_1 = A_2 = \dots = A_n$ we get the Cartesian power A^n . We define $A^0 = \{\emptyset\}, A^1 = A$.

$$A \begin{bmatrix} a \\ b \end{bmatrix} \begin{pmatrix} (a, \clubsuit) & (a, \heartsuit) & (a, \bigstar) \\ (b, \clubsuit) & (b, \heartsuit) & (b, \bigstar) \end{bmatrix} A \times B$$
$$\clubsuit \bigcirc \clubsuit B$$

Cartesian product of sets $A \times B = \{a, b\} \times \{\clubsuit, \heartsuit, \diamondsuit\}$.

Power set of A

is the set of all subsets of A

 $2^{\mathcal{A}} = \{ X : X \subseteq \mathcal{A} \}.$

A family of sets over A

or a family of subsets of A is some $\mathcal{T} \subseteq 2^A$. We prefer the term "family of sets" to "set of sets".

All subsets of the set of colors $C = \{r, g, b, y\}$.

Generalized unions and intersections

Generalized union
$$\bigcup_{i=1}^{n} X_i$$
 and intersection $\bigcap_{i=1}^{n} X_i$ of sets.
Given an index set J , we can write $\bigcup_{j \in J} X_j$ and $\bigcap_{j \in J} X_j$.

Examples

$$egin{aligned} &\mathcal{A}_i = \{1,2,\ldots,i\}, & ext{for each } i \in \mathbb{N} \ &igcup_{i=1}^5 \mathcal{A}_i = \{1,2,3,4,5\}, &igcup_{i=1}^5 \mathcal{A}_i = \{1\}, &igcup_{i=1}^\infty \mathcal{A}_i = \{1\} \end{aligned}$$

Questions

What is
$$\bigcap_{j \in J} A_j$$
 for $J = \{2, 5\}$?
What is $\bigcup_{j \in J} A_j$ for $J = \mathbb{N}$?

Definition

(Homogenous) binary relation R on the set A is a subset of the Cartesian product $A \times A = A^2$, i.e. $R \subset A^2$.

Definition

(Homogenous) *n*-ary relation S on the set A is a subset of the Cartesian power $A \times A \times \cdots \times A = A^n$, i.e.

 $S \subseteq A^n$.

Example

- Relation between students, with the same grade in DiM.
- Relation between pairs of students, who has a higher score.
- Relation between documents with similar terms (plagiarism)...

Binary relation is a special case of an *n*-ary relation. (unary, ternary, \ldots). (Homogenous) relations on a given set are special case of (heterogenous) relation between sets. In greater detail in another course.

Equivalence relation

Definition

Equivalence on the set A is a *reflexive, symmetric, and transitive* binary relation on the set A. We denote it by \simeq .

Definition

Let \simeq be an equivalence relation on the set A. An equivalence class of x (denoted by $[\simeq x]$) is the subset of A defined by $[\simeq x] = \{z \in A : z \simeq x\}$.

Equivalence relation expresses "having the same property".

Examples

- congruence relation \equiv (same remainder after division by *n*)
- relation among students "having the same grade in DIM"
- relation "synonyms in a language" is (often) an equivalence

Partial ordering

Ordering and equivalence are among the most common relations.

Definition

Partial ordering \leq on the set A is *reflexive, antisymmetric, and transitive* binary relation on the set A. The set with the relation is called a poset.

The word *partial* emphasizes the fact, that the relation does not have to be *linear* relation on A, i.e. not every pair of elements has necessarily to be related. Neither xRy nor yRx.

Partial orderings can be illustrated by a Hasse diagram

- if $x \leq y$, then the element y will be drawn higher than x,
- elements x and y will be connected by a line if $x \leq y$. We omit all lines that follow from transitivity.

0.4.2. Concept of a mathematical proof

Theorem (claims) in mathematics are usually of the form of a conditional statement: $P \Rightarrow C$

Precisely formulated premise (or hypothesis) P, under which the conclusion (consequence) C holds.

Detailed description how to obtain the conclusion from the premises is called a proof.

Mathematical proof

of some statement C is a finite sequence of steps including:

- axioms or postulates that are considered true (the set of postulates differs for various disciplines*),
- hypothesis P is an assumption on which we work,
- statement derived from previous by some correct rule (depends on logic used).

The last step is a conditional statement with *conclusion* C.

* Discrete mathematics relies on Peano axioms, geometry is build upon five Euklid's postulates, ...

