The Born-Oppenheimer
approximation
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Born-Oppenheimer approximation

Hamilton operator of a polyatomic system (x-representation)

A=3%N_, (—%AK) +Y0_, (—%Ak) +V(#, o, T, Ry, ooy Ry)

Born-Oppenheimer approximation

h2

My - 400 = B - A, = Y7_, (_%AR) + V(#, .., P Ry, oo, Ry)
e

Electronic Schrodinger equation
Ho®e (7, o, s Ry, oy Ry) = Ee(Ry, o, Ry )@ (7, -, Tus Ry, -, Ry)

Remark: Attention! In V (and consequently in E. as well), mutual (Coulombic) interactions of nuclei are included.



Potential energy surface

PES (Potential Energy Surface)
¢ W(ﬁl, ...,ﬁN) — Ee(ﬁll ...,I_éN)

* E. is obtained by solving the electronic Schrédinger equation
* the ground state, excited states — (infinitely) many PESs

* interpretation

* the nuclei move in an “external” field represented by a potential of W(I_fl, ...,ﬁN)

* the electronic state (usually the ground state) does not change during the motion of nuclei

* how to use?
* on-the-fly (quantum chemical) calculations

- -
e quantum chemical calculations on a “representative” grid of nuclear configurations, Ry, ..., Ry, and
a subsequent analytic representation
* least-squares fitting (regression models)

machine learning methods (neural networks, support-vector-machines, kernel regression, symbolic regression + genetic programming, ...)

* combined methods: on-the-fly (lower accuracy) and machine learning (refinement)



Potential energy surface

“Motion” of nuclei

* gquantum picture

=5 2 — —
e Hye=XF_4 (_Z;F\L/I_KAK) + W(Rl, ...,RN) — time-dependent/independent Schrodinger equation

 classical picture

. 13,( = —VxW — classical equations of motion (e.g., the Newton ones: 13,( = MKﬁK)



PES application |: stationary points

Stationary points
» foreachK: VyW =0

aWz ( - —
dqioq;

* classified by the definiteness of the Hessian matrix, {;; =

* local maximum (,negative definite” H)
* local minimum (,,positive definite” ') — equilibrium structures
* saddle point (,,indefinite” H) — transition structures (states)

The “definiteness” of Hessian matrices

* eigenvalues
* 6 (5) eigenvalues are equal to zero (translations and rotations)

* others (molecular deformations = vibrations)
* negative — ,negative definite”
* positive —, positive definite”

* both positive and negative — ,indefinite”

* one negative, the other positive — 15t order transition point (reaction path)



PES application |: stationary points

Local minima

e optimization problem
* |ocal (descent) methods — e.g., gradient-based methods

» global (usually stochastic) methods — e.g., simulated annealing, bio-inspired (genetic, evolutionary, swarm)
algorithms

» exploitation of results
* molecular structures
* thermodynamics of gas-phase systems at rigid-body approximation level
* (rigid) geometric structure - electronic state sum
. - inertia momentum tensor - rotational state sum



PES applicatio

Local minima

e optimization problem
* |ocal (descent) metho

» global (usually stochas
algorithms

» exploitation of results

* molecular structures

* thermodynamics of gas-phase syste

State sum of N indistinguishable (non-interacting) molecules

1
Z=—zN

N!
Z = ZoZiZpZy

z, = Xjg;exp(—E; [kgT)

Electronic state sum
Zo = exp(—E{s/kgT), EGs= the value of W corresponding
to the equilibrium configuration
of nuclei and the electronic
ground-state

~

lonary, swarm)

/

dy approximation level

* (rigid) geometric structure - electronic state sum

- inertia momentum tensor - rotational state sum



State sum of N indistinguishable (non-interacting) molecules\

PES application I: statio

Z = ZoZiZrZy
z, = Xjg;exp(—E; [kgT)

Local minima Rotational state sum
. timizati bl diatomic (linear) molecules
optimization probiem 2. = 3,(2) + Dexp(—E] /kgT), E] = J(J + D)A?/21
* |ocal (descent) methods — e.g., gradient-based me z, =~ (kgT)/(h?/2])

* global (usually stochastic) methods — e.g., simulat
algorithms

» exploitation of results

* molecular structures

polyatomic (non-linear) molecules
V1 (kBT)3
Z N

(h2/21;) (2 [21,)(h? [213) j

. - inertia momentum tensor - rotational state sum

* thermodynamics of gas-phase systems at rigid-body app
* (rigid) geometric structure - electronic state sum