Peano axioms

Stating the axioms

- There exists a natural number (usually denoted 0), which is not a successor of any number.
- For every natural number n there exists its successor S(n).
- Different natural numbers have different successors.
- If for a property X the following hold
 - number 0 has property X and
 - ▶ if from n having the property X follows that property X has also its successor S(n),

then property X have all natural numbers including 0.

"What is the use of a newborn?"

- correctly understand the limitations of various method
- arguments for/against a presented solution
- comparison of quality of different solutions
- 100% validity of an algorithm may be required (autopilot, intensive care unit)

Mathematical induction

Mathematical induction is a common proof technique used to prove propositional functions with a natural parameter n, denoted by P(n).

Mathematical induction

Let P(n) be a propositional function with an integer parameter n. Suppose:

• Basis step:

The proposition $P(n_0)$ is true, where $n_0 = 0$ or 1, or some integer.

Inductive step:

Assume the Inductive hypothesis: P(n) holds for some n.

Show, that for all $n > n_0$ if P(n) holds, then also P(n+1) holds.

Then P(n) is true for all integers $n \ge n_0$.

Mathematical induction can be used also to prove validity of algorithms. A few examples follow...

Wait a minute!

But...

- we verify the Basis step,
- we verify the Inductive step (using the Inductive hypothesis),
- ... how come this implies the validity for infinity many values!?!

Example How high can you climb a ladder? Suppose we can mount the first step, standing on rung n climb the rung n + 1. ... thus, we can reach any rung of the ladder!

Theorem

The sum of the first *n* even natural numbers is n(n+1).

 $\begin{array}{l} 2+4+6=12=3\cdot 4\\ 2+4+6+8+10+12+14+16+18+20=110=10\cdot 11 \end{array}$

Proof by mathematical induction based on *n*: We prove $\forall n \in \mathbb{N}$ the following holds $\sum_{i=1}^{n} 2i = n(n+1)$.

- Basis step: For n = 1 claim P(1) gives " $2 = 1 \cdot 2$ ".
- Inductive step: Does P(n) imply P(n+1)?

I.e. does
$$\sum_{i=1}^{n} 2i = n(n+1)$$
, imply $\sum_{i=1}^{n+1} 2i = (n+1)(n+2)$?

We state Inductive hypothesis P(n): Suppose $\exists n \in \mathbb{N} : \sum_{i=1}^{n} 2i = n(n+1)$. Now $\sum_{i=1}^{n+1} 2i = \sum_{i=1}^{n} 2i + 2(n+1) \stackrel{IH}{=} n(n+1) + 2(n+1) = (n+1)(n+2)$. We have shown the correctness of the formula for the sum of the first n + 1 evens using the formula for the sum of the first n evens.

By mathematical induction the claim holds $\forall n \in \mathbb{N}$.

Strong mathematical induction compared to mathematical induction

Mathematical induction

Let P(n) be a propositional function with an integer parameter n. Suppose:

• Basis step:

The proposition $P(n_0)$ is true, where $n_0 = 0$ or 1, or some integer n_0 .

Inductive step:

Assume the Inductive hypothesis: P(n) holds for some n.

Show, that for all $n > n_0$ if P(n) holds, then also P(n+1) holds.

Then P(n) is true for all integers $n \ge n_0$.

Strong mathematical induction

- Basis step: The proposition $P(n_0)$ is true.
- Inductive step:

Inductive hypothesis: Assume P(k) holds for all $n_0 \le k < n$. Show, that also P(n) is true.

Then P(n) is true for all integers $n \ge n_0$.

Example

There are always pr - 1 breaks necessary to split a chocolate bar of $p \times r$ squares.

By *strong* induction on n = pr:

• Basis step:

For $n_0 = 1$ we have a bar with only one square, there are no breaks necessary (pr - 1 = 0).

• Inductive step:

Suppose now the claim holds for *any* chocolate bars with less than *n* squares. Take any bar with *n* squares. We break this bar into two parts of *s* or *t* squares, respectively, where $1 \le s, t < n$ and s + t = n. By Inductive hypothesis we can break each part by s - 1 or t - 1 breaks, respectively. There is a total of (s - 1) + (t - 1) + 1 = s + t - 1 = n - 1 breaks necessary.

The proof is complete by strong induction for all positive p, r.

Integer part of a real number

 $\lfloor x \rfloor$ floor function for a real number x [x] ceiling function for a real number x

Example

$$\lfloor 3.14 \rfloor = 3 \qquad \lfloor -3.14 \rfloor = -4 \\ \lfloor x \rfloor = \lceil x \rceil \quad \Rightarrow \quad x \in \mathbb{Z}$$

Question

Gives the expression $\lceil \log n \rceil$ the number of digits of *n* (in decimal system)?

If not, can you find a "correct" formula?

Question

 $\left\lfloor \frac{n}{n+1} \right\rfloor = ?$, where $n \in \mathbb{N}$ (what if $n \in \mathbb{N}_0$)

Lecture overview

Chapter 1. Sequences

- sequences
- sums and products
- arithmetic progression
- geometric progression

Sequence

is an ordered list of objects, called elements. We denote it by $(a_i)_{i=1}^n = (a_1, a_2, \dots, a_n)$.

- in real analysis defined as mappings $p:\mathbb{N}
 ightarrow\mathbb{R}$
- we distinguish first, second, third, ... element in the sequence.
- indices are natural numbers, usually starting at 1
- elements in a sequence can repeat (in contrary to sets)
- sequences can be finite (a₁, a₂,..., a_n) and infinite (a₁, a₂,...), the sequence can even be empty (we focus mainly on finite sequences)

Examples

```
\begin{array}{l} (x, v, z, v, y) \\ (2, 3, 5, 7, 11, 13, 17, 19, 23, 29) \\ (2, 3, 5, 7, 11, 13, 17, 19, 23, 29, \dots) \\ (1, -1, 1, -1, 1, -1, 1, -1, \dots) \end{array}
```

A sequence is given by: listing the elements, recurrence relations or a formula for the n-th element

Sums

Sum of a sequence is denoted by

$$\sum_{i=1}^{n} a_i = a_1 + a_2 + \dots + a_{n-1} + a_n$$

$$\sum_{i \in J} a_i = a_{i_1} + a_{i_2} + \dots + a_{i_n}, \text{ where } J = \{i_1, i_2, \dots, i_n\}.$$

Question

$$\sum_{i \in \{1,3,5,7\}} i^2 = ?$$

Example

$$\sum_{i=1}^{n} i = ?$$

Product

Product of elements in a sequence is denoted by

$$\prod_{i=1}^n a_i = a_1 \cdot a_2 \cdot \cdots \cdot a_{n-1} \cdot a_n$$

$$\prod_{i \in J} a_i = a_{i_1} \cdot a_{i_2} \cdot \cdots \cdot a_{i_n}, \text{ where } J = \{i_1, i_2, \dots, i_n\}$$

Examples

$$\sum_{i=2}^{5} \ln(i) = \ln\left(\prod_{i=2}^{5} i\right) = \ln\left(2 \cdot 3 \cdot 4 \cdot 5\right) = \ln 120$$
$$\sum_{i=1}^{n} \sum_{j=1}^{n} (i \cdot j) = \sum_{i=1}^{n} \left(i \cdot \sum_{j=1}^{n} j\right) = \left(\sum_{i=1}^{n} i\right) \cdot \left(\sum_{j=1}^{n} j\right) = \left(\frac{1}{2}n(n+1)\right)^{2}$$
empty sum
$$\sum_{i=3}^{2} i = 0$$
empty product
$$\prod_{i=3}^{2} i = 1$$

Examples

$$\sum_{i=1}^{n} (i+j) = \sum_{i=1}^{n} i + \sum_{i=1}^{n} j = \frac{n}{2}(n+1) + nj$$
$$J = \{2, 8, 12, 21\}, \qquad \sum_{j \in J} j = 2 + 8 + 12 + 21 = 43$$

Questions

$$\sum_{i=1}^{5} \ln(i) =? \qquad \sum_{i=1}^{100} i =?$$
$$\prod_{i=1}^{6} i =? \qquad \prod_{i=1}^{n} i =?$$
$$\prod_{i=1}^{n} (n-i) =? \qquad \sum_{i=1}^{n} (n+1-i) =?$$

Question

Can you find a sequence $(a_i)_{i=1}^n$, such that $\sum_{i=1}^n a_i < \sum_{i=1}^n (-a_i)$?

Question

Can you find a sequence $(a_i)_{i=1}^n$, such that $\sum_{i=1}^n a_i > 0$ and $\prod_{i=1}^n a_i < 0$?

Question

Does there exist a sequence of *positive* numbers $(a_i)_{i=1}^n$, such that $\sum_{i=1}^n a_i > \prod_{i=1}^n a_i$?