PES application |: stationary points

Local minima

e optimization problem
* |ocal (descent) methods — e.g., gradient-based methods

» global (usually stochastic) methods — e.g., simulated annealing, bio-inspired (genetic, evolutionary, swarm)
algorithms

» exploitation of results
* molecular structures

* thermodynamics of gas-phase systems at rigid-body approximation level
* (rigid) geometric structure - electronic state sum
. - inertia momentum tensor - rotational state sum

Saddle points (1% order)

* more complex optimization-like task

* many sophisticated methods available in the literature
» exploitation of results

* energetic barriers between reactants and products of a chemical reaction
* reaction rates



PES application Il: molecular vibrations

Small vibrations (around an equilibrium configuration)

e second-order (quadratic) approximation of W (harmonic approximation)

W(qo +u) = W(qg) + XY 16 (QO) k+ ]k 1aq aq (qo)ujuy — - Z]k 1 Wirujug

e vibrational eigenmodes
® QT. W. Q = diag(ll, ,/13N_6, 0,0,0,0,0,0) )

« W(qy+u) = —ZRN 6(%) /ikv,ﬁ, where v = QT.u (system of independent linear harmonic oscillators)

Exploitation

 vibrational energies (— vibrational spectrum), vibrational wave functions
* thermodynamics of gas-phase ensembles of “weakly” non-rigid molecules

* Hessian matrix = vibrational eigenfrequences - vibrational state sum



PES application Il: molecular vibrations

Small vibrations (around an equilibrium configuration)

e second-order (quadratic) approximation of W (harmonic approximation)

W(qo +u) = W(qg) + XY 16 (Clo) k+ ]k 1aq aq (qo)ujuy — - Z]k 1 Wirujug

e vibrational eigenmodes
® QT. W. Q = diag(ll, ,/13N_6, 0,0,0,0,0,0) )

« W(qy+u) = —ZkN 6(%) /ikv,ﬁ, where v = QT.u (system of independent linear harmonic oscillators)

Exploitation ;
zy = exp(—Eo/kgT) 1k 1—exp(—hwy/kgT)

 vibrational energies (— vibrational spectrum)
* thermodynamics of gas-phase ensembles of “

* Hessian matrix = vibrational eigenfrequences - vibrational state sum

IMrYIcCcuiIco



Context (beyond the B-O approximation)

General Schrodinger equation

¥ > = s E)(p(?k,ﬁK,t)
Hgo(rk,RK, t) = ih o

gD(?k, R)K, t) = (p(‘l;)]_, "'17711' ﬁl! ...,ﬁN, t)

—~ hz hz ~ 7 e - _ —~
H=yN_ (—MAK) +30, (- — D)+ V(s oo, B By, oo, Ry) = Tt e
Tn'uc ﬁe

H\eq)eoc(Fk» R)K) = Eea(ﬁK)q)ea(Fk» ﬁK)

B-O separation ...
QD(Fk' ﬁK: t) — Za Xa (ﬁl{r t)(beoc(fzk' EK)



Context (beyond the B-O approximation)

.. inserted in the general Schrodinger equation

o A . OX
Tjad)(ﬁ + Za(cﬁa + SBaEea)Xa = ih—L
Approximations
* (o = 0(Born- Oppenheimer)
h2 d
( ad+Eeﬁ)Xﬁ—lh lZK 1( WA )+Wﬁ])(3—lh e

* (g =0prof #a (adiabatic)

., 0
(Taa + Eep + g )tp = th5F = Sy (_WAK) + (Wp + cp) | xp = ih =2



Context (beyond tl Ximation)

electronic state
changes with time

.. inserted in the general Schrodi

S A ., 0X
Tjad)(ﬁ + Za(cﬁa + 5BaEeoc)Xa - lha_tﬁ

Approximations
* Cga =0 (Born-Oppenheimer)

(Tjad + Eeﬁ))(ﬁ - lh— - IZK 1( iAK) + Wﬁ])(ﬂ = ih¥

electronic state does
not change with time

* (g = 0 prof # a (adiabatic)

d 2 '
(Traa + Bep + cpp)tp = iR > [T, (_MAK) + (Ws + cgp)| 2p = ihZE



The end of lesson 8.