Arithmetic progression

Certain sequences for special progressions and we know several their properties.

Arithmetic progression

The sequence (a_i) is an arithmetic progression if its terms are

$$a, a+d, a+2d, a+3d, \ldots$$

Real numbers a, d are the first term and the difference of the progression, respectively.

Notice that the sequence (a_i) is an arithmetic progression, if there exists a real number d, such that for all i > 1 is $a_i - a_{i-1} = d$.

Every subsequent term arises by adding (the same!) difference d to the previous term.

Finite arithmetic progressions are also considered.

We have *n* terms

$$a, a+d, a+2d, \ldots, a+(n-1)d.$$

Examples

 $\begin{array}{ll} -2,3,8,13,18,\ldots & \mbox{first term } -2,\mbox{ difference 5} \\ -3,2,7,12,17,\ldots & \mbox{first term } -3,\mbox{ difference 5} \\ 20,9,-2,-13,-24,\ldots & \mbox{first term } 20,\mbox{ difference } -11 \\ \sqrt{2},\sqrt{2},\sqrt{2},\sqrt{2},\sqrt{2},\sqrt{2},\ldots & \mbox{first term } \sqrt{2},\mbox{ difference 0} \end{array}$

Examples

Find the *n*-th term of the progressions a_n from previous example $-2, 3, 8, 13, 18, \ldots$ $a_n = -2 + (n-1)5$ $-3, 2, 7, 12, 17, \ldots$ $a_n = -3 + (n-1)5$ $20, 9, -2, -13, -24, \ldots$ $a_n = 20 - (n-1)11$ $\sqrt{2}, \sqrt{2}, \sqrt{2}, \sqrt{2}, \sqrt{2}, \ldots$ $a_n = \sqrt{2}$

Example

Which sequence is given by the *n*-th term $a_n = -8 + 5n$?

Second progression $-3, 2, 7, 12, 17, \ldots$

Summing *n* terms of an arithmetic progression

$$a_1+a_2+\cdots+a_n=\sum_{i=1}^n a_i$$

In this case

$$a + (a + d) + \dots + a + (n - 1)d = \sum_{i=1}^{n} (a_1 + (i - 1)d)$$

holds

$$\sum_{i=1}^{n} (a_1 + (i-1)d) = \frac{n}{2}(a_1 + a_n) = \frac{n}{2}(2a_1 + (n-1)d) = na_1 + \frac{n(n-1)d}{2}$$

Sum of certain consecutive n terms of an arithmetic progression

$$\sum_{i=k}^{k+n-1} a_i = \frac{n}{2}(a_k + a_{k+n-1}) = \frac{n}{2}(2a_k + (n-1)d) = na_k + \frac{n(n-1)d}{2}$$

Notes

The sum of an infinite arithmetic progression generally does not exist. Sequence of partial sums

- diverges to $+\infty$ for d > 0,
- diverges to $-\infty$ for d < 0,
- for d = 0 diverges to $+\infty$ or to $-\infty$ or converges based on a_1 .

Arithmetic progression with first term a and difference d can be given by a recurrence relation

$$a_n=a_{n-1}+d, \quad a_1=a.$$

Example savings

Example

Uncle Scrooge has 4 514 cents in his safe. Every week he adds 24 cents to the safe. What is the formula for a_n ?

$$4\ 514, 4\ 538, 4\ 562, 4\ 586, \dots = 4\ 514 + 24(n-1) = 4\ 490 + 24n.$$

Example

Uncle Scrooge has 4 514 cents in his safe. The pocket money of each of his three nephews is 1 cent, but every week he increases the pocket money by one cent.

- a) Evaluate the total pocket money in the *n*-th week.
- b) Evaluate the number of cents in the safe in the *n*-th week.

a) pocket money
$$k = 3 + 3(n - 1) = 3n$$

b) in safe $s = 4514 - 3n$

Geometric progression

Geometric progression

The sequence (a_i) is a geometric progression if its terms are

$$a, a \cdot q, a \cdot q^2, a \cdot q^3, \ldots$$

Real numbers a, q are the first term and the common ration of the progression, respectively.

Notice that the sequence (a_i) is a geometric progression if there exists a real number q, such that for all i > 1 is $\frac{a_i}{a_{i-1}} = q$.

Every subsequent term arises by multiplying the previous term by (the same!) common ratio q.

Finite geometric progressions are also considered. We have n terms

$$a, a \cdot q, a \cdot q^2, \ldots, a \cdot q^{n-1}.$$

Question

Can a progression be both geometric and arithmetic at the same time? If yes, can you find different solutions? Infinitely many?

Examples

2, 10, 50, 250, 1250, ... first term 2, common ratio 5 9, 6, 4, $\frac{8}{3}$, $\frac{16}{9}$, ... first term 9, common ratio $\frac{2}{3}$ 4, -2, 1, $-\frac{1}{2}$, $\frac{1}{4}$, ... first term 4, common ratio $-\frac{1}{2}$ $\sqrt{2}$, $\sqrt{2}$, $\sqrt{2}$, $\sqrt{2}$, $\sqrt{2}$, $\sqrt{2}$, ... first term $\sqrt{2}$, common ratio 1

Examples

Find the *n*-th term of the progressions a_n from previous example 2, 10, 50, 250, 1250, ... $a_n = 2 \cdot 5^{n-1}$

$$9, 6, 4, \frac{8}{3}, \frac{16}{9}, \ldots$$
 $a_n = 9 \cdot \left(\frac{2}{3}\right)^{n-1} = \frac{27}{2} \cdot \left(\frac{2}{3}\right)^n$

$$4, -2, 1, -\frac{1}{2}, \frac{1}{4}, \dots \quad a_n = 4 \cdot \left(-\frac{1}{2}\right)^{n-1} = -8 \cdot \left(-\frac{1}{2}\right)^n$$
$$\sqrt{2}, \sqrt{2}, \sqrt{2}, \sqrt{2}, \sqrt{2}, \sqrt{2}, \dots \quad a_n = \sqrt{2}$$

Example

Which sequence is given by the *n*-th term $a_n = \left(\frac{1}{2}\right)^n$? $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \dots$

Sum of *n* terms of a geometric progression

$$a_1+a_2+\cdots+a_n=\sum_{i=1}^n a_i$$

In our case

$$a+(a\cdot q)+\cdots+a\cdot q^{n-1}=\sum_{i=1}^n(a_1\cdot q^{i-1})$$

for $q \neq 1$ holds

$$\sum_{i=1}^{n} (a_1 \cdot q^{i-1}) = a_1 \frac{q^n - 1}{q - 1}.$$

For q = 1 is the progression both arithmetic and geometric; we use a different formula.

Question

How does the sum of first n terms of a geometric progression with common ratio 1 look like?

Notes

The sum of an infinite geometric progression

- generally does not exist for $|q| \ge 1$,
- for q = 1 the sequence is constant; the sum depends on a_1 ,
- for q = -1 the sequence oscillates, there is no sum
- for |q| < 1 the sum is finite $\frac{a_1}{1-a}$

Sequence of partial sums of an infinite geometric progression

- diverges for $q \ge 1$,
- oscillates (and does not converge for $q \leq -10$,
- converges to $\frac{a_1}{1-q}$ for |q| < 1.

A geometric progression with first term a and common ratio q can be described recursively

$$a_n = a_{n-1} \cdot q, \quad a_1 = a.$$

Example savings

Example

Uncle Scrooge has 4 514 cents in a bank. Every year he get an interest of 2 percent (no rounding). What is the formula for the amount a_n (after n years)?

4 514, 4 604.3, 4 696.4, 4 790.3, 4 886.1, 4 983.8, $\cdots = 4 514 \cdot 1.02^{n-1}$.

Example

Uncle Scrooge has 4 514 cents in his safe. The pocket money of each of his three nephews is 1 cent, but every week he doubles the pocket money of each.

- a) Evaluate the total pocket money in the *n*-th week.
- b) Evaluate the number of cents in the safe in the *n*-th week.

a) pocket money
$$k = 3 \cdot 2^{n-1} = \frac{3}{2} \cdot 2^n$$

b) in safe $s = 4 514 - 3 \cdot 2^{n-1}$

Example

We tilt the pendulum to 5 cm height. Due friction each sway of the pendulum looses one fifth of it energy. Describe the sequence of heights to which the pendulum rises after each sway.

5 cm, 4 cm,
$$\frac{16}{5}$$
 cm, $\frac{64}{25}$ cm, $\frac{256}{125}$ cm, ..., $5 \cdot \left(\frac{4}{5}\right)^{n-1}$ cm first term 5 cm, common ratio $\frac{4}{5}$.

Question

С

After how many tilts will the pendulum stop?

Next lecture

Arrangements and selections

- multiplication principle (of independent selections)
- method of double counting